碳分子筛空分制氮

合集下载

空分制氮原理

空分制氮原理

空分制氮原理一、介绍空分制氮是一种常见的气体分离技术,它通过将空气中的氮气与其他气体分离,得到高纯度的氮气。

本文将介绍空分制氮的原理及其应用。

二、空分制氮原理空分制氮的原理基于空气中氮气和氧气的差异化,利用吸附剂对气体的吸附和解吸作用进行分离。

1. 吸附剂吸附剂是空分制氮中的关键材料,常用的吸附剂包括活性炭和分子筛。

它们具有高度的选择性,能够选择性地吸附氮气或氧气。

2. 吸附过程空分制氮的吸附过程包括吸附和解吸两个阶段。

在吸附阶段,空气中的氮气和氧气会被吸附剂分别吸附。

氮气由于其较大的分子尺寸和较低的极性而被吸附得更强,而氧气则被吸附得较弱。

在解吸阶段,通过改变吸附条件,使吸附剂释放吸附的氮气和氧气。

3. 分离原理空分制氮的分离原理是基于吸附剂对氮气和氧气的不同吸附能力。

在吸附过程中,氮气被吸附剂更强地吸附,而氧气则被吸附剂吸附得较弱。

通过调整吸附条件和周期,可以实现氮气和氧气的有效分离。

三、空分制氮的应用空分制氮广泛应用于各个领域,下面列举几个常见的应用领域。

1. 化工工业在化工工业中,空分制氮被用于提供高纯度的氮气,用于保护化工设备和储存液体化学品。

此外,氮气还可以用于氧化反应、氢化反应和氯化反应等过程中的惰性气体。

2. 电子工业在电子工业中,空分制氮被用于保护电子元件和设备。

由于氮气具有干燥和惰性的特性,可以有效地防止电子元件的氧化和腐蚀。

3. 食品工业在食品工业中,空分制氮被用于食品包装和贮存过程中的惰性气体。

氮气可以有效地延长食品的保质期,并防止食品变质和氧化。

4. 医疗行业在医疗行业中,空分制氮被用于医药生产和诊断设备。

氮气可以用于药物的生产和储存,同时也可以用于呼吸机和麻醉机等设备的供气。

5. 环境保护在环境保护领域,空分制氮被用于净化废气和废水中的有害物质。

氮气的惰性和高纯度使其成为一种理想的清洗和净化剂。

四、总结空分制氮是一种重要的气体分离技术,通过吸附剂对氮气和氧气的吸附和解吸作用进行分离。

碳分子筛

碳分子筛

碳分子筛碳分子筛概述:碳分子筛的主要成分为元素碳,外观为黑色柱状固体。

因含有大量直径为4埃德微孔,该微孔对氧分子的瞬间亲和力较强,可用来分离空气中的氧气和氮气,工业上利用变压吸附装置(PSA)制取氮气。

鑫陶碳分子筛制氮量大、氮气回收率高,使用寿命长,适用于各种型号的变压吸附制氮机,是变压吸附制氮机的首选产品。

碳分子筛空分制氮已广泛地应用于石油化工、金属热处理、电子制造、食品保鲜等行业。

碳分子筛物化指标:颗粒直径: 1.6mm堆积密度:640-660g/l抗压强度:100N/颗Min.粉尘含量:100PPM Max.碳分子筛性能指标:型号(Type)吸附压力(MPa) 氮浓度(N2%)产氮量(NM3/h.t)N2/Air(%)CMS-160 0.8 99.9999.999.599.098.0401001602002901523343843CMS-185 0.899.9999.960120202699.0 98.0 3103805056服务内容::本公司产品及服务有以下优点:性价比好:能直接降低用户的投资成本和运行成本;硬度大、灰份少、颗粒均匀:能有效地抗气流冲击,使用寿命长;产品质量稳定:本公司严格按企业标准100%检验,并执行生产、出厂两道检验管理;树脂型可用于生产高纯氮气:性能可替代进口同类产品。

/本文来源于济源丰宝碳材料有限公司网站,详情请访问:济源丰宝碳材料有限公司网址:QQ:3663965。

PSA制氮用碳分子筛简介[1]

PSA制氮用碳分子筛简介[1]

PSA制氮用碳分子筛简介关键字:PSA制氮,碳分子筛二十世纪五十年代,伴随着工业革命的大潮,碳材料的应用越来越广泛,其中活性碳的应用领域扩展最快,从最初的过滤杂质逐渐发展到分离不同组份。

与此同时,随着技术的进步,人类对物质的加工能力也越来越强,在这种情况下,碳分子筛应运而生。

六十年代,碳分子筛在美国最先制造成功并很快推广应用,最初,碳分子筛是被用作从空气中分离氧气的吸附剂,后来逐渐应用在制取氮气的装置上。

到了七十年代未、八十年代初,世界各国对氮气的需求量不断增加,而变压吸附制氮技术也逐渐成熟起来,进一步推动了碳分子筛制造技术的发展。

到了一九八二年,美国和日本的氮气产量相继超过了氧气,此时,变压吸附制取的氮气已经占氮气总产量的18%左右,由于变压吸附制氮所占的市场份额越来越大,世界各主要工业国家都投入了资金研发变压吸附用碳分子筛,其中,美国、日本、德国在技术上处于领先地位。

一直到今天,世界上主要的碳分子筛生产厂家也还是分布在这些国家。

比较著名的有美国的Calgon 公司、普莱克斯公司;日本的岩谷公司、武田公司;德国的BF公司等。

其中,美系分子筛在国内所占市场份额很小,德系和日系分子筛厂家在国内都有代理公司,因而所占市场份额也是最大的。

碳分子筛的原料为椰子壳、煤炭、树脂等,第一步先经加工后粉化,然后与基料揉合,基料主要是增加强度,防止破碎粉化的材料;第二步是活化造孔,在600~1000℃温度下通入活化剂,常用的活化剂有水蒸气、二氧化碳、氧气以及它们的混合气。

它们与较为活泼的无定型碳原子进行热化学反应,以扩大比表面积逐步形成孔洞活化造孔时间从10~60min不等;第三步为孔结构调节,利用化学物质的蒸气:下面以一粒分子筛为例,简单了解一下它的内部的孔结构:在分子筛吸附杂质气体时,大孔和中孔只起到通道的作用,将被吸附的分子运送到微孔和亚微孔中,微孔和亚微孔才是真正起吸附作用的容积。

我们知道,利用碳分子筛变压吸附制氮是靠范德华力来分离氧气和氮气的,因此,分子筛的比表面积越大,孔径分布越均匀,并且微孔或亚微孔数量越多,吸附量就越大;同时,如果孔径能尽量小,范德华力场重叠,对低浓度物质也有更好的分离作用。

制氮机碳分子筛

制氮机碳分子筛

制氮机碳分子筛制氮机碳分子筛是一种分离氮气、氧气和其他气体的设备。

它的主要原理是,通过把气体中的污染物分子在不同的碳分子筛上形成层,因此可以将待分离气体中的污染物进行有效分离。

碳分子筛是一种用于过滤各种气体的特殊材料。

碳分子筛由活性碳、聚合物或有机材料组成,具有良好的透气性、耐磨性和抗化学腐蚀性。

碳分子筛可以有效地清除气体中的烃类物质、氨、氯等有机污染物。

碳分子筛的分离机制是将新鲜气体通过碳分子筛,将碳分子筛上的烃类物质、氨、氯等有毒有害物质附着在表面上,使气体中的有毒有害物质被吸附在碳分子筛的表面上,从而使得气体中的有害物质被有效清除,实现气体的分离。

碳分子筛的碳活性点表面的比表面积非常大,能够有效地将气体中的有毒有害物质粘附在表面上,吸附的效率非常高。

碳分子筛可以有效过滤掉气体中的大多数有毒有害物质,使气体质量达到国家或行业政策要求的标准。

此外,碳分子筛的运行成本低,使用寿命长,可用于长期运行,易于操作和维护,有效减少污染,是一种经济、有效的制氮机技术。

第 2 页共 3 页优点:1、碳分子筛可以有效过滤气体中的大多数有毒有害物质,使气体质量达到国家或行业政策要求的标准。

2、碳分子筛的运行成本低,使用寿命长,可用于长期运行,易于操作和维护。

3、碳分子筛的碳活性点表面比表面积非常大,能够有效地将气体中的有毒有害物质粘附在表面上,吸附的效率非常高。

缺点:1、当碳分子筛的使用寿命达到一定程度时,碳分子筛表面的活性点会减少,有毒有害物质的吸附性能会受到影响,从而影响气体的净化效果。

2、碳分子筛所需的碳活性点比表面积较小,吸附效率较低,一般比沸石少多。

3、由于碳分子筛本身的性质,很难进行有效的维护和保养,使用寿命较短。

膜分离和碳分子筛制氮-概述说明以及解释

膜分离和碳分子筛制氮-概述说明以及解释

膜分离和碳分子筛制氮-概述说明以及解释1.引言1.1 概述膜分离和碳分子筛制氮是当前广泛应用于气体分离领域的两种重要技术。

膜分离是通过选择性通透性较好的膜材料,利用分子间的差异使不同组分通过膜材料时产生浓度差,从而实现组分的分离。

而碳分子筛制氮则是利用碳分子筛对空气中的氧气和氮气进行分离,通过选择性吸附氧气而使氮气得以纯化。

膜分离技术具有具有分离效率高、操作简单、设备体积小等优势。

它广泛应用于气体分离、水处理、制备纯净气体等领域。

膜分离的原理基于物质分子的有效扩散和溶解透过性,通过选择合适的膜材料和适宜的工艺条件,可以实现不同气体组分的分离纯化。

碳分子筛制氮则是一种利用碳分子筛材料对气体进行选择性吸附分离的技术。

碳分子筛是由均匀的碳纳米管和孔隙结构组成的材料。

它具有较高的表面积和丰富的微孔结构,使得其能够选择性吸附氧气而排除氮气。

通过调节工艺条件和碳分子筛材料的特性,可以实现对气体的高效纯化。

本文将重点探讨膜分离和碳分子筛制氮的原理和应用。

首先介绍膜分离技术的基本原理和常见的应用领域,然后深入分析碳分子筛制氮的性质和制氮机理。

通过对两种技术的比较和分析,可以为气体分离领域的研究和应用提供参考和指导。

1.2 文章结构文章结构是指文章的布局和组织方式。

本文分为引言、正文和结论三个部分。

引言部分主要概述了文章的背景和研究的目的。

通过对膜分离和碳分子筛制氮的介绍,引发读者的兴趣,并明确了本文的研究目的。

正文部分分为两个主要部分:膜分离和碳分子筛制氮。

其中,膜分离部分首先介绍了膜分离的原理,即利用不同物质在膜上的传输速率差异实现分离的方法。

接着,列举了膜分离的应用领域,如饮用水处理、气体分离等。

此部分的目的是详细介绍膜分离技术的基本原理和实际应用。

碳分子筛制氮部分首先介绍了碳分子筛的性质,包括高比表面积、孔径可调等特点。

然后,阐述了碳分子筛制氮的机理,即通过选择性吸附氮气分子实现氮气的分离提纯。

此部分的目的是介绍碳分子筛在氮气制备中的应用原理和机制。

碳分子筛制氮机吸附塔改进

碳分子筛制氮机吸附塔改进

碳分子筛制氮机吸附塔改进
唐晓为
【期刊名称】《设备管理与维修》
【年(卷),期】2005(000)006
【摘要】氮气因其惰性被广泛用作保护气体,化工企业中的置换、清洗、密封、
捡漏都离不开它。

制氮装置大多采用深冷法,但深冷空分装置复杂、投资大,操作管理维修麻烦。

近30年来,利用变压吸附分离理论研究开发的分子筛空分制氮技术,因其设备简单、装置小巧、投资省、操作维护方便,可实现自动化和电脑化运行而倍受青睐。

公司于1996年7月购入一台温州瑞气机电有限公司生产的NGN-26—39型碳分子筛制氮机。

设备使用初期效果良好。

但一年后排出气体中含碳粉、管道气动阀故障频繁、制出气体含氧量升高,设备无法正常使用。

打开吸附塔检修,发现碳分子筛大量破碎、流失。

筛选、补充碳分子筛后,使用一年,故障重现。

此后年年如此。

【总页数】1页(P40)
【作者】唐晓为
【作者单位】湖南关西汽车涂料有限公司工务部,长沙市德雅路790号,410003【正文语种】中文
【中图分类】TQ0
【相关文献】
1.碳分子筛制氮机在煤矿防灭火中的气源改造
2.碳分子筛变压吸附制氮机在酮苯脱蜡装置中应用的可行性探讨
3.碳分子筛制氮机在煤矿灭火中的应用
4.<sub>NH</sub><sup>GN</sup>型碳分子筛制氮机
5.移动式碳分子筛制氮机在煤矿灭火中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。

碳分子筛变压吸附提纯氮气答案

碳分子筛变压吸附提纯氮气答案

碳分子筛变压吸附提纯氮气模块名称预习考查题目权重1.碳分子筛吸附法从空气中分离提纯氮气的原理是什么?()A.利用N2与O2在空气中的浓度差异,优先吸附N2气B.利用N2与O2在碳分子筛中扩散速率的差异,优先吸附O2气C.利用碳分子筛中的微孔尺寸的选择性,优先吸附O2气D.利用N2与O2在碳分子筛中扩散速率的差异,优先吸附N2气2.一个连续变压吸附分离装置,至少需要几个吸附柱,包括哪些操作步骤?()A.2个,操作步骤包括系统充压、加压吸附、减压脱附、柱间气流切换B.3个,操作步骤包括系统充压、加压吸附、减压脱附、柱间气流切换C.1个,操作步骤包括系统充压、加压吸附、减压脱附D.3个,操作步骤包括加压吸附、减压脱附、柱间气流切换3.本实验采用什么工程手段来实现吸附和解吸操作?()A.加压吸附,常压脱附B.加压吸附,升温脱附C.加压吸附,真空脱附D.低温吸附,高温脱附4.当吸附剂用量一定时,影响本实验变压吸附效果的主要因素有哪些?()A.吸附压力、温度、气体流量、解吸压力B.吸附压力、气体流量、脱附压力、吸附时间E.吸附压力、气体流量、吸附时间D.温度、气体流量、脱附压力、吸附时间5.何谓穿透曲线?()A.吸附柱出口流体中被吸附物质的浓20度随时间的变化曲线B.吸附柱出口流体中被吸附物质的浓度随气体流量的变化曲线C.吸附柱出口流体中被吸附物质的浓度随吸附压力的变化曲线D.吸附柱出口流体中被吸附物质的浓度随进口浓度的变化曲线你的回答本模块得分[满分100]B|B|C|B|A 100 模块名称仪器选择题目权重选错一次扣5分10你的回答本模块得分[满分100]正确答案:吸附柱(2个)、微机、放空阀、流量计、CYES氧气分析仪、脱水柱、取样阀、空气压缩机及减压阀、脱油柱、缓冲罐、流量调节阀、水循环真空泵做错次数:0100模块名称操作步骤题目权重选错一次扣5分10你的回答本模块得分[满分100]正确答案:B、检查压缩机、真空泵、吸附装置和计算机之间的连接是否到位,接通压缩机电源,接通吸附装置上的电源和真空泵电源,开启计算机并打开“在线控制软件”,点击“泵开关”,开启真空泵。

PSA变压吸附制氮原理

PSA变压吸附制氮原理

P S A变压吸附制氮原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998制氮机制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。

根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。

制氮机是按变压吸附技术设计、制造的设备。

制氮机以优质进口碳分子筛(CMS)为,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。

通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。

中文名制氮机含义制取氮气的机械组合工作原理利用碳分子筛的吸附特性主要分类深冷空分,膜空分,碳分子筛空分、11.2.3.工作原理PSA变压吸附制氮原理碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。

因而,仅凭压力的变化很难完成氧和氮的有效分离。

如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。

氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。

这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。

而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。

因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。

深冷空分制氮原理分子筛制氮机工艺流程图深冷制氮不仅可以生产氮气而且可以生产液氮,满意需要液氮的工艺要求,并且可在液氮贮槽内贮存,当出现氮气间断负荷或空分设备小修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道满意工艺装置对氮气的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳分子筛空分制氮
一、碳分子筛空分制氮的原理
我公司生产的碳分子筛是PSA制氮装置上的吸附剂,采用变压吸附原理(PSA)从空气中分离制取氮气。

碳分子筛对空气中的氧和氮的分离作用主要是基于这两种气体在碳分子筛表面上的扩散速率不同。

直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔。

直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少,这样在气相中可以得到氮的富集成分。

因此,利用碳分子筛对氧和氮在某一时间内吸附量的差别这一特性,由全自动控制系统按特定可编程序施以加压吸附,常压解析的循环过程,完成氮氧分离,获得所需高纯度的氮气。

二、碳分子筛制氮控制的条件
1、空气压缩纯化过程
纯原料空气进入碳分子筛吸附塔,是非常必要的,因为颗粒及有机气体进入吸附塔会堵塞碳分子筛的微孔,并逐渐使碳分子筛的分离性能降低。

纯化原料空气的方法有:1、使空压机的进气口远离有、油雾、有机气体的场所;2、通过冷干机、吸附剂净化系统等,最后经处理后的原料空气进入碳分子筛吸附塔。

2、产品氮气的浓度和产气量
碳分子筛制取氮气,其N2浓度和产气量可根据用户的需要进行任意调节,在产气时间及操作压力确定时,调低产气量,N2浓度将提高,反之,N2浓度则下降。

用户可根据实际需要调节。

3、均压时间
碳分子筛制氮过程,当一个吸附塔吸附结束时,可将此吸附塔内的有压气体从上下两个方向注入另一个已再生好的吸附塔中,并使两塔气体压力相同,此一过程称为吸附塔的均压,选择适当的均压时间,即可回收能量,也可以减缓吸附塔内的分子筛受到冲击,从而达到延长碳分子筛的使用寿命。

参考阀门的切换速度一般选择均压时间为1-3秒。

4、产气时间
根据碳分子筛对氧和氮的吸扩散速率不同,其吸附O2在短时间内就达到平衡,此时,
N2的吸附量很少,较短的产气时间,可有效的提高碳分子筛的产气率,但同时也增加了阀门的动作频率,因此阀门的性能也很重要。

一般选择吸附时间为30-120秒。

小型高纯制氮机推荐使用短的产气时间,大型低浓度推荐使用长的产气时间。

5、操作压力
碳分子筛在动力学效应的同时,又具有平衡吸附效应,吸附质分压高,吸附容量也高,因此加压器吸附是有利的,但吸附压力太高,对空压机的造型要求也增高,另外常压再生与真空再生两个流程对吸附压力要求也不同,综合各项因素,建议常压再生流程的吸附压力选为5-8kg/cm2为宜;真空再生流程的吸附压力选择为3-5Kg/cm2为宜。

6、使用温度
作为吸附剂选择较低的吸附温度有利于碳分子筛性能的发挥,制氮机工艺在有条件的情况下,采取降低吸附温度是有利的。

相关文档
最新文档