随机性模型与模拟方法
数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
蒙特卡洛随机模拟

蒙特卡洛随机模拟蒙特卡洛模拟法简介蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸你的方法。
此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。
作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。
蒙特卡洛模拟法的应用领域蒙特卡洛模拟法的应用领域主要有:1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。
2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。
解题步骤如下:1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。
通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。
一. 预备知识:1.随机数的产生提示:均匀分布(0, 1)U 的随机数可由C 语言或Matlab 自动产生,在此基础上可产生其他分布的随机数. 2.逆变换法:设随机变量U 服从(0,1)上的均匀分布,则)(1U F X -=的分布函数为)(x F . 步骤:(1) 产生)1,0(U 的随机数U ;(2) 计算)(1U F X -=, 则X 服从)(x F 分布. 问题:练习用此方法产生常见分布随机数.例如“指数分布,均匀分布),(b a U ”.还有其它哪种常见分布的随机数可用此方法方便产生? 3.产生离散分布随机数已知离散随机变量X 的概率分布:)2,1(,)( ===K P x X P k k ,产生随机变量X 的随机数可采用如下算法:a) 将区间[0.1]依次分为长度为 ,,21p p 的小区间 ,,21I I ;b) 产生[0,1]均匀分布随机数R ,若k I R ∈则令k x X =,重复(b),即得离散随机变量X 的随机数序列.问题:(1) 下表给出了离散分布X 的概率分布表,试产生100个随机数.X 的概率分布表(2) 用此方法给出100个二项分布(20, 0.1)B 的随机数及10个泊松分布P(1)的随机数. 4. 正态分布的抽样提示:设21,U U 是独立同分布的)1,0(U 变量,令)2sin()ln 2()2cos()ln 2(22/11222/111U U X U U X ππ-=-=则1X 与2X 独立 ,均服从标准正态分布. 步骤:(1) 由)1,0(U 独立抽取1122,U u U u ==(2) 用(*)式计算21,x x .用此方法可同时产生两个标准正态分布的随机数.问题: 有关随机数产生方法很多,查阅相关材料进行系统总结.二. 随机决策问题1.某小贩每天以一元的价格购进一种鲜花,卖出价为b 元/束,当天卖不出去的花全部损失,顾客一天内对花的需求量是随机变量, 服从泊松分布,(),0, 1, 2,,!kP X k ek k λλ-=== .其中常数λ由多日销售量的平均值来估计, 问小贩每天应购进多少束鲜花?(准则:期望收入S(u)最高) 问题:(1) 在给定 1.25, 50b λ==的值后, 画出目标函数S(u)连线散点图, 观察单调性,给出最优决策*u ;(2) 选取其他的λ,b ,再观察S(u)的单调性;(3) 用计算机模拟方法来求出最优决策*u .对固定的u ,例如,u=40,对随机变量X 模拟100次,每次模拟得到一个收入,求出100个收入的平均值,即得到在决策u=40情况下的可能收入;(4) 对所有的可能的u ,重复(3),从中找最大的,并与(1)的结果相比较. 3.一重定积分的蒙特卡罗算法问题描述:假设函数()f x 在[,]a b 内有界连续,且()0f x ≥,求解定积分()baI f x dx =⎰.为计算出其值,可构造概率模型如下:取一个边长分别为b a -和c 的矩形D ,使曲边梯形在矩形域之内,如图2,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中灰色区域内的随机点数k 与投点总数N 之比k/N 就近似地等于曲线下方面积(即阴影面积)与矩形面积之比,从而得出近似积分()kI b a c N≈-.图2例 求211x e--⎰由于2x e -是非初等函数,我们很难求出其原函数,所以用牛顿-莱布尼茨公式无法求解,但可以运用蒙特卡罗方法求出其近似值.将上述方法推广到一般情况:假设函数()f x 在[a ,b]内有界连续,对于定积分()baI f x dx =⎰,为计算出其值,可构造如下概率模型:取一个边长分别为b a -和c d -的矩形D ,使曲线[,]a b 段的值在矩形域之内,如图3,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中x 轴上下灰色区域内的随机点数m 与n 的差与投点总数p 之比(m-n)/P 就近似地等于曲线上下方面积之差(即阴影面积之差)与矩形面积之比,从而得出近似积分()()m nI b a c d P-≈--.图34. 二重积分的蒙特卡罗算法问题描述:实际计算中常常要遇到如(,)Df x y dxdy ⎰⎰的二重积分,发现被积函数的原函数往往很难求出,或者原函数根本就不是初等函数,对于这样的重积分,蒙特卡罗方法也有成熟的计算方法. 方法1: 步骤:1,取一个包含D 的矩形区域Ω:,a x b c y d ≤≤≤≤,面积()()A b a d c =--;2,(,), 1,2,,i i x y i n = ,为Ω上的均匀分布随机数列,不妨设(,),1,2,i i x y i n = ()为落在D 中的n 个随机数,则n 充分大时,有1(,)(,)ki i i DA f x y dxdy f x y n =≈∑⎰⎰.方法2: 对二重积分(,)AI f x y dxdy =⎰⎰,假设(,)f x y 为区域A 上的有界函数,且(,)0f x y ≥,几何意义对应的是以(,)f x y 为曲面顶, A 为底的曲顶柱体C 的体积.因此,用均匀随机数计算二重积分的蒙特卡罗方法基本思路为:假设曲顶柱体C 包含在己知体积为DV的几何体D 的内部,在D 内产生N 个均匀随机点,统计出在C 内部的随机点数目C N ,则DC V I N N=.例:计算(1Adxdy +⎰⎰,其中22{(,)|1}A x y x y =+≤.分析:该二重积分可以看作以1+曲顶柱体在一个边长为2的立方体内,用数学分析方法可计算出其精确值为π.。
蒙特卡洛模拟方法

蒙特卡洛模拟方法蒙特卡洛模拟方法(Monte Carlo simulation)是一种基于随机过程的数值计算方法,通过生成大量随机数来模拟实际问题的概率分布和确定性结果。
它的原理是通过随机抽样和统计分析来近似计算复杂问题的解,适用于各种领域的问题求解和决策分析。
蒙特卡洛模拟方法最早于20世纪40年代在核能研究中出现,命名源于摩纳哥的蒙特卡洛赌场,因为其运作原理与赌场的概率计算类似。
它的核心思想是通过大量的重复实验来模拟问题的解空间,并基于统计原理对结果进行分析。
蒙特卡洛模拟方法的应用领域广泛,包括金融、工程、物理、统计学、风险管理等。
在金融领域,蒙特卡洛模拟方法可以用于模拟股票价格的变动,估计期权的价格和价值-at-risk(风险价值),帮助投资者进行风险管理和资产配置。
在工程领域,蒙特卡洛模拟方法可以用于模拟不同参数对产品性能的影响,优化产品设计和工艺流程。
在物理学中,蒙特卡洛模拟方法可以用于模拟粒子运动轨迹,研究核反应和量子系统的行为。
在统计学中,蒙特卡洛模拟方法可以用于估计未知参数的分布和进行概率推断。
1.明确问题:首先需要明确问题的目标和约束条件。
例如,如果要求估计一个金融产品的价值,需要明确产品的特征和市场环境。
2.设定模型:根据问题的特性,建立模型。
模型可以是概率模型、物理模型、统计模型等,用于描述问题的随机性和确定性因素。
3. 生成随机数:根据问题的特点,选择适当的随机数生成方法。
常见的随机数生成方法包括伪随机数生成器、蒙特卡洛(Monte Carlo)方法、拉丁超立方(Latin Hypercube)采样等。
4.进行实验:根据模型和随机数生成方法,进行大量的实验。
每次实验都是一次独立的抽样过程,生成一个样本,用于计算问题的目标函数或约束条件。
5.统计分析:对实验结果进行统计分析,得到问题的解或概率分布。
常用的统计分析方法包括均值、方差、最大值、最小值、分位数等。
还可以进行敏感性分析,评估输入参数对结果的影响程度。
直接蒙特卡洛模拟方法

直接蒙特卡洛模拟方法蒙特卡洛模拟方法(Monte Carlo simulation)是一种基于概率和统计方法的数值模拟技术,通过随机抽样和概率模型来解决复杂的问题。
它可以模拟各种问题的随机性和不确定性,适用于金融、经济、工程、物理等各种领域。
下面将详细介绍蒙特卡洛模拟的基本原理、步骤和应用。
蒙特卡洛模拟的基本原理是通过随机抽样来模拟一个系统或问题的不确定性。
首先,需要确定一个合适的概率模型,该模型可以以随机变量和概率分布的形式描述系统或问题的不确定性。
然后,通过生成大量的随机数样本,通过计算这些样本的统计特征来近似计算问题的解。
蒙特卡洛模拟的基本步骤如下:1.定义问题:明确需要解决的问题和目标。
2.定义概率模型:建立一个合适的概率模型,用于描述问题的不确定性。
这包括对输入变量和输出变量的概率分布进行建模。
3.生成随机数样本:根据概率模型,生成大量的随机数样本。
这些样本需要符合概率分布的特性。
4.进行模拟计算:使用生成的随机数样本,进行模拟计算。
对每个样本进行计算,并记录计算结果。
5.统计分析:对模拟计算的结果进行统计分析,得到问题的解的近似值。
这可以包括计算均值、方差、分位数等。
6.模型验证与调整:根据模拟计算得到的近似解,与真实的解进行对比,验证模型的准确性。
如果有必要,可以对模型进行调整和改进。
蒙特卡洛模拟方法可以应用于各个领域的问题,下面以金融领域为例进行介绍。
在金融领域,蒙特卡洛模拟方法常常用于风险评估和投资决策。
例如,我们可以使用蒙特卡洛模拟模拟股票价格的随机变动,来评估投资组合的风险和回报。
具体步骤如下:1.定义问题和目标:比如,我们想要评估一个投资组合在未来一年的收益。
2.定义概率模型:通过历史数据,我们可以建立股票价格的概率模型,比如使用几何布朗运动模型描述股票的价格变动。
3.生成随机数样本:根据概率模型,生成大量的随机数样本,模拟未来一年的股票价格变动。
4.进行模拟计算:对每个样本,计算投资组合的收益。
数学模型求解方法

数学模型求解方法
一、数学模型求解
1、数学模型
数学模型是将复杂的问题简化为可以求解的模型,其目的在于更好地理解问题。
它是一种工具,可以有效地把复杂的问题拆解成可求解的简单子问题,有效解决实际问题。
2、线性规划
线性规划是一种常用的数学模型,是求解多元线性函数最大值(或最小值)的方法之一。
它可以构建一个多元线性函数(线性目标函数)的数学模型,使用线性约束条件,求解数值最优解。
3、图论
图论是一种研究与点、边相关性的数学模型。
它是一种比较抽象的模型,可以用来描述一个有着各种特性的网络,它常被应用于最短路径的求解、网络拓扑的分析以及最大流量的计算等问题中。
4、非线性规划
非线性规划是一种多元非线性函数最大值或最小值问题的求解方法。
它和线性规划类似,但是因为采用非线性的求解方法,因而往往比较复杂,却也可以用于求解更复杂的问题。
二、求解方法
1、数学及物理模型
数学及物理模型的求解主要涉及数学模型的建模、参数估计、模型预测等,是一种具有智能性的抽象模型。
例如,数学模型可以用于
数学建模,而物理模型则可以用于物理建模,借助这些模型可以解决一些实际问题。
2、数值求解
数值求解是用数值方法为某些给定问题求解准确解的一种方法。
应用计算机处理数据,从实际数据中提取有用信息,然后按照一定的抽象模型对问题进行求解,得到问题的解析解。
3、随机模拟
随机模拟是根据一定的抽象模型,用计算机将实际系统抽象为概率系统,通过随机实验和大数定律来近似求解复杂问题的一种方法。
它不是求解问题的完美方法,而是一种经过验证的较为稳健且有效的方法。
monto carlo仿真方法

monto carlo仿真方法蒙特卡洛仿真方法简介蒙特卡洛仿真方法是一种基于随机数生成的统计模拟方法,用于解决复杂问题和评估不确定性。
它通过大量的随机抽样和模拟运算来近似计算数学问题的解决方案。
原理蒙特卡洛仿真方法基于概率统计理论和计算机模拟技术。
其主要思想是通过对模型中的随机变量进行抽样和模拟,计算大量的样本数据,从而得到目标问题的近似解。
步骤1.建立模型:首先需要将目标问题抽象成一个数学模型,明确问题的目标、约束和变量。
2.设定随机变量:为模型中的不确定变量设定随机分布,并生成大量的随机数。
3.进行抽样:根据设定的随机分布,抽取一定数量的随机数,并代入模型进行计算。
4.模拟运算:根据模型的计算规则,对每个随机数进行运算,得到相应的结果。
5.统计与分析:对得到的结果进行统计分析,得出问题的近似解、概率分布、置信区间等。
6.反馈与优化:根据分析结果,对模型进行优化和调整,进一步提高计算的准确性和效率。
应用领域蒙特卡洛仿真方法在各个领域都有广泛应用,包括但不限于: - 金融领域:用于风险评估、衍生品估值、投资组合优化等。
- 工程领域:用于可靠性分析、结构优化、系统建模等。
- 生物医学领域:用于药物研发、流行病传播模拟、生物统计等。
- 物理学领域:用于高能物理实验模拟、粒子轨迹模拟等。
优点与限制蒙特卡洛仿真方法具有如下优点: - 适用范围广,可以解决各种类型的问题; - 能够处理复杂和高维的问题; - 可以提供概率分布和置信区间等统计信息。
然而,蒙特卡洛仿真方法也有一些限制: - 需要大量的计算资源和时间; - 对模型中的不确定性敏感,需要合理设定概率分布; - 结果的准确性受到样本数量的限制。
总结蒙特卡洛仿真方法是一种基于随机数生成的统计模拟方法,可以解决复杂问题和评估不确定性。
它通过随机抽样和模拟运算来近似计算问题的解决方案。
该方法在多个领域都有广泛应用,同时也具有一定的优点和限制。
通过合理的模型建立和参数设定,蒙特卡洛仿真方法可以成为解决实际问题的有力工具。
关于生物数学中的确定性模型与随机模拟

关于生物数学中的确定性模型与随机模拟关于生物数学中的确定性模型与随机模拟摘要:生物数学是将数学工具应用于生命科学中的一门学科,旨在构建生物系统的模型和分析这些模型。
在生物数学中,模型分为确定性模型和随机模型。
确定性模型假设生物系统中的各个因素都可以明确地预测和控制,因而能够得到精确和确定的结果。
而随机模型则将生物系统中的各个因素视为随机变量,无法精确定量化,因此采用概率性描述,以获得结果的概率性估计。
本文对生物数学中的确定性模型和随机模拟进行了详细的探讨,并对两者的优缺点进行了分析。
关键词:生物数学,确定性模型,随机模拟,生命科学,概率性描述正文:生物数学中的确定性模型生物数学中的确定性模型是指在研究生物系统问题时,通过利用数学工具来建立的关于生物系统物理、化学以及其他相关过程的模型,采用确定性方法求解。
确定性模型假定生物系统中的各个因素都可以明确的预测和控制,因而能够得到精确和确定的结果。
确定性模型适用于一些需要准确知道各个变量的关系和结果的情况,比如药物分析,疾病预测等情况。
确定性模型主要是以微分方程为基础,通过建立生物系统的数学模型来求解生物系统的动态变化规律。
确定性模型具有模型简便、精确和可靠等优点。
但也存在一些问题,例如模型建设过程中可能存在误差,模型假设与实际情况有差异,以及对生物系统的复杂动态变化有限制等问题。
生物数学中的随机模拟生物数学中的随机模拟是指通过随机性相关的概率统计方法来描述生物系统中的各个变量之间的相互关系,并用计算机程序进行模拟求解。
随机模拟在生物系统中涉及的问题各种各样,包括生态学的生态系统动态模拟、感染疾病模式的建模以及遗传变异的模拟等。
随机模拟具有模拟生物系统的动态运行特点,模型的灵活性高,适用于各种实验数据的应用和比较,具有预测未知变量和测试不同因素对系统行为的效果等优点。
但是随机模拟也存在一些问题,例如模型不易掌握,且随机模拟在一些复杂系统或数据难以获取时,可能会因缺乏可靠数据而受到限制。
随机微分方程的数值模拟方法

随机微分方程的数值模拟方法随机微分方程(Stochastic Differential Equations,简称SDEs)是描述包含随机项的微分方程。
它们在金融学、物理学和生物学等领域中广泛应用,尤其在随机模型建立和数值模拟方面有着重要的作用。
为了模拟和解决随机微分方程,研究者们开发了各种数值模拟方法。
这些方法的目标是通过离散化时间和空间来近似SDE的解,以获得数值解。
在本文中,我将介绍几种常用的数值模拟方法,包括欧拉方法、米尔斯坦方法和龙格-库塔方法。
我们将从简单的欧拉方法开始,逐渐深入探讨这些方法的优点和局限性。
1. 欧拉方法(Euler Method)欧拉方法是最简单和最直接的数值模拟方法之一。
它将区间分成若干小的子区间,然后使用差分逼近来计算每个子区间内的解。
欧拉方法的基本思想是将微分方程中的导数用差分代替,从而将微分方程转化为差分方程。
欧拉方法的数值格式如下:然而,欧拉方法的缺点在于其精度较低,特别是当时间步长较大时。
它也不能很好地处理某些随机微分方程的特殊情况。
2. 米尔斯坦方法(Milstein Method)米尔斯坦方法是对欧拉方法的改进,目的是提高精度。
它通过在欧拉方法的基础上添加额外的项来纠正误差,从而提高数值解的准确性。
米尔斯坦方法的数值格式如下:相比于欧拉方法,米尔斯坦方法在同样的时间步长下通常能够提供更准确的数值解。
然而,对于某些特殊的随机微分方程,米尔斯坦方法也可能存在一些问题。
3. 龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一类更为复杂但精度更高的数值模拟方法。
它基于对SDE进行多次逼近来得到数值解,通常可以达到较高的准确性。
龙格-库塔方法的基本思想与常规微分方程的龙格-库塔方法类似,但在计算过程中需要额外考虑随机项的贡献。
相比于欧拉方法和米尔斯坦方法,龙格-库塔方法的数值格式更为复杂,但其准确性和稳定性更高。
总结和回顾:通过本文的介绍,我们对随机微分方程的数值模拟方法有了初步的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.4
这个表给出了随机变量 X 的变化规律,频率告
诉某个特定的事件发生的频繁程度。如果我们需要
构造一个含有随机变量的模型,可以假设这个规律
总是成立的,模型的假设可以基于这几个数据之上。
实际操作时可以把频率分布当作概率函数来处理,
但应注意概率是频率的极限值,这两者是有差异的。
在处理一个简单的理论模型时,对概率函数
别进行登记,检查产品的质量是否合格等都可以 用(0-1)分布的随机变量来描述。
(2)二项分布 设实验E 只有两个可能的结果,
将 E 独立地重复地进行 n 次,则称这一串重复的
独立实验为 重贝努利实验。它是一重和重要的
数学模型,有着广泛的应用。若用 X 表示 n 重贝
努利实验中事件 A 发生的次数,X 是一个随机变
在建立随机性模型时,首先要注意,将要处理的是 离散还是连续的随机变量。
1、离散随机变量
离散随机变量的理论模型是由概率函数 px P X x
来刻画的。这个式子说明随机变量 X 取值 x 时的概 率。对于离散型的随机变量有下面三种重要的分布
(0-1)分布 设随机变量 X 只可能取0、1两
个值,它的分布规律是
量,它服从如下的二项分布
Px k
n k
Байду номын сангаасpk (1 p)nk , k 0,1, 2,..., n
特别,当 n 1 时二项分布就是(0-1)分布。
(3)泊松分布 设随机变量 X 所有可能的取值 为 0,1, 2,..., 而取各个值的概率为
Px k ke , k 0,1, 2,...n,
(2)正态分布 设连续型随机变量 X 的概率密度为
f (x)
1
x 2
e
2 2
, x
2
其中 , 0为常数,则称X 服从参数为,的
正态分布。
连续型随机变量的值如同离散的一样可以用频 率表给出,但不同的是离散的随机变量每个频率 对应于随机变量的一个值,而对于随机变量每一 个频率对应于随机变量的一个取值范围。
本时间区域
x,
|
0
x
a 2
,
0
a
M
x
x
a
2
x l sin
2
o
图2.18
它为平面上的一个矩形,其面积为 S() a 。
2
为使针与平行线(与 最后的一条平行线)相
交,其充要条件是
A
0
x
a
2
0
A 的面积为 S(A)
相交的概率为
0
1l sind
2
l
,这样针与平行线
p S ( A)
(2)使用基于实际数据的频率表,并不去套用不 准理论模型。
使用前者的好处在于能精确地叙述变量的概率,在 处理问题时可以充分发挥数理统计的作用。但这一 好处把所求模式制约在了处理简单情形。随着复杂 性的增加,数学就变的太难。使用后者的好处在于 模型时基于观测到的数据而不是基于假设之上。增 加复杂性并不成为一大障碍,但我们不再能利用数 理统计而得求助于模拟以及模型的统计结果。
,且 f (
的概率可由
x)dx
x2 x1
1 ,随机变量落在区间 (x1, x2 ] f (x)dx 来给出,在连续型随机变
量中下述两种是重要的 。
(1)均匀分布 设连续型随机变量 X具有概率密度
f
(x)
b
1
a
,
0,
a xb 其他
则称 X 在区间(a,b)上服从均匀分布。
在区间(a,b)上服从均匀分布的随机变量 X ,具 有下述意义的等可能性,即它落在区间(a,b)中任 意等长度的子区间内的可能性是相同的,或者说它落 在子区间内的概率只依赖于子区间的长度而与子区间 的位置无关。
时间t(秒) 0 1 2 3 4 5 6 7 8 9
变量X
1 02 2 1 2 0 1 0 2
得出一个模型。
X是一个离散的随机变量并取值于 0,1和2。我们
不可能给出X 与 t 的确定的关系式,但是可以通
过数 X 的不同值出现次数来描述这随机型 的规律
列表如下:
X
0
频数
3
频率
0.3
1
2
3
4
0.3
随机性模型与模拟方法
随机变量 蒙特卡罗方法 随机数的生成 模拟
一、随机变量
何谓随机变量?随机变量是一个其值不可
预测的变量。虽然一个随机变量在个别试验 中其结果不确定,但在大量重复试验中其结 果是具有统计规律的。正是随机变量的这种 规律性使我们可以利用它来建模。例如我们 可以利用下述的数据:
PX k pk (1 p)1k , k 0,1(0 p 1)
则称 X 服从(0-1)分布。对于一个随机实验,如
果它的样本空间只包含两个元素,
即 S e1,e2 ,我们总能在 S 上定义一个服
从(0-1)分布的随机变量
X
X
(e)
0 1
当e e1 当e e2
来描述这个随机实验的结果。例如,对新生儿的性
S ()
设一共投掷 n 次(n 是一个事先选好的相当大
的自然数),观察到针和直线相交的次数为 m 。
从上式我们看到,当比值 l / a不变时, p 值始终
不变。取 mm/nn为 p 的近似值,我们可以算出 的
近似值。可以想象当投掷次数越来越多时计算的结
二、蒙特卡罗方法
蒙特卡罗方法是计算模拟的基础,其名字来源于 世界著名的赌城——摩纳哥的蒙特卡罗。其思想 来源于著名的蒲丰投针问题。
1面度7上为77画l年l有法等0国距科的离学针a家,a蒲随 丰0机 提地的出向一了有些下平平述行行著线线名的,问平取题面一:上根平掷长
去,求针与平行线相交的概率。
我后表们的示用 中 针几 点 于何 平,x概 行表型线示来的中解交点决角M这,到一如最问图近题2一.1。8条所设平示M行为。线针那的落么距下基离,
必须作出合适的选择。例如,假设在上述问题中的 随机变量取三个值时等于可能的,这样其概率函数 为
X
0
1
2
Px
1
1
1
3
3
3
这个例子说明在处理随机变量的模型时有以下两种 选择:
(1)使用一个理论模型。这在任何一本概率统计 的书上都可以找到一些标准的理论模型如二项分布 等。每一个都基于一定的假设之下成立的,所以在 选用时要特别注意其假设条件。
k!
其中, 0 是常数,则称 X 服从参数为 的泊松 分布。可以证明当 p 很小时,以n, p为参数的二 项分布,当 n 时趋于以 为参数的泊松分布,
其中 np
2、连续的随机变量
理论模型的连续型随机变量可以由概率密度函数
( pdf ) f (x) 来描述,对所有的 x 存在 f (x) 0