数学建模案例分析3-随机性人口模型--概率统计方法建模
数学建模 人口模型

中国人口增长预测模型的建立与分析摘要针对我国人口发展过程中出现的老龄化进程加快,出生人口性别比持续升高,乡村人口城镇化的新特点,我们基于LESLIE 矩阵,着重考虑城镇与乡村间的人口迁移及女性人口比例变化对我国人口增长的影响,经过两次改进建立了便于计算机求解的差分方程模型,对我国2005年以后45年的人口增长进行了预测。
随后利用时间段参数设置法,对差分方程模型又进行了一次改进。
然后运用等维灰色系统预测法对该差分方程模型的中短期预测进行了检验,同时根据2001年人口基本数据运用此模型对2001年~2005年进行了预测,并用实际数据对预测结果进行了检验。
我们将预测区间分为2006~2020年、2021~2035年、2036~2050年三个区间,以量化短期、中期与长期。
通过调整模型中相关参数及输入条件,定量地分析了男女性别比例、老龄化和乡村人口城镇化对我国人口增长的影响。
预测结果表明,从短期来看,我国的出生性别比变化不明显,将在短期内维持基本不变,老龄化进程在15年内在上升了8个百分点,人口扶养比持续升高,这将加重我国的人口压力,乡村人口城镇化水平进展缓慢;从中期来看,总人口性别比将保持在1与1.1之间,老龄化进程将呈线性增加趋势,乡村人口城镇化水平将持续发展;从长期来看,老龄化进程将在2035到2045年经历老龄人口高峰平台,老龄人口比重在0.3以上,育龄妇女人数持续下降,总人口数将在2023年达到峰值14.05亿。
关键词:LESLIE矩阵,人口预测,性别比例,城镇化,老龄化,灰色系统预测一、问题的重述人口问题是中国社会发展的重要问题,对中国人口的中长期预测有助于政府制定相应的政策保持中国的长治久安。
现需要解决的问题如下:1.主要根据2001~2005年的人口统计数据,对中国人口增长的中短期和长期趋势作出预测,特别要关注老龄化,出生人口性别比及乡村人口城镇化等因素。
2.指出所建模型的优点和不足之处。
数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
数学建模中的概率统计方法选讲

数学建模中的概率统计方法选讲案例一:常用分布及中心极限定理与“DVD 在线租赁”问题(2005B )“DVD 在线租赁”为2005年全国大学生建模竞赛的B 题,原题参见附件中的文件“2005B ”。
现考虑问题(1):网站正准备购买一些新的DVD ,通过问卷调查1000个会员,得到了愿意观看这些DVD 的人数(表1给出了其中5种DVD 的数据)。
此外,历史数据显示,60%的会员每月租赁DVD 两次,而另外的40%只租一次。
假设网站现有10万个会员,对表1中的每种DVD 来说,应该至少准备多少张,才能保证希望看到该DVD 的会员中至少50%在一个月内能够看到该DVD ?如果要求保证在三个月内至少95%的会员能够看到该DVD 呢?问题(1)的分析与求解:可以通过“点估计”的方法,得到抽样的1000名会员租赁上述5种DVD 的概率为● 通过1000个样本来推断10万个会员的“总体”: 假设随机变量,否则种个会员租第第⎩⎨⎧=,0,1DVDj i ij ξ 其中10000,...,2,1=i . 显然,ij ξ服从两点分布,即j ij p P ==)1(ξ,而上表就给出了这些概率的估计值。
进一步,设∑==Ni ij j 1ξη,10000=N ,即表示10000人中愿意租赁第j 张DVD 的人数,显然,随机变量),10000(~j j p B η。
● 由De Moivre —Laplace 中心极限定理,如果准备了)5.0(j E η张DVD ,则满足至少jη5.0人看到该DVD 的概率(可靠性)为5.0)0(}0)5.0()5.0(5.0{)}5.0(5.0{=Φ≈≤-=≤j j j j j D E P E P ηηηηη显然,为了增加右边的可靠性,比如,增加到0.99,则由等式99.0)33.2(})5.0()5.0()5.0()5.0(5.0{}5.0{=Φ≈-≤-=≤j j j j j j D E X D E P X P ηηηηηη,可知)1(100002133.25000)5.0(33.2)5.0(j j j j j p p p D E X -⨯⨯+=+=ηη如何考虑“60%的会员每个月会租赁DVD 两次,40%的会员每个月会租赁DVD 一次”的问题?方法一:10万人的60%为6万人,每个月租赁两次,即12万次;40%为4万人,每月租赁一次,即4万次,合计每月有16万人次的租赁,对于第j 张DVD ,能否类似地假设为∑==Mi ij j 1ξη,16000=M ,而且随机变量),16000(~j j p B η,然后再求?答案是否定的,因为),16000(~j j p B η不再成立。
数学建模之随机性模型与模拟方法

使用前者的好处在于能精确地叙述变量的概率,在 处理问题时可以充分发挥数理统计的作用。但这一 好处把所求模式制约在了处理简单情形。随着复杂 性的增加,数学就变的太难。使用后者的好处在于 模型时基于观测到的数据而不是基于假设之上。增 加复杂性并不成为一大障碍,但我们不再能利用数 理统计而得求助于模拟以及模型的统计结果。 在建立随机性模型时,首先要注意,将要处理的是 离散还是连续的随机变量。 1、离散随机变量 离散随机变量的理论模型是由概率函数 p x P X x 来刻画的。这个式子说明随机变量 X 取值 x 时的概 率。对于离散型的随机变量有下面三种重要的分布
2 1
(1)均匀分布
设连续型随机变量 X 具有概率密度
a xb 其他
1 , f ( x) b a 0,
则称 X 在区间(a,b)上服从均匀分布。 在区间(a,b)上服从均匀分布的随机变量 X ,具 有下述意义的等可能性,即它落在区间(a,b)中任 意等长度的子区间内的可能性是相同的,或者说它落 在子区间内的概率只依赖于子区间的长度而与子区间 的位置无关。 (2)正态分布 设连续型随机变量 X 的概率密度为 x 2 1 2 2 f ( x) e , x 2 其中 , 0 为常数,则称X 服从参数为 , 的
设一共投掷 n 次( n 是一个事先选好的相当大 的自然数),观察到针和直线相交的次数为 m 。
从上式我们看到,当比值 l / a不变时, p 值始终 不变。取 m /nn为 p 的近似值,我们可以算出 的 m 近似值。可以想象当投掷次数越来越多时计算的结 果就越来越准确。下表时这些实验的有关资料 (此 处把 a 折算为1):
数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。
2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。
首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。
在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。
然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。
与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。
对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。
同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。
并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。
数学建模方法之概率统计分析法

Obs
Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 1 -0.38118 -0.32367 -0.04450 0.30363 0.00430 0.06437 2 0.57795 -0.35416 0.49279 0.55119 -0.18726 0.17414 3 0.69219 -0.21588 0.40557 0.40041 -0.10461 0.05393 4 0.22635 -0.39419 0.27521 0.63296 0.13851 -0.06481 5 -0.82981 -0.40293 0.47330 -0.42964 -0.55401 -0.35020 6 -1.19410 -0.40627 -0.36848 0.14000 0.02221 0.01063 7 -1.63568 -0.26394 -0.67179 -0.15189 0.01702 -0.03769 8 0.95195 -0.46156 1.61851 -0.92520 0.08394 0.25530 9 0.46501 -0.14888 0.19070 0.16273 -0.30327 0.20883 10 -1.45693 -0.18670 -0.55658 -0.17088 -0.10267 -0.00922 11 -0.29401 3.71727 -0.02727 -0.02382 -0.06419 0.03517 12 0.08041 0.22542 1.71694 0.12718 0.45539 -0.26668 13 -2.11628 -0.16312 -0.90179 -0.16784 0.14422 -0.03334 14 -0.94513 -0.31477 -0.39513 0.09760 0.11375 -0.03132 15 6.74015 -0.06989 -1.12895 -0.16618 0.04080 -0.11394 16 -0.88090 -0.23673 -1.07853 -0.38025 0.29589 0.10482
数学建模概率模型案例

数学建模概率模型案例概率模型是数学建模的重要工具之一,广泛应用于各个领域。
以下是一个基于概率模型的数学建模案例。
问题描述:医院的急诊科接诊员需要根据患者的症状来判断是否需要进行心电图检查。
根据以往的医疗记录,我们知道有一种患者患有心脏病的概率是0.1,有心脏病的患者在进行心电图检查时有90%的准确率,没有心脏病的患者在进行心电图检查时有95%的准确率。
急诊科接诊员在给患者进行评估时会根据患者的症状判断是否需要进行心电图检查,但出于经济和时间的考虑,每天只能对20%的患者进行心电图检查。
问题分析:在这个问题中,我们需要建立一个概率模型来评估患者是否需要进行心电图检查。
我们需要考虑两个因素:患者是否有心脏病以及是否进行了心电图检查。
建立概率模型:1.定义事件:-A:患者有心脏病-B:患者进行了心电图检查-C:急诊科接诊员推荐患者进行心电图检查2.计算概率:-P(A)=0.1,患者有心脏病的概率-P(A')=0.9,患者没有心脏病的概率-P(B,A)=0.9,有心脏病的患者进行心电图检查的准确率-P(B,A')=0.95,没有心脏病的患者进行心电图检查的准确率3.根据贝叶斯定理计算后验概率:-P(A,B)=P(B,A)*P(A)/P(B)-P(A',B)=P(B,A')*P(A')/P(B)4.根据给定条件计算先验概率:-P(B)=P(B,A)*P(A)+P(B,A')*P(A')5.根据条件概率计算P(C,B):-P(C,B)=P(C,B)/P(B)进一步分析:根据模型,我们可以进行一些进一步的分析。
1.如果患者没有进行心电图检查,根据模型我们可以计算出他是否有心脏病的概率。
2.如果患者进行了心电图检查,根据模型我们可以计算出他有心脏病的概率。
3.根据模型的输出,急诊科接诊员可以根据患者的症状和推荐指标来判断是否进行心电图检查。
总结:这个案例展示了如何建立一个基于概率模型的数学建模问题。
数学建模人口模型

摘要以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。
13亿是一个忧虑的数字。
13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。
平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。
当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。
(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。
(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。
人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。
在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。
对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。
政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。
我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。
随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。
我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划的重要依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 随机性人口模型
如果研究对象是一个自然村落或一个家族人口,数量不大,需作为离散变量看待时,就利用随机性人口模型来描述其变化过程。
记 ()t Z —时刻t 的人口数(只取整数值)
()()()n t Z p t p n ==—人口为n 的概率
模型假设 1、在[]t t t ∆+, 出生一人的概率与t ∆ 成正比,记作t b n ∆,出生二人及二人以上的概
率为()t o ∆;
2、在[]t t t ∆+, 死亡一人的概率与t ∆ 成正比,记作t d n ∆,死亡二人及二人以上的概率为()t o ∆;
3、出生与死亡是相互独立的随机事件;
4、进一步设n b 和n d 均为与n 成正比,记,
,n d n b n n μλ==λ和μ分别是单位时间内
1=n 时一个人出生和死亡的概率。
模型建立
由假设3~1,可知()n t t Z =∆+可分解为三个互不相容的事件之和:()1-=n t Z 且t ∆内出生一人;()1+=n t Z 且t ∆ 内死亡一人;()n t Z =且t ∆内无人出生或死亡。
按全概率公式 ()()()()t d t b t p t d t p t b t p t t p n n n n n n n n ∆-∆-+∆+∆=∆+++--1)(1111
即 ()()
()()())(1111t p d b t p d t p b t
t p t t p n n n n n n n n n +-+=∆-∆+++--
令0→∆t ,得关于()t p n 的微分方程
()()()()t p d b t p d t p b dt
dp n n n n n n n n
+-+=++--1111
又由假设4,方程为
()()()()()()t np t p n t p n dt
dp n n n n
μλμλ+-++-=+-1111 (1)
若初始时刻)0(=t 人口为确定数量0n ,则()t p n 的初始条件为
()⎩
⎨
⎧≠==00
,0,10n n n n p n (2)
(1)在(2) 条件下的求解非常复杂,且没有简单的结果,不过人们感兴趣的是()()t Z E 和
()()t Z D (以下简记成)(t E 和)(t D )。
按定义()()∑∞
==1
n n t np t E (3)
对(3)求导并将(1)代入得
()()()()()()∑∑∑∞=∞
=+∞=-+-++-=11
211111n n n n n n t p n t p n n t p n n dt dE
μλμλ (4)
注意到
()()()()()()()()∑∑∑∑∞
=∞
=+∞
=∞
=--=++=-1
1
1
1
1
1
11,11k k
n n n k k
n t p k k t p n n t p k k t p n n 代入(4) 并
利用(3),则有
()()()t E t np dt dE
n n μλμλ-=-=∑∞
=1)( (5)
由(2)得()t E 的初始条件()00n E =,求解微分方程(5)在此初始条件下的解为
()μλ-==r e n t E rt
,0 (6)
可以看出这个结果与指数模型()rt
e x t x 0=形式上完全一致。
随机性模型(6)中出生率λ与死亡
率μ之差r 即净增长率,人口期望值呈指数增长,()t E 是在人口数量很多的情况下确定性模型的特例。
对于方差()t D ,按照定义()()()∑∞
=-=
1
22
n n t E t p n
t D ,用类似求()t E 的方法可推出
()()[]1)(0
--+=--t
t e e n t D μλμλμ
λμλ (7)
()t D 的大小表示人口()t Z 在平均值()t E 附近的波动范围。
(7)式说明这个范围不仅随着时间的
延续和净增长率μλ-=r 的增加而变大,而且即使当r 不变时,它也随着λ 和μ 的上升而增长,这就是说,当出生和死亡频繁出现时,人口的波动范围变大。