多孔氧化铝材料超级电容单体的制备与性能研究

合集下载

新能源材料-超级电容器

新能源材料-超级电容器
第八章 超级电容器
8.1 超级电容器概述 8.2 碳材料系列 8.3 金属氧化物材料 8.4 导电聚合物材料 8.5 复合材料 8.6 其他材料
功能材料研究所
1
8.1 超级电容器概述
超级电容器(Supercapacitors)是从上世纪七、八十年代 发展起来的通过极化电解质来储能的一种电化学元件。它不 同于传统的化学电源,是一种介于传统电容器与电池之间、 具有特殊性能的电源,主要依靠双电层和氧化还原假电容电 荷储存电能。但在其储能的过程并不发生化学反应,这种储 能过程是可逆的,也正因为此超级电容器可以反复充放电数 十万次。
(a) 碳气凝胶 (b) 花朵上的碳气凝胶
功能材料研究所
19
8.2 碳材料系列
碳气凝胶的制备: 1)形成有机凝胶:有机凝胶的形成可得到具有三维空 间网络状的结构凝胶; 2)超临界干燥:超临界干燥可以维持凝胶的织构而把 孔隙内的溶剂脱除; 3)碳化:碳化使得凝胶织构强化,增加了机械性能, 并保持有机凝胶织构。 只有热固性有机气凝胶才能制备碳气凝胶,否则碳化将破坏 凝胶结构。碳气凝胶的原料一般采用间苯二酚和甲醛,二者 在碱催化剂作用下发生缩聚反应,形成间苯二酚甲醛 RF(resorcinol formaldehyde)凝胶。用超临界干燥法把孔隙 内的溶剂脱除形成RF气凝胶,RF气凝胶在惰性气体下碳化 得到保持其网络结构的碳气凝胶。
功能材料研究所
8.1 超级电容器概述
双电层原理示意图
功能材料研究所
6
双电层电容器充电状态电位分布曲线
Profile of the potential across electrochemical double 功能材料研究所 layer capacitor in the charged condition

超级电容器的研究

超级电容器的研究

3、表面官能团
主要通过两种途径: 1)改变表面的润湿性能 2)官能团自身发生可逆的氧化还原反应 从制备高容量、耐高压、稳定性好的电容器角度 出发 , 要求活性炭材料表面的官能团有一个合适 的比例。
4、微晶结构
对超级电容器来说,中孔比例大一些比较好 中孔碳材料的方法主要有三种: 1)催化活化法 2)混合聚合物炭化法 3)模板炭化法
3、发展趋势:
• 提高性能、降低成本是超级电容器发展的主旋律。 • 从超级电容器的发展历史来看,电容器虽然能够 提供高功率,但电容器不能像电池一样提供高的 重量能量比,期望将来超级电容器能够代替电池 作为储能元件,兼具高能量和高功率的性能。 • 超级电容器是绿色环保、能源开发的重要方向之 一,它的研发必将带动整个电子产业及相关行业 的发展,目前国内超级电容器的开发生产刚刚起 步,具有广阔的发展空间。
双电层原理示意图
2. 性能特点
—介于电池和物理电容器之间
性 能 铅酸电池 1-5小时 超级电容器 0.3-若干秒 普通电容器 10-3—10-6秒
充电时间
放电时间
比能Wh/kg 循环寿命 比功率W/kg 充放电效率
0.3-3小时
30- 40 300 < 300 0.7-0.85
0.3-若干秒
1- 20 >10000 >1000 0.85-0.98
2) 赝电容型超级电容器
(1) 金属氧化物材料 • 贵金属氧化物材料 —RuO2:无定型RuO2拥有更高 的电导率,更高的比电容,更高的电化学可逆性。 • 替代RuO2的廉价金属氧化物材料—MnO2和NiO。
(2) 导电聚合物材料 聚苯胺(PANI)、聚吡 (PPy)和聚噻吩(PTh) 他们的一些相关衍生 物。 优点: 价格低廉、对环境友 好、高导电率、高度 可逆以及活性可控。

纳米多孔阳极氧化铝模板的制备方法及应用的研究进展

纳米多孔阳极氧化铝模板的制备方法及应用的研究进展

纳米多孔阳极氧化铝模板的制备方法及应用的研究进展赵婷婷;刘皓;李津;康卫民;韦尚志【摘要】The preparation methods of porous anodic alumina (PAA) templates are introduced fully,which contain mild anodization,hard anodization,two-step anodic oxidation and imprinting oxidation,followed by the preparation methods of special shaped PAA templates are reviewed.Finally,the application prospects of the PAA template in electromagnetism,sensors,barrier separation,biomedicine,and bionic nano-materials are also introduced.%对制备规整多孔阳极氧化铝模板的温和氧化法、强烈氧化法、二次阳极氧化法、模压氧化法等制备方法进行了系统介绍,并对一些特殊孔径的阳极氧化铝模板的制备方法进行了综述,介绍了PAA模板应用于电磁、传感器、催化剂载体、膜分离、生物医学、仿生纳米材料等领域的研究进展.【期刊名称】《天津工业大学学报》【年(卷),期】2013(032)004【总页数】7页(P19-25)【关键词】多孔阳极氧化铝;纳米模板;制备方法;特殊形状;应用【作者】赵婷婷;刘皓;李津;康卫民;韦尚志【作者单位】天津工业大学纺织学部,天津300387;天津工业大学纺织学部,天津300387;天津工业大学纺织学部,天津300387;天津工业大学纺织学部,天津300387;天津工业大学纺织学部,天津300387【正文语种】中文【中图分类】TQ153.6多孔阳极氧化铝(PAA)模板由多孔层和阻挡层组成,其中多孔层由均匀排列的纳米孔洞组成,孔密度较高,孔与孔之间相互平行,并与基体表面垂直.阻挡层是一层致密绝缘的氧化层,位于孔基底将多孔层和铝基体分开.由于PAA膜具有这种独特的结构,是非常理想的制备纳米材料的模板.1953年美国铝业公司Keller等[1]首先报道了用电化学方法制备氧化铝孔洞模板.20世纪80年代后期以来,多孔氧化铝膜在纳米材料上的应用引起了新一轮的研究热潮.1993年,美国约翰霍普金斯大学Whitney等[2]利用PAA模板制备了磁性金属纳米线,开拓了纳米材料制备的新方法;1995年日本首都大学Masuda等[3]首次利用二次氧化的方法,成功制备了孔洞排列高度有序的PAA膜和金属纳米阵列,开创了PAA膜在纳米结构材料方面新的应用.研究人员利用PAA模板成功制备了碳纳米管[4-5]、金属和金属复合物纳米线[2-5]、基因传输、生物医学、微燃料电池材料[6]、仿壁虎脚粘附材料[7-8]等各种纳米材料,极大促进了纳米材料的研究和发展.1 PAA模板的一般制备方法多孔阳极氧化铝(PAA)模板是采用电化学技术在铝表面进行原位生长制备得到的,这种方法称之为阳极氧化法.阳极氧化法按照氧化生长速率的不同可以分为温和氧化法和强烈氧化法.多孔阳极氧化铝模板的制备按照制备工序的不同又可以分为二次阳极氧化法和模压阳极氧化法.1.1 温和阳极氧化法温和氧化法即将预处理后的铝基底在适当的阳极氧化条件下进行一次氧化.其特点是阳极氧化反应缓慢,电流密度一般在10 mA/cm2数量级,氧化膜的生长速率较慢,约为2 μm/h.研究表明,温和法制备的PAA孔径和孔间距均随阳极氧化电压的增加而增大,一般孔间距与电压的比例系数为2.5 nm/V[9].温和氧化过程中,自排序氧化铝纳米阵列一般在3种体系中获得:①25 V硫酸中得到的孔直径为63 nm;②40 V草酸中得到的孔直径为100 nm;③195 V磷酸中得到的孔直径为500 nm.1.2 强烈阳极氧化法2006年德国马克斯·普朗克微结构物理研究所Lee等[10]提出了一种以草酸为电解液,通过提高阳极氧化电压(100~160 V),制备AAO模板的强烈阳极氧化法.其薄膜生长速率为50~70 μm/h,较以草酸为电解液的温和阳极氧化速率提高了25~35倍.生成的PAA 膜孔间距为 200~300 nm,膜非常厚(>100 μm),孔隙度低且高度有序的氧化铝膜具有高纵横比(>1000),纳米孔排列均匀,可调节直径大小.该方法通过对电解液的老化和温度的控制来提高阳极氧化电压,从而提高PAA的有序度.但此工艺必须将电解槽放入液氮中来降低氧化铝表面温度,成本较高.为解决此问题,2009年太原理工大学孙晓霞等[11]通过在草酸溶液中加入不同有机醇的方法来有效减少在氧化过程中产生的大量热量,采用强烈氧化法快速制备了高度有序的PAA模板.在以乙二醇水溶液(V醇∶V 水=1∶1)为溶剂的 0.5mol/L 草酸电解液中,于160 V电压下制备出的PAA模板孔分布均匀,孔径约为80 nm,孔间距约为120 nm,并呈六角形规则排列,膜生长速率为51.9 μm/h. 2009年南京科技大学Song等[12]提出,在强烈阳极氧化过程中,避免铝基底击穿现象的关键是要降低阻挡层的厚度;增加电解液的浓度和温度,可以降低阻挡层的厚度.所以,在高浓度的草酸溶液(>0.3 mol/L)中,在较高温度(16~40℃)下进行强烈阳极氧化,不会发生击穿现象.0.6 mol/L草酸溶液制备的PAA膜如图1所示.图1 草酸电解液制备的PAA膜SEM图像Fig.1 SEM images of PAA sample fabricated in oxalic acid solution2008年华南理工大学Li等[13]在硫酸-硫酸铝-水溶液中,分别在40和50 V的氧化电压下,通过两步强烈阳极氧化法制备了孔直径为77和96 nm的PAA膜,在恒定的40 V电压下通过改变电流密度得到PAA膜.实验表明,孔间距不仅依赖于阳极氧化电压,而且也受到电流密度的影响.这意味着强烈阳极氧化法能够通过同时调整阳极氧化电压和电流密度对PAA膜的孔结构进行设计和控制.1.3 两步阳极氧化法两步阳极氧化法是目前制备高度有序的PAA模板最常用的方法.1995年Masuda等[3]首次利用二次氧化的方法制备了孔洞排列高度有序的PAA 膜.将预处理后的铝基底在0.3 mol/L草酸中长时间恒压(40 V)氧化;一次氧化后,将铝基底放入饱和HgCl2溶液中去除氧化层;然后在相同条件下进行二次氧化,得到高度有序的PAA模板.2007年哈尔滨工业大学杨培霞等[14]在不进行高温退火处理的情况下,利用二次氧化法在草酸中得到纳米孔排列高度有序的PAA模板.1.4 模压阳极氧化法Masuda等[15-17]提出一种预先压印技术用来控制PAA模板的孔结构,即模压法.模压法是将排列有序的碳化硅模具放到铝的表面,在室温下使用油印机压印,然后对铝片进行阳极氧化.图2展示了压印前后PAA模板的对照图.图2 采用预先压印技术的PAA膜SEM图像Fig.2 SEM micrographs of surface of anodic porous alumina using pretexturing process2012年吉林大学Wang等[18]使用聚苯乙烯纳米球对铝基底进行预先压印,然后放入0.3 mol/L磷酸溶液中进行阳极氧化,制备出层级结构的纳米孔阵列,如图3所示.本课题组采用二次阳极氧化法制备了规整的多孔阳极氧化铝模板(如图4),该模板能够用于仿壁虎脚生物材料、面阵柔性传感器、柔性染料敏化太阳能电池的染料吸附、多孔半导体材料的制备.图3 PAA层级结构的SEM横截面图Fig.3 SEM image of cross-sectional of PAA with hierarchical structure图4 本课题组制备的PAA膜Fig.4 SEM images of PAA template fabricated in our group2 特殊形状PAA模板的制备方法2.1 孔道呈Y型或树杈形分布的模板2001年,韩国首尔大学Jin[19]等制备了Y型PAA模板,将预处理后的铝基底在0.3 mol/L草酸中恒压(40 V)氧化24 h;去除氧化层后在相同条件下二次氧化,二次氧化时间为20 min,在二次氧化的最后时间,以5 V/步将电压从40 V降到20 V.将模板在磷酸中扩孔,随后进行第三步氧化,得到Y型PAA模板,如图5所示.图5 Y型PAA的横截面SEM图像Fig.5 SEM image of cross-section of PAA template with Y-shape holes2005年纽约州特洛伊伦斯勒理工大学Meng等[5]利用降电压法,通过改变阶跃电压的幅值制备出可控数目分枝的PAA模板,即先用二步阳极氧化法制备出PAA 的主管,然后把氧化电压降低到原来的1,就能得到数目可控的n条枝管PAA模板.图6所示为树杈型PAA制备的碳纳米管截面图.图6 树杈型PAA制备的碳纳米管截面图Fig.6 SEM image of cross-section of CNTs by using PAA template with tree-shape holes2.2 复合孔径结构的PAA模板Lee等[10]使用温和阳极氧化法(MA)和强烈阳极氧化法(HA)相结合,制备出复合孔径阵列结构的PAA.与温和阳极氧化产生的PAA孔相比,强烈阳极氧化所产生的PAA孔直径较小.通过反复进行这两个过程的阳极氧化反应,可以得到一个高度有序的、管径可调节的复合孔径阵列结构PAA,如图7所示.每个阶段的孔洞长度可以通过调节相应步骤的反应时间来控制.但这种阳极氧化方式需要更换电解液,实验操作上比较繁琐,并且只有两种突变的管径.图7 MA/HA交替的PAA截面图Fig.7 SEM image of cross-section of PAA by using MA and HA method alternatelyHo等[20]通过两次更换电解液得到具有复合孔径阵列的3层PAA模板,但孔洞的大小和数目不容易控制,其SEM图如图8所示.图8 三层PAA模板的SEM图像Fig.8 SEM images of PAA with three-tiered 2009年澳大利亚伊恩·华克研究所Losic等[21-22]使用周期性阳极氧化法制备出具有互通式纳米管道的复合纳米结构.即在阳极氧化过程中利用周期性恒压电源控制或恒流电源控制法,不仅可以控制管道的直径,同时可以控制其形貌.这种方法使用缓慢变化的阳极氧化电压或电流,使反应过程在软阳极氧化和硬阳极氧化之间不断变化,最终得到孔道呈周期性分布的PAA模板,如图9所示.图9 孔道周期性分布PAA的SEM图像Fig.9 SEM image of PAA with cyclic pores2.3 孔道方向与铝基底平行的PAA模板常规纳米PAA模板的孔道方向均垂直于铝基体表面,2005年法国巴黎理工大学Cojocaru等[23]通过恒压阳极氧化法,将一层薄铝箔夹在两层绝缘层(SiO2)之间,铝箔被SiO2包覆,只在侧面处与硫酸电解液接触,阳极氧化电场只能沿与铝箔表面平行的方向,最终在低电压(3~5 V)下得到了孔径在3~4 nm、孔道平行于铝箔表面的PAA模板.制备过程如图10所示.图10 孔道平行于铝表面的PAA示意图Fig.10 Schematic diagram of PAA withholes parallel to surface of aluminum2.4 孔道开口呈正方形或三角形的PAA模板众所周知,常规PAA模板纳米孔道的开口呈规则的六边形结构.Masuda等[24-25]提出,纳米孔道的开口形状由压痕点(孔道中心点)即由铝表面的排列图案决定,而压痕点的形状由“Voronoi划分”确定.Masuda等根据“Voronoi划分”改变SiC模具形状,将压痕点排列成正方形和石墨结构图案,制备出孔洞开口呈规则正方形或三角形等特殊形状的PAA膜,如图11所示.图11 孔洞开口呈特殊形状的PAAFig.11 SEM images of PAA with special holes2.5 孔道呈倒圆锥形的PAA模板2007年Masuda研究组[26]先在草酸溶液中阳极氧化,然后在磷酸中扩孔,这两个过程重复交替进行,制备出了高度有序的倒圆锥形孔道PAA模板.2012年中国科学院Li等[27]发现,倒圆锥形孔洞的开口尺寸随总扩孔时间改变,孔洞深度随总阳极氧化时间改变.于是,通过控制扩孔和氧化时间,本文得到了各种形状的倒圆锥形孔洞,如图12所示.图12 各种倒圆锥形孔洞Fig.12 Diverse profiles of taper-nanopores3 PAA的应用PAA膜具有很多优越的性能,如孔结构高度有序、孔径均匀、孔洞形貌可控、比表面积高等.此外,与光刻技术相比,多孔阳极氧化铝模板成本更低、制备工序更加简单,已被广泛地用于制造各种纳米结构材料.3.1 电磁方面Whitney等[2]采用以PAA作为模板的复型技术已经制备出了各种各样的纳米线和纳米管材料,例如Ag、Pt、Sn、C、TiO2、CuS、AgI等 [28-33].使用 PAA 模板制备的有序金属纳米线,可应用于微燃料电池[6]、磁记录介质[2]、电阻器、晶体管和纳米反应器等的制造,制备的导电聚合物纳米结构和碳纳米管[4-5]可用于电学、光学和光电性能.3.2 传感器使用PAA已开发出各种光学生物传感器 [34-35]和电化学生物传感器[36-37]. 光致发光(PL)生物传感器也已应用到氧化铝衬底上.2004年兰州大学Jia等[34]证明了通过引入蛋白质(如胰岛素或人血清白蛋白),嵌入PAA膜纳米孔内染料(桑色素)的光致发光强度可以大大增强.为了提高葡萄糖生物传感器的分析性能,2003年华东师范大学Xian等[36]将普鲁士蓝(PB)电化学沉积到PAA模板孔内制成纳米电极阵列.PB沉积之前,通过真空蒸镀将一层薄金沉积到PAA膜的另一面.然后使葡萄糖氧化酶成功交联上PB 阵列.得到的PB纳米电极阵列呈现出一个较宽的线性标定范围(5.0 × 10-6~8.0 × 10-3M)和较低的检测范围(1 μM).3.3 催化剂载体多孔氧化铝另一个重要的应用是作为催化膜[38]使用.由于材料的高比表面积,大量的酶或合成催化剂在高反应速率下可以在阳极氧化铝膜内固化.2006年美国密歇根州立大学的Dotzauer等[38]通过聚电解质层和PAA膜载体内金纳米粒子之间的吸附作用形成催化膜.该膜将4-硝基苯酚(4-NP)催化还原成4-氨基苯酚(4-AP);在其它可还原的化合物(如氰基、苯乙烯基)存在下,该组制备的催化膜可选择性地催化还原硝基.3.4 分离工作此外,改变PAA的表面化学性质和孔径可以进行一系列精细的分离工作,包括对多价离子[39]、氨基酸[40]、蛋白质[41]和核酸[42]的分离.2006年美国阿拉莫斯国家科学实验室的McCleskey等[39]在纳米氧化铝表面沉积Au层,使得选择性分离膜的孔开口减小为7 nm.使用烷基硫醇对金涂层进一步官能化,三烷基膦氧化物的金属离子载体使得表面疏水.当采用硝酸铀酰和硝酸锂作为进料溶液、醋酸钠作为接收液时,通过磷酸盐或膦氧化物载体的促进输送,100%的金属离子都能够穿过膜.当铀离子和铕离子都存在于进料溶液时,铀离子的选择性高于铕离子,因为前者的离子选择性地绑定到了膦氧化物载体上.同时,膜上其他离子(如 H+、Ca2+、CH3COO-)运输受阻.2003 年日本NEC公司的Sano等[42]采用颗粒排除分离的方法,使用PAA膜作为DNA颗粒离析平台.在这种方法中,具有较小尺寸的DNA生物分子经常被困在孔隙中,因此通过通道时,洗脱速度比大的生物分子慢得多.3.5 生物医学多孔氧化铝基材料已被作为支架用于组织工程[43],控制细胞进行表面交互作用.最近研究表明,该材料具有相当大的潜力作为药物或基因的转运载体,可控制治疗性分子的释放.2010年澳大利亚伊恩·华克研究所的Kant等[43]以SK-N-SH细胞作为神经元细胞模型,研究了各种PAA膜的孔结构对人神经母细胞瘤生长的影响.这项研究表明,孔结构对神经元细胞的取向和表型有直接影响,开拓了生物工程的可能性.该组在复合孔径和分叉结构表面上发现了最广泛的细胞反应.这种表面提供了最多的细胞附着、频繁的神经元状表型和大量的细胞间交互作用.2011年Aw等[44]探讨了药物纳米载体的洗脱性能,其中PAA作为治疗植入物,聚合物胶束作为模型纳米载体.等离子聚合物层在PAA膜内沉积的厚度不同,孔的直径可控,因此药物释放的速率可控.通过控制等离子体聚合物层沉积,PAA植入物达到良好的零级释放动力学是可能的.3.6 仿生学领域近年来,PAA模板在仿生学纳米材料领域也有着广泛的用途.自从2000年美国斯担福大学Autumn[45]证实壁虎自由行走在光滑表面是借助于范德华力后,许多研究人员尝试用PAA模板制作仿壁虎脚胶带,2003年,Campolo等[46]在孔径为200 nm、高60 μm的PAA模板涂覆聚氨酯溶液,得到了聚氨酯纳米阵列,但未对其粘附性能进行测试.2007年,新加坡南阳理工大学Kustandi等[47]在草酸电解液中使用不同温度得到两种PAA模板,并采用光刻工艺和紫外光压印技术制得层级结构.然后将聚甲基丙烯酸甲酯(PMMA)溶液沉积到层次结构的PAA模板中,得到仿壁虎脚粘附阵列.但是,由于所制备膜上的支柱过于密集造成凝结,最终这些结构的粘附力没有精确地表现出来.2011年,新加坡南阳理工大学Ho等[8]将磷酸和草酸溶液中制备出的双层PAA模板放在一个250 μm厚的聚碳酸酯膜上进行热压纳米压印.得到粘附阵列的宏观粘附力为6.5 N/cm2,与壁虎脚毛的10 N/cm2在一个数量级.2012年,北京航空航天大学Liu等[48]将聚酰亚胺的预聚物旋涂到制备好的PAA 模板上,在平板玻璃基底上得到的聚酰亚胺薄膜对水具有很好的粘附性.本课题组正尝试用PAA模板制备仿壁虎脚粘附材料,并在该材料表面镀上金属镀层,实现自粘附表面生物电干电极,该电极能够应用于健康可穿监控系统当中[49-50].4 结束语从各种PAA模板的制备方法可以看出,无论是一般PAA模板制备,还是特殊形状PAA模板制备,影响PAA孔洞形貌尺寸的最主要因素仍然是阳极氧化的电场强度、氧化温度、电解液种类及浓度等.目前,世人仍未能洞悉PAA纳米孔洞的生长机理,没有一种理论能解释所有实验现象.随着研究的深入,PAA模板的调控和制备技术必然会有更新的突破.新型PAA模板的制备在光学、电学、磁学、仿生学、生物医学等纳米材料科学领域具有广阔的应用前景,对各种功能性纳米材料的开发具有巨大的促进作用.参考文献:【相关文献】[1]KELLER F,HUNTER M S,ROBINSON D L.Structural features of oxide coatings on aluminum[J].Journal of the Electrochemical Society,1953,100(9):411-419.[2]WHITNEY T M,SEARSON P C,JIANG J S,et al.Fabrication and magnetic properties of arrays of metallic nanowires[J].Science(New York,NY),1993,261(5126):1316-1319.[3]MASUDA H,FUKUDA K.Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J].Science(New York,NY),1995,268(5216):1466-1468.[4]LI J,PAPADOPOULOS C,XU J.Nanoelectronics-growing y-junction carbon nanotubes[J].Nature,1999,402(6759):253-254.[5]MENG G W,JUNG Y J,CAO A Y,et al.Controlled fabrication of hierarchically branched nanopores,nanotubes,and nanowires[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(20):7074-7078.[6]BOCCHETTA P,CONCIAURO F,SANTAMARIA M,et al.Cs-0.86(NH4)(1.14)SO4Te(OH)(6)in porous anodic alumina for micro fuel cell applications[J].Electrochimica Acta,2011,56(11):3845-3851.[7]许云.仿壁虎粘附材料的制备与粘附性能研究[D].合肥:中国科学技术大学,2010.[8]HO A Y Y,YEO L P,LAM Y C,et al.Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae[J].Acs Nano,2011,5(3):1897-1906.[9]LI A P,MULLER F,BIRNER A,et al.Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina [J].Journal of Applied Physics,1998,84(11):6023-6026.[10]LEE W,JI R,GOSELE U,et al.Fast fabrication of longrange ordered porous alumina membranes by hard anodization[J].Nature Materials,2006,5(9):741-747.[11]孙晓霞,黄平,梁建,等.强烈阳极氧化法快速制备多孔氧化铝模板[J].无机化学学报,2008,24(9):1546-1550.[12]SONG Y,JIANG L,QI W,et al.High-field anodization of aluminum in concentrated acid solutions and at higher temperatures[J].Journal of Electroanalytical Chemistry,2012,673:24-31.[13]LI Y,LING Z Y,CHEN S S,et al.Fabrication of novel porous anodic alumina membranes by two-step hard anodization[J].Nanotechnology,2008,19(22):225604. [14]杨培霞,安茂忠,田兆清.高度有序多孔阳极氧化铝模板的制备[J].材料科学与工艺,2007,15(1):87-90.[15]MASUDA H,YAMADA H,SATOH M,et al.Highly ordered nanochannel-array architecture in anodic alumina[J].Applied Physics Letters,1997,71(19):2770-2772. [16]ASOH H,NISHIO K,NAKAO M,et al.Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid[J].Journal of VacuumScience&Technology B:Microelectronics and Nanometer Structures,2001,19(2):569-572.[17]ASOH H,NISHIO K,NAKAO M,et al.Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al[J].Journal of the Electrochemical Society,2001,148(4):B152-B156.[18]WANG X,XU S,CONG M,et al.Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography[J].Small,2012,8(7):972-976.[19]JIN Seung L,GEUN Hoi G,HOSEONG K,et al.Growth of carbon nanotubes on anodic aluminum oxide templates:Fabrication of a tube-in-tube and linearly joinedtube[J].Chemistry of Materials,2001,13(7):2387-2391.[20]HO A Y Y,GAO H,LAM Y C,et al.Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina[J].Advanced Functional Materials,2008,18(14):2057-2063.[21]LOSIC D,LILLO M,LOSIC D Jr.Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization[J].Small,2009,5(12):1392-1397.[22]LOSIC D,LOSIC D Jr.Preparation of porous anodic alumina with periodically perforated pores[J].Langmuir,2009,25(10):5426-5431.[23]COJOCARU C S,PADOVANI J M,WADE T,et al.Conformal anodic oxidation of aluminum thin films[J].Nano Letters,2005,5(4):675-680.[24]MASUDA H,ASOH H,WATANABE M,et al.Square and triangular nanohole array architectures in anodic alumina[J].Advanced Materials,2001,13(3):189-192.[25]ASOH H,ONO S,HIROSE T,et al.Growth of anodic porous alumina with square cells[J].Electrochimica Acta,2003,48(20/21/22):3171-3174.[26]YANAGISHITA T,YASUI K,KONDO T,et al.Antireffection polymer surface using anodic porous alumina molds with tapered holes[J].Chemistry Letters,2007,36(4):530-531.[27]LI J,LI C,CHEN C,et al.Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores[J].Acs AppliedMaterials&Interfaces,2012,4(10):5678-5683.[28]NIELSCH K,MULLER F,LI AP,et al.Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition[J].Advanced Materials,2000,12(8):582-586. [29]PIAO Y,LIM H,CHANG J Y,et al.Nanostructured materials prepared by use ofordered porous alumina membranes[J].Electrochimica Acta,2005,50(15):2997-3013. [30]SHEN X P,HAN M,HONG J M,et al.Template-based CVD synthesis of ZnS nanotube arrays[J].Chemical Vapor Deposition,2005,11(5):250-253.[31]WAN Jun Y,YOU Suk C,GYU Seok C,et al.Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template[J].Nanotechnology,2005,16(5):S291-295.[32]ZHAO L L,YOSEF M,STEINHART M,et al.Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe,Sn,andSnO2[J].Angewandte Chemie-International Edition,2006,45(2):311-315.[33]MARTIN C R.Nanomaterials:A membrane-based synthetic approach[J].Science(New York,NY),1994,266(5193):1961-1966.[34]JIA R P,SHEN Y,LUO H Q,et al.Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array[J].Solid State Communications,2004,130(6):367-372.[35]JIA R P,SHEN Y,LUO H Q,et al.Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered porearrays[J].Journal of Physics:Condensed Matter,2003,15(49):8271.[36]XIAN Y,HU Y,LIU F,et al.Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing[J].Biosensors and Bioelectronics,2007,22(12):2827-2833.[37]DARDER M,ARANDA P,HERNÁNDEZ-VÉLEZ M,et al.Encapsulation of enzymes in alumina membranes of controlled pore size[J].Thin Solid Films,2006,495(1/2):321-326.[38]DOTZAUER D M,DAI J,SUN L,et al.Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports[J].Nano Letters,2006,6(10):2268-2272.[39]MCCLESKEY T M,EHLER D S,YOUNG J S,et al.Asymmetric membranes with modified gold films as selective gates for metal ion separations[J].Journal of Membrane Science,2002,210(2):273-278.[40]HONG S U,BRUENING M L.Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes[J].Journal of Membrane Science,2006,280(1/2):1-5.[41]SUN L,DAI J,BAKERG L,et al.High-capacity,proteinbinding membranes based on polymer brushes grown in porous substrates[J].ChemistryofMaterials,2006,18(17):4033-4039.[42]SANO T,IGUCHI N,IIDA K,et al.Size-exclusion chromatography using self-organized nanopores in anodic porous alumina[J].Applied Physics Letters,2003,83(21):4438-4440.[43]KANT K,LOW S P,MARSHAL A,et al.Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum[J].ACS AppliedMaterials&Interfaces,2010,2(12):3447-3454.[44]AW M S,SIMOVIC S,ADDAI-Mensah J,et al.Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly solubledrugs[J].Journal of Materials Chemistry,2011,21(20):7082-7089.[45]AUTUMN K,LIANG Y A,HSIEH S T,et al.Adhesive force of a single gecko foot-hair[J].Nature,2000,405(6787):681-685.[46]CAMPOLO D,JONES S,FEARING R S.Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces[C]//2003 Third IEEE Conference on Nanotechnology IEEE-NANO 2003 Proceedings.San Francisco:IEEE-NANO,2003:856-859.[47]KUSTANDI T S,SAMPER V D,NG W S,et al.Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template[J].Journal of Micromechanics and Microengineering,2007,17(10):N75-N81.[48]LIU K S,DU J X,WU J T,et al.Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials[J].Nanoscale,2012,4(3):768-772.[49]LIU H,KANG W,TAO X,et al.Performance evaluation of surface biopotential dry electrodes based on PSD and EIS[J].International Journal of Advancements in Computing Technology,2012,4(20):497-505.[50]LIU H,TAO X,XU P,et al.A dynamic measurement system for evaluating dry bio-potential surface electrodes[J].Measurement:Journal of the International Measurement Confederation,2013,46(6):1904-1913.。

超级电容器实验报告

超级电容器实验报告

实验报告题目C,MnO2的电化学电容特性实验姓名许树茂学号***********所在学院化学与环境学院年级专业新能源材料与器件创新班指导教师舒东老师完成时间2012 年 4 月1.【实验目的】1. 了解超级电容器的原理;2. 了解超级电容器的比电容的测试原理及方法;3. 了解超级电容器双电层储能机理的特点;4. 掌握超级电容器电极材料的制备方法;5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。

2. 【实验原理】超级电容器的原理超级电容器是由两个电极插入电解质中构成。

超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。

尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。

图1 超级电容器的结构图从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。

在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。

表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。

大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。

(1) 双电层超级电容器的工作原理双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。

对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。

当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。

这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

根据双电层理论,双电层的微分电容约为20µF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。

阳极氧化铝模板(aao)的制备与应用研究

阳极氧化铝模板(aao)的制备与应用研究

标题:深度探究阳极氧化铝模板(AAO)的制备与应用研究一、概述阳极氧化铝模板(AAO)是一种具有微孔结构的材料,由于其独特的性质在众多领域展现出了巨大的应用潜力。

本文将深入探讨AAO的制备方法和其在各个领域的应用研究。

二、AAO的制备方法1. 模板法制备模板法是制备AAO的常见方法,通过模板的作用,在铝基底上形成一定孔径和密度的孔洞结构。

该方法可以利用硬模板或软模板,如聚苯乙烯球和聚苯乙烯磺酸钠等,通过控制模板的大小和形状来调控AAO 的孔洞结构。

2. 自组装制备自组装是一种简单高效的AAO制备方法,通过表面张力和化学吸附等现象,使得前驱体在铝表面形成规整的排列。

随后进行阳极氧化处理,即可得到具有有序孔洞结构的AAO材料。

3. 氧化还原制备氧化还原法是将铝箔经过预处理后,在氧化液中进行氧化还原反应,从而形成具有孔洞结构的AAO材料。

这种方法制备的AAO具有高度可控性和规整性,能够满足一些特殊应用的需求。

三、AAO在材料科学中的应用研究1. 纳米材料制备AAO模板具有均匀、有序的孔洞结构,可以用作纳米材料的制备模板。

通过在孔洞中填充各类材料并去除模板,可以制备出具有规整结构和特殊性能的纳米材料,如纳米线、纳米颗粒等。

2. 光伏领域应用AAO的孔洞结构对光子在介质中的传播和反射具有一定影响,因此在太阳能电池、光子晶体和光子晶格方面具有重要应用潜力。

通过调控AAO的孔洞结构和尺寸,可以提高光电转换效率和光学性能。

3. 储能材料研究AAO的孔洞结构可以用于储存和传输离子或分子,因此在储能材料领域有着广泛的应用。

通过在孔洞中填充导电材料或特定离子,可以制备出具有高效储能性能的新型材料。

四、结语通过对AAO的制备方法和应用研究的探讨,我们可以看到AAO具有广阔的应用前景和重要的研究价值。

在未来的科研工作中,我们需要深入研究AAO在材料科学、光伏领域和储能材料等方面的应用,同时不断改进制备方法,以推动其在实际应用中发挥更大的作用。

不同形态MOF-5为前驱体合成多孔碳材料及其超级电容特性

不同形态MOF-5为前驱体合成多孔碳材料及其超级电容特性

不同形态MOF-5为前驱体合成多孔碳材料及其超级电容特性王惠婷【摘要】以不同形态的MOF-5为前驱体,直接碳化合成多孔碳电极材料,用X射线衍射(XRD)、透射扫描电镜(SEM)对样品的形貌和结构进行表征,然后再把该样品用作超级电容器的电级材料,利用循环伏安法、恒流充放电对电容器电化学性能进行测试.结果表明,其中一种形式材料要比另一种形式材料的比表面积大,而且孔结构比较丰富,作为超级电容器的电极材料具有良好的电化学性能,在5A/g充放电流下,电容可达125 F/g.%The porous carbon materials were synthesized by direct carbonization with different morphology MOF-5s.The samples were characterized by X-ray,scanning electron microscopy.Then the samples were used as supercapacitors,and the electrochemical performance of the capacitors were studied by cyclic voltammetry,constant current charging and discharging.Results showed that a form of the materials had higher specific surface area,porous structure,and demonstrated a good electrochemical performance up to 125F/g as a supercapacitor electrode material by charging and discharging in the 5A/g flow.【期刊名称】《合成材料老化与应用》【年(卷),期】2017(046)002【总页数】4页(P72-75)【关键词】多孔材料;前驱体;超级电容器;金属有机骨架【作者】王惠婷【作者单位】北京科技大学数理学院,北京100036【正文语种】中文【中图分类】TU512.2过去几十年里,多孔材料发展成为化学、物理以及材料科学等学科领域的研究热点之一。

超级电容器的活性炭电极制备工艺研究

超级电容器的活性炭电极制备工艺研究

超级电容器的活性炭电极制备工艺研究随着电子技术的发展,电子设备的运行速度和处理能力不断提高。

同时,能源问题也成为了全球关注的焦点。

为了满足设备运行的电源需求,越来越多的研究人员开始关注新型电容器的研发。

超级电容器作为一种新型电容器,具有高功率密度、长寿命、快速充放电、环境友好等优点,因此备受研究者的关注。

超级电容器的核心部件是电极材料。

活性炭作为超级电容器电极材料的首选,因其表面积大、孔径分布广、导电性好等优点而备受青睐。

本文将探讨超级电容器的活性炭电极制备工艺研究。

一、活性炭电极的制备1.材料选择活性炭的选择要考虑两个因素。

首先,活性炭的表面积越大,其在电容器中的表现越好。

其次,选用适当的助剂,如氧化锆等,可以增加活性炭的导电性。

因此,在选择活性炭时需要综合考虑这两个因素。

2.炭化处理在活性炭制备的过程中,炭化处理是必须的。

炭化能够提高活性炭的比表面积、孔径分布和电导率等性能。

通常采用高温热解、氧化、碳化等方法对原料进行处理。

3.活化处理活化处理是活性炭电极制备不可或缺的一步,它能进一步增大活性炭的比表面积和孔径分布,使其电化学表现更优越。

活化处理分为物理活化和化学活化两种方法,物理活化主要是利用气体分子的物理吸附、凝聚和作用,而化学活化是利用碱性、酸性物质对活性炭表面进行化学反应,引入新的官能团。

二、影响活性炭电极表现的因素1.比表面积活性炭的比表面积越大,其在电容器中的表现越好。

为了增大活性炭的比表面积,我们可以采用物理活化、化学活化或多孔碳化处理等方法。

2.孔径分布孔径分布是另一个重要因素。

孔径分布对活性炭电极的电化学表现有很大的影响。

大孔径的材料能够存储更多的离子,而小孔径有助于离子的迁移和扩散。

因此,我们需要在活化处理中控制孔径分布。

3.导电性活性炭本身的导电性较差,因此需要使用助剂来提高其导电性。

常用的助剂是氧化锆、金属氧化物、单壁碳纳米管等。

助剂的添加量需要在保证良好的导电性的同时不减少活性炭的比表面积和孔径分布。

超级电容器原理介绍及实验分析

超级电容器原理介绍及实验分析

五、结果与分析1、实验过程总结与知识点查阅○1超级电容器的结构:[1]超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。

本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。

○2超级电容器的分类及原理分为双电层电容器和赝电容器双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。

在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。

在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。

同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。

整个超级电容器相当于两个电容器串联。

循环性能好,比电容较低。

赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。

在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。

循环性能差,比电容高。

○3超级电容器的电极材料[2]:(1)炭材料:活性炭、碳纳米管、石墨烯等。

主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。

( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。

(3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。

○4循环伏安法测试及其原理循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。

从伏安图的波形、氧化还原电流的数值及其比值、峰电位等可以判断电极反应机理。

而在本实验中运用循环伏安法,在得到CV 曲线后首先可以从曲线的对称性分析得到样品的循环性能,之后可以通过曲线围成的面积计算样品的电容大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多孔氧化铝材料超级电容单体的制备与性能
研究
摘要:
超级电容器作为一种新型储能装置,具有高能量密度、长寿命、快速充放电等优点,已经在电动车、可再生能源和便携式设备等领域得到广泛应用。

本研究旨在制备一种多孔氧化铝材料作为超级电容器的电极材料,并对其性能进行研究。

通过化学合成和表征分析,研究了氧化铝材料的晶体结构、形貌特征和电化学性能。

实验结果表明,制备的多孔氧化铝材料具有较高的比表面积和孔隙结构,表现出良好的电容性能和循环稳定性,具有潜在的应用前景。

1.引言
超级电容器作为一种高性能的储能装置,能够在短时间内实现快速的充放电过程,具有能量密度高、循环寿命长、多次充放电等优势,已经引起了广泛的关注。

多孔氧化铝材料作为一种电极材料,具有较高的比表面积、良好的化学稳定性和电化学性能,被广泛用于超级电容器的制备。

本文旨在研究多孔氧化铝材料的制备方法,并研究其电化学性能,为超级电容器的应用提供理论基础和技术支持。

2.实验部分
2.1 多孔氧化铝材料的制备
本研究采用化学合成的方法制备多孔氧化铝材料。

首先,将适量的氯化铝和尿素加入到去离子水中,并在搅拌的同时通过控制温度进行反应。

反应产物经过离心分离、洗涤和干燥后得到多孔氧化铝材料。

制备得到的样品经过扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察其晶体结构和形貌特征。

2.2 多孔氧化铝材料的电化学性能测试
采用循环伏安法(CV)和电化学阻抗谱(EIS)对制备得到的多孔氧化铝材料的电化学性能进行测试。

使用三电极体系,以多孔氧化铝材料为工作电极,铂电极为对电极,银/银氯化银为参比电极。

在电化学工作站上进行测试,并绘制电化学曲线和等效电路图。

利用截面扫描电镜(SEM)对多孔氧化铝材料进行结构表征和分析。

3.结果与讨论
3.1 多孔氧化铝材料的结构与形貌
通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察多孔氧化铝材料的结构和形貌,发现制备得到的样品具有较高的孔隙结构和较大的比表面积。

SEM图像显示,多孔氧化铝材料呈现出均匀而规则的孔隙结构;TEM图像进一步证实了多孔材料的结晶特征。

这种多孔氧化铝材料具有优异的导电性能和电化学活性,可用作超级电容器的理想电极材料。

3.2 多孔氧化铝材料的电化学性能
通过循环伏安法和电化学阻抗谱测试多孔氧化铝材料的电化学性能。

循环伏安曲线显示,多孔氧化铝材料的比电容维持稳定,无明显的趋势变化,表明其具有较好的循环稳定性。

电化学阻抗谱进一步证实了多孔氧化铝材料的低电阻和快速离子传导特性。

这些结果表明,制备得到的多孔氧化铝材料具有良好的电化学性能,可望在超级电容器领域有广泛的应用前景。

4.结论
本研究通过化学合成的方法成功制备了多孔氧化铝材料,并对其结构和电化学性能进行了详细的研究。

实验结果表明,制备得到的多孔氧化铝材料具有较高的比表面积和孔隙结构,表现出良好的电容性能和循环稳定性,具有潜在的应用前景。

进一步的研究将基于本研究的结果,优化材料制备方法,提高多孔氧化铝材料的电化学性能,以满足超级电容器在能源储存领域的应用需求。

相关文档
最新文档