离散数学图的基本概念(ppt)

合集下载

离散数学图的基本概论

离散数学图的基本概论

简单通路: = v0 e1 v1 e2… ek vk为通路且边e1 e2… ek 互不相同,又称之为迹,可简用v0 v1 … vk 来表示。 简单回路 (v0 = vk)又称为闭迹。
初级通路或基本通路: = v0 e1 v1 e2… ek vk为通路 且顶点v0 v1… vk 互不相同。 基本回路: v0 = vk。 初级通路一定是简单通路,但简单通路
不一定是一条初级通路。
例8.6 就下面两图列举长度为5的通路,简 单通路,回路,简单回路,再列举长 度为3的基本通路和回路。
e3 v5
e7 v4
v1
e2
e1 v2
e6 e4
e5 v3
e1 v5 e8 e4
v4
v1
e3
e2 v2
e6 e5
e7 v3
(1)
(2)
解:试对照定义,自己做一做!如:
(1)中 v1e1v2e2v5e3v1e1v2e4v3 为v1到v3的通路;
021?01ijn11iiij??????mmjm从而?12im1jijvdm?????mmvvddmm??????i?????1i?niinmijij11从而有从而有1?im1jijvdm??????由mij的定义知?11jmvdm????????i???1i??n1inm1jij1通路数与回路数的矩阵算法
平行边:无向图中,关联一对结点的无向边 多于一条,平行边的条数为重数; 有向图中,关联一对顶点的无向边 多于一条,且始、终点相同。
多重图:包含平行边的图。
简单图:既不包含平行边又不包含环的图。
二、度
度:(1) 在无向图G = < V, E >中,与顶点v(vV) 关联的边的数目(每个环计算两次),记 作:d(v)。

离散数学及应用PPT课件

离散数学及应用PPT课件
28.04.2020
引 言(续)
二、该课程的主要内容: 离散数学课程的主要内容可以分为四个部分: 数理逻辑,包括命题逻辑和谓词逻辑。(教材的第一、二章) 集合论,包括集合、关系和函数。(教材的第三、四章) 代数系统,包括代数系统的一般概念,几类典型的代数系
统和格。(教材的第五、六章) 图论,包括图的基本概念,几种特殊的图。 (教材的第七章)
数理逻辑:人工智能,数据库,形式语言及自动机, 高级程序设计语言。
集合论: 信息结构与检索,数据结构。 图论: 可计算性理论,计算机网络,数据结构。 代数结构:开关理论,逻辑设计和程序理论,语法
分析。 2. 通过学习离散数学,可以培养和提高自己的抽象思
维和逻辑推理能力,获得解决实际问题能力,为以 后的软、硬件学习和研究开发工作,打下坚实的数 学基础。
版) (美)Kenneth H.Rosen 著 机械工业出版社
28.04.2020
引 言(续)
七、考核方式: 期末考试成绩占70%, 平时成绩占30%.
28.04.2020
第一部分 数理逻辑(Mathematical Logic)
❖ 逻辑:是研究推理的科学。公元前四世纪由希腊的 哲学家亚里斯多德首创。作为一门独立科学,十七 世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符 号, 又称为数理逻辑(或符号逻辑)。
➢ 因此,离散数学是随着计算机科学的发 展而逐步建立的,它形成于七十年代初期, 是一门新兴的工具性学科。
28.04.2020
引 言(续)
➢ 离散数学是现代数学的一个重要分支, 是计算机科学与技术的理论基础,是计算机 科学与技术专业的核心、骨干课程。
➢ 它 以研究离散量的结构和相互间的关系 为主要目标,其研究对象一般是有限个或可 数个元素,因此它充分描述了计算机科学离 散性的特点。

离散数学平面图

离散数学平面图
则满足欧拉公式 v – e + r = 2 即:6-9+r=2,解得r=5
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,

离散数学第十四章图论基本概念

离散数学第十四章图论基本概念
8
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
(3) 初级通路(路径)与初级回路(圈): 中所有顶点各异,则 称 为初级通路(路径),又若除v0=vl,所有的顶点各不相 同且所有的边各异,则称 为初级回路(圈)
(4) 复杂通路与回路:有边重复出现
20
几点说明
表示法 ① 定义表示法 ② 只用边表示法 ③ 只用顶点表示法(在简单图中) ④ 混合表示法
3
有向图
定义14.2 有向图D=<V,E>, 只需注意E是VV 的多重子集 图2表示的是一个有向图,试写出它的V 和 E
注意:图的数学定义与图形表示,在同构(待叙)的意义下 是一一对应的
4
相关概念
1. 图 ① 可用G泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) ③ n阶图
定义14.17 G=<V,E>, EE E是边割集——p(GE)>p(G)且有极小性 e是割边(桥)——{e}为边割集
25
点割集与割点
例3 {v1,v4},{v6}是点 割集,v6是割点. {v2,v5} 是点割集吗? {e1,e2},{e1,e3,e5,e6}, {e8}等是边割集,e8是 桥,{e7,e9,e5,e6} 是边割 集吗?
3. 非负整数列d=(d1, d2, …, dn)是可图化的,是可简单图化的.

离散数学图论-图的基本概念

离散数学图论-图的基本概念
构的,记作Gl ≅ G2。
对有向图有相同的定义。
定义说明了:两个图的各结点之间,如果存在着一一对应关系 f
这种对应关系又保持了结点间的邻接关系,
那么这两个图就是同构的
在有向图的情况下, f 不但应该保持结点间的邻接关系,还应
该保持边的方向。
结点数相同边数相同
结点的度相同
但是两个图
不同构
(1) V ≠ ø 称为顶点集,其元素称为顶点或结点.
(2)E为边集,它是笛卡儿积 VⅹV的有穷多重子集,其元
素称为有向边,简称边(弧).
有向图D=<V,E> 其中 V={v1,v2,v3 }
边集合E={<v1,v2>,<v2,v1>,
<v2,v1>,<v2,v3>,<v3,v3>
<v3,v3>}
(与前面的关系的图表示相当)

条件:奇度数的结点个数应该是偶数个
(2)序列的可图化:对一个整数序列d=(d1,d2,…dn),若存在以n个顶
点的n阶无向图G,有d(vi)=di ,称该序列是可图化的。
特别的,如果得到的是简单图,称该序列是可简单图化的。
(3)定理 设非负整数列d=(d1,d2,…,dn),则d是可图化的当且
仅当
1)完全图
定义 设G为n阶无向简单图,若G中每个顶点均与其余的n—1个顶点相
邻,则称G为n阶无向完全图,简称n阶完全图,记作Kn(n≥1).
设D为n阶有向简单图,若D中每个顶点都邻接到其余的n—1个顶
点,又邻接于其余的 n—1个顶点,则称D是 n 阶有向完全图.
可画图表示(无向图5阶、有向图3阶和4阶)
子图、生成子

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

离散数学(第二版)第8章图的基本概念


第八章 图的基本概念
用反证法,设G中各顶点的度数均不相同,则度数列 为0,1,2,…,n-1,说明图中有孤立顶点,这与有n-1度 顶点相矛盾(因为是简单图),所以必有两个顶点的度数相 同。
2. 子图 在深入研究图的性质及图的局部性质时,子图的概念 是非常重要的。 所谓子图, 就是适当地去掉一些顶点或 一些边后所形成的图,子图的顶点集和边集是原图的顶点 集和边集的子集。
第八章 图的基本概念
一般称长度为奇数的圈为奇圈,称长度为偶数的圈为 偶圈。 显然,初级通路必是简单通路,非简单通路称为复 杂通路。 在应用中,常常只用边的序列表示通路,对于 简单图亦可用顶点序列表示通路,这样更方便。
第八章 图的基本概念
定理8.2.1 在一个n阶图中,若从顶点u到顶点v(u≠v) 存在通路, 则必存在从u到v的初级通路且路长小于等于n1。
第八章 图的基本概念
图8.1.2 图与子图
第八章 图的基本概念
3. 补图 定义8.1.3 G为n阶简单图,由G的所有顶点和能使G 成为完全图的添加边所构成的图称为G的相对于完全图的 补图,简称G的补图,记作。 【例8.1.6】图8.1.3(a)中的G 1是G1相对于K5的补图。 图8.1.3(b)中的G 2 是G2相对于四阶有向完全图D4的补图。 对于补图,显然有以下结论: (1) G与 G 互为补图,即 G =G。 (2) E(G)∪E(G )=E(完全图)且E(G)∩E( G )= 。 (3) 完全图与n阶零图互为补图。 (4) G与G 均是完全图的生成子图。
所谓子图就是适当地去掉一些顶点或一些边后所形成的图子图的顶点集和边集是原图的顶点第八章图的基本概念定义812设gvegve均是图同为第八章图的基本概念导出的导出子图记作gv第八章图的基本概念例815在图812中g均是g的真子图其中g第八章图的基本概念图812第八章图的基本概念补图定义813g为n阶简单图由g的所有顶点和能使g成为完全图的添加边所构成的图称为g的相对于完全图的补图简称g的补图记作

第五章 图的基本概念-离散数学

3
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.

《离散数学》第七章图的基本概念讲稿

《离散数学》第七章图的基本概念讲稿7.1 ⽆向图及有向图⼀、本节主要内容⽆向图与有向图顶点的度数握⼿定理简单图完全图⼦图补图⼆、教学内容⽆序对: 两个元素组成的⼆元组(没有顺序),即⽆论a,b是否相同,(a,b )=(b, a )⽆序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合⽆向图与有向图定义⽆向图G=, 其中(1) V?≠为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义⽆向图G=, 其中(1) V≠?为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ⽆向图与有向图(续)定义有向图D=, 其中(1) V同⽆向图的顶点集, 元素也称为顶点(2) E为V?V的多重⼦集,其元素称为有向边,简称边.⽤⽆向边代替D的所有有向边所得到的⽆向图称作D的基图右图是有向图,试写出它的V和E⽆向图与有向图(续)通常⽤G表⽰⽆向图, D表⽰有向图,也常⽤G泛指⽆向图和有向图,⽤ek表⽰⽆向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=?平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是⽆向图G=的⼀条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.⽆边关联的顶点称作孤⽴点.定义设⽆向图G=, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el⾄少有⼀个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=?vi,vj?是有向图的⼀条边, vi,vj是ek端点,⼜称vi 是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设⽆向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=为⽆向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边 G 的最⼤度?(G)=max{d(v)| v ∈V} G 的最⼩度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ?(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的⼊度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最⼤出度?+(D), 最⼩出度δ+(D) 最⼤⼊度?-(D), 最⼩⼊度δ-(D) 最⼤度?(D), 最⼩度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,+(D)=4, δ+(D)=0, ?-(D)=3, δ-(D)=1, ?(D)=5, δ(D)=3. 图论基本定理——握⼿定理定理任意⽆向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点⼊度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供⼀个⼊度和⼀个出度, 故所有顶点⼊度之和等于出度之和等于边数. 握⼿定理(续)推论在任何⽆向图和有向图中,度为奇数的顶点个数必为偶数. 证设G=为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=?,由握⼿定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设⽆向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的⼊度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 ⼊度序列:1,3,1,2 握⼿定理的应⽤例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均⼩于等于2, 问G ⾄少有多少个顶点? 解设G 有n 个顶点. 由握⼿定理, 4?3+2?(n-4)≥2?10 解得 n ≥8握⼿定理的应⽤(续)例3 给定下列各序列,哪组可以构成⽆向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在⽆向图中,如果有2条或2条以上的边关联同⼀对顶点, 则称这些边为平⾏边, 平⾏边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平⾏边, 简称平⾏边, 平⾏边的条数称为重数.(3) 含平⾏边的图称为多重图.(4) 既⽆平⾏边也⽆环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平⾏边重数为2不是简单图e2和e3 是平⾏边,重数为2 e6和e7不是平⾏边不是简单图图的同构定义设G1=, G2=为两个⽆向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(∈E1)当且仅当(f(vi),f(vj))∈E2(∈E2),并且,(vi,vj)()与(f(vi),f(vj))()的重数相同,则称G1与G2是同构的,记作G1?G2.图的同构(续)⼏点说明:图之间的同构关系具有⾃反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有⾮同构的⽆向简单图例2 判断下述每⼀对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构⼊(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶⽆向完全图Kn: 每个顶点都与其余顶点相邻的n阶⽆向简单图.简单性质: 边数m=n(n-1)/2, ?=δ=n-1n阶有向完全图: 每对顶点之间均有两条⽅向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ?=δ=2(n-1),+=δ+=?-=δ-=n-1n阶k正则图: ?=δ=k 的n阶⽆向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶⽆向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图⼦图定义设G=, G '=是2个图(1) 若V '?V且E '?E, 则称G '为G的⼦图, G为G '的母图, 记作G '?G(2)若G '?G且G '≠ G(即V '?V 或E '?E),称G '为G的真⼦图(3) 若G '?G 且V '=V,则称G '为G的⽣成⼦图(4) 设V '?V 且V '≠?, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的⼦图称作V '的导出⼦图,记作G[V '](5) 设E '?E且E '≠?, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的⼦图称作E '的导出⼦图, 记作G[E ']⼦图(续)例画出K4的所有⾮同构的⽣成⼦图补图定义设G=为n阶⽆向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G?G.若G ? G , 则称G 是⾃补图.例画出5阶7条边的所有⾮同构的⽆向简单图⾸先,画出5阶3条边的所有⾮同构的⽆向简单图然后,画出各⾃的补图7.2 通路、回路与图的连通性⼀、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路⽆向连通图, 连通分⽀弱连通图, 单向连通图, 强连通图点割集与割点边割集与割边(桥) ⼆、教学内容通路与回路定义给定图G=(⽆向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若?i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. ⼜若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路⼜称作路径, 初级回路⼜称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在⽆向图中,环是长度为1的圈, 两条平⾏边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条⽅向相反边构成长度为2的圈. 在⽆向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通路,则从vi 到vj 存在长度⼩于等于n -1的通路.推论在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ??例设与均为⽆向简单图,当且仅当路,则从vi到vj存在长度⼩于等于n-1的初级通路.定理在⼀个n阶图G中,若存在vi到⾃⾝的回路,则⼀定存在vi到⾃⾝长度⼩于等于n的回路.推论在⼀个n阶图G中,若存在vi到⾃⾝的简单回路,则⼀定存在长度⼩于等于n的初级回路.⽆向图的连通性设⽆向图G=,u与v连通: 若u与v之间有通路. 规定u与⾃⾝总连通.连通关系R={| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分⽀: V关于R的等价类的导出⼦图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分⽀, 其个数记作p(G)=k.G是连通图? p(G)=1u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ? u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三⾓不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设⽆向图G=, 如果存在顶点⼦集V'?V, 使p(G-V')>p(G),⽽且删除V'的任何真⼦集V''后(? V''?V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设⽆向图G=, E'?E, 若p(G-E')>p(G)且?E''?E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上⼀页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?⼏点说明:Kn⽆点割集n阶零图既⽆点割集,也⽆边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=u可达v: u到v有通路. 规定u到⾃⾝总是可达的.可达具有⾃反性和传递性D弱连通(连通): 基图为⽆向连通图D单向连通: ?u,v∈V,u可达v 或v可达uD强连通: ?u,v∈V,u与v相互可达强连通?单向连通?弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d: u到v的短程线的长度若u不可达v, 规定d=∞.性质:d+d ≥d注意: 没有对称性7.3 图的矩阵表⽰⼀、本节主要内容⽆向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵⼆、教学内容⽆向图的关联矩阵定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义设⽆环有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ?m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义设有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ?n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G=1100010111()0000101110M D ---?=-??-??平⾏边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到⾃⾝长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度⼩于或等于l 的通路数,为D 中长度⼩于或等于l 的回路数. 例有向图D 如图所⽰, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多少条?其中回路分别为多少条? (2) D 中长度⼩于或等于4的通路为多少条?其中有多少条回路?12100010()00010010A D=有向图的可达矩阵定义设D=为有向图, V={v1, v2, …, vn}, 令称(pij)n ?n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对⾓线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例右图所⽰的有向图D 的可达矩阵为7.4 最短路径及关键路径⼀、本节主要内容最短路关键路线⼆、教学内容对于有向图或⽆向图G 的每条边,附加⼀个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=,G 中每条边的权都⼤于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通=1101110111110001P路中带权最⼩的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======?=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==?=-=+i i i i 号:第2步(r=2):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为⼀个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=是n 阶有向带权图1. D 是简单图2. D 中⽆环路3. 有⼀个顶点出度为0,称为发点;有⼀个顶点⼊度为0,称为收点4. 记边的权为wij,它常常表⽰时间1. 最早完成时间:⾃发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ),i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n -∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的⼀条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,⾃发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。

(离散数学)图的基本概念

2014-5-3 离散数学 4
一、基本图类与相关概念(续)
无向图:无向图G是一个二元组<V, E>,其中 (1) V是一个非空集合,称为顶点集V(G), V中元素称为顶点或结点; (2) E是无序积V&V的多重子集(即集合中的
元素可重复出现),称为边集E(G),
E中元素称为无向边,简称边。
2014-5-3 离散数学 5
2014-5-3
离散数学
7
一、基本图类与相关概念(续)
有向图画法:用小圆圈表示V中顶点,若<a, b>E,
则在顶点a与b之间画一条有向边,其箭头从a指向b。
如:D = <V, E>,V = { v1, v2, v3, v4 },E = { <v1, v2>,
<v1, v3>, <v2, v2>, <v3, v4>, <v4, v2>, <v4, v2> }
e2 e v4 e e
6
3
v1
2014-5-3
e1
v2
5
e
4
v3
6
离散数学
一、基本图类与相关概念(续)
2、有向图
有向图:有向图D是一个二元组<V, E>,其中 (1) V是一个非空集合,称为顶点集V(D); (2) E是笛卡尔积V V的多重子集,称为边集 E(D),E中元素称为有向边,也简称边。
一、基本图类与相关概念(续)
实际上,图是画出来的。画法:用小圆圈表示V中
顶点,若(a, b)E,则在顶点a与b之间连线段。
如:G = <V, E>,V = { v1, v2, v3, v4 }, E ={ (v1, v2), (v1, v4), (v2, v1), (v2, v3), (v2, v3), (v3, v4) }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档