定积分及其应用 (1)
定积分的部分应用

第六章 定积分的应用§6-1 微元法用定积分解决已知变化率求总量问题的过程.若某量在[a ,b ]上的变化率f (x ),求它在[a ,b]上的总累积量S : 因为分割区间、取i 都要求有任意性,求和、求极限又是固定模式,故可简述过程:再简化一下,则变成:称为微元.以求曲边梯形面积A 问题为例,用微元法就可以简写成这样:任取微段[x ,x +dx ],曲边梯形在此微段部分的面积微元dA =f (x )dx ,所以A =⎰ba dx x f )(.§6-2定积分在几何中的应用一、平面图形的面积1. 直角坐标系下平面图形的面积 (1)X -型与Y -型平面图形的面积把由直线x =a,x =b (a <b )及两条连续曲线y =f 1(x ), y =f 2(x ),(f 1(x )≤f 2(x ))所围成的平面图形称为X y =d (c <d )y ) ≤g 2(y ))注意 构成图形的两条直线,有时也可能蜕化为点.把X -型图形称为X -型双曲边梯形,把Y -型图形称为Y -型双曲边梯形.1)用微元法分析X -型平面图形的面积取横坐标x 为积分变量,x ∈[a ,b ].在区间[a ,b ]上任取一微段[x ,x +dx ],该微段上的图形的面积dA 可以用高为f 2(x )-f 1(x )、底为dx 的矩形的面积近似代替.因此dA =[ f 2(x )-f 1(x )]dx , 从而 A =.)]()([ 12⎰-ba dx x f x f (1)2)微元法分析Y -型图形的面积A =.)]()([ 12⎰-dc dy y g y g (2)对于非X -型、非Y -型平面图形,我们可以进行适当的分割,划分成若干个X -型图形和Y -型图形,然后利用前面介绍的方法去求面积.例1 求由两条抛物线y 2=x , y =x 2所围成图形的面积A .解 解方程组,,22x y x y ==得交点(0,0),(1,1).将该平面图形视为X -型图形,确定积分变量为x ,积分 区间为[0,1].由公式(1),所求图形的面积为A =1 0 31 0 23132)(23x x dx x x -=-⎰=31. 例2 求由曲线y 2=2x 与直线y =-2x +2所围成图形的面积A . 解解方程组,22 ,22+-==x y x y 得交点(21,1),(2,-2). 积分变量选择y ,积分区间为[-2,1].所求图形的面积为 A =12- 31 2- 22]6141[]21)211[(y y y dy y y ⎰--=--=49.例3 求由曲线y =sin x ,y =cos x 和直线x =2π及y 轴所围成图形的面积A .解 在x =0与x =2π之间,两条曲线有两个交点: B (4π,22),C (45π,-22). 由图易知,整个图形可以划分为[0,4π],[4π,45π],[45π,2π]三段,在每一段上都是X -型图形.应用公式(1),所求平面图形的面积为A =⎰⎰⎰-+-+-4455 02)sin (cos )cos (sin )sin (cos πππππdx x x dx x x dx x x =42.2. 极坐标系中曲边扇形的面积在极坐标系中,称由连续曲线r =r (θ)及两条射线θ=α, θ=β,(α<β)所围成的平面图形为曲边扇形.在[α,β]上任取一微段[θ,θ+d θ],面积微元dA 表示1这个角内的小曲边扇形面积,dA =21[r (θ)]2d θ 所以 A =⎰βαθθ 2)]([21d r . (3) 例5 求心形线r =a (1+cos θ),(a >0)所围成图形的积A .解 因为心形线对称于极轴,所以所求图形的面积 A 是极轴上方图形A 1的两倍.极轴上方部分所对应的极角变化范围为θ∈[0,π],由 公式(3),所求图形的面积为A =2⨯⎰βαθθ 2)]([21d r=⎰⎰++=+ππθθθθθ 022 02)cos cos 21()]cos 1([d a d a=)23|2sin 41sin 22302=++ ⎝⎛πθθθa πa 2.二、空间立体的体积 1. 一般情形设有一立体,它夹在垂直于x 轴的两个平面x =a , x =b 之间(包括只与平面交于一点的情况),其中a <b ,如图所示.如果用任意垂直于x 轴的平面去截它,所得的截交面面积A 可得为A =A (x ),则用微元法可以得到立体的体积V 的计算公式.过微段[x ,x +dx ]两端作垂直于x 轴的平面,截得立体一微片,对应体积微元dV =A (x )dx . 因此立体体积V =.)( ⎰ba dx x A (4)例5 经过一如图所示的椭圆柱体的底面的短轴、与底面交成角α的一平面,可截得圆柱体一块楔形块, 求此楔形块的体积V .解 据图,椭圆方程为64422y x +=1. 过任意x ∈[-2,2]处作垂直于x 轴的平面,与楔形块 截交面为图示直角三角形,其面积为A (x )=21y ⋅y tan α=21y 2tan α=32(1-42x )tan α=8(4-x 2)tan α, 应用公式(4)V =⎰--22 2)4(tan 8dx x α=16tan α⎰-22)4(dx x =3256tan α.2. 旋转体的体积旋转体就是由一个平面图形绕这平面内的一条直线l 旋转一周而成的空间立体,其中直线l 称为该旋转体的旋转轴.把X -型图形的单曲边梯形绕x 旋转得到旋转体,则公式(4)中的截面面积A (x )是很容易得到的.如图,设曲边方程为y =f (x ), x ∈[a ,b ](a <b ),旋转体体积记作V x .过任意x ∈[a ,b ]处作垂直于x 轴的截面,所得截面是半径为|f (x )|的圆,因此截面面积 A (x )= π|f (x )|2.应用公式(4),即得V x =π⎰ba dx x f 2)]([ (5)类似可得Y -型图形的单曲边梯形绕y 轴旋转得到的旋转体的体积V y 计算公式 V y =π⎰d c dy y g 2)]([ (6)其中的x =g (y )是曲边方程,c ,d (c <d )为曲边梯形的上下界.例6 求曲线y =sin x (0≤x ≤π)绕x 轴旋转一周所得的旋转体体积V x .解 V x =π⎰b a dx x f 2)]([=π⎰π0 2)(sin dx x=⎰-=-ππππ0 0 ]22sin [2)2cos 1(2x x dx x =22π. 例7 计算椭圆2222bya x +=1(a >b >0)绕x 轴及y 轴旋转而成的椭球体的体积V x ,V y . 解 (1)绕x 轴旋转,旋转椭球体如图所示,可看作上半椭圆y =22x a ab-及x 轴围成的单曲边梯形绕x 轴旋转而成的,由公式(5)得V x =π⎰-a a dx x a a b - 222)(=⎰-a dx x a a b 02222)(2π =a 0 3222]3[2x x a a b -π=34πab 2.(2)绕y 轴旋转,旋转椭球体如图所示,可看作右半 椭圆x =22y b ba-及y 轴围成的单曲边梯形绕y 轴旋转而成的,由公式(6)得V y =π⎰-bb dy y b b a - 222)(=⎰-b dy y b ba 0 2222)(2π =b 0 3222]3[2y y b ba -π=34πa 2b .f (x当a =b =R 时,即得球体的体积公式V =34πR 3. 例8 求由抛物线y =x 与直线y =0,y =1和y 轴围成的平面图形,绕y 轴旋转而成的旋转体的体积V y .解 抛物线方程改写为x =y 2,y ∈[0,1]. 由公式(6)可得所求旋转体的体积为 V y =π55])[(1 0514122ππ===⎰⎰y dy y dy y .三、平面曲线的弧长1. 表示为直角坐标方程的曲线的长度计算公式称切线连续变化的曲线为光滑曲线.若光滑曲线C 由直角坐标方程y =f (x ),(a ≤x ≤b ),则导数f '(x )在[a ,b ]上连续.如图所示,在[a ,b ]上任意取一微段[x ,x +dx ],对应的曲线微段为AB ,C 在点A 处的切线也有对应微段AP .以AP 替代AB ,注意切线改变量是微分,即得曲线长度微元d s 的计算公式d s=22)()(dy dx +, (7) 得到的公式称为弧微分公式.以C 的方程y =f (x )代入,得 ds =2)]([1x f '+dx.据微元法,即得直角坐标方程表示的曲线长度的一般计算公式s =⎰ba ds =⎰'+ba dx x f 2)]([1 (8)若光滑曲线C 由方程x =g (y )(c ≤y ≤d )给出,则g '(y )在[c ,d ]上连续,根据弧微分公式(7)及微元法,同样可得曲线C 的弧长计算公式为 s =⎰'+d cdy y g 2)]([1 (9)例9 求曲线y =41x 2-21ln x (1≤x ≤e )的弧长s . 解 y '=21x -x 21=21(x -x1),ds =2)]([1x f '+dx =)1(21)1(4112x dx x x +=-+dx , 所求弧长为s =⎰ba ds =41]ln 21[21)1(21e1 2 1=+=+⎰x x dx x x e (e 2+1). 例10 求心形线r =a (1+cos θ) (a >0)的全长.解 θ∈[0,2π];又因为心形线关于极轴对称,全长是其半长的两倍,所以θ∈[0,π].ds =22)]([)]([θθr r +'d θ=2)cos 1(2θ+d θ=2a cos 2θd θ,所以 s =2⎰πθθ2cos2d a =8a .§6—3 定积分在物理中的部分应用一、变力做功物体在一个常力F 的作用下,沿力的方向作直线运动,则当物体移动距离s 时,F 所作的功W =F ⋅s .物体在变力作用下做功的问题,用微元法来求解.设力F 的方向不变,但其大小随着位移而连续变化;物体在F 的作用下,沿平行于力的作用方向作直线运动.取物体运动路径为x 轴,位移量为x ,则F =F (x ).现物体从点x =a 移动到点x =b ,求力F 作功W .在区间[a ,b ]上任取一微段[x ,x +dx ],力F 在此微段上做功微元为dW .由于F (x )的连续性,物体移动在这一微段时,力F (x )的变化很小,它可以近似的看成不变,那么在微段dx 上就可以使用常力做功的公式.于是,功的微元为dW =F (x )dx . 作功W 是功微元dW 在[a ,b ]上的累积,据微元法W =⎰ba dW =⎰ba dx x F )(. (12)例1 在弹簧弹性限度之内,外力拉长或压缩弹簧,需要克服弹力作功.已知弹簧每拉长0.02m 要用9.8N 的力,求把弹簧拉长0.1m 时,外力所做的功W .解 据虎克定律,在弹性限度内,拉伸弹簧所需要的外力F 和弹簧的伸长量x 成正比,即 F (x )=kx ,其中k 为弹性系数. 据题设,x =0.02m 时,F =9.8N ,所以 9.8=0.02k ,得k =4.9⨯102(N/m).所以外力需要克服的弹力为 F (x )=4.9⨯102x .由(12)可知,当弹簧被拉长0.1m 时,外力克服弹力作功W =⎰⨯1.0 0 2109.4xdx =21⨯4.9⨯1021.0 0 2x =2.45(J).例2 一个点电荷O 会形成一个电场,其表现就是对周围的其他电荷A 产生沿径向OA作用的引力或斥力;电场内单位正电荷所受的力称为电场强度.据库仑定律,距点电荷r =OA 处的电场强度为F (r )=k 2r q(k 为比例常数,q 为点电荷O 的电量). 现若电场中单位正电荷A 沿OA 从r =OA =a 移到r =OB =b (a <b ),求电场对它所作的功W .解 这是在变力F (r )对移动物体作用下作功问题.因 为作用力和移动路径在同一直线上,故以r 为积分变量,可应用公式(12),得W =⎰b adr rq k 2=kq b a r ]1[-=kq (b a 11-).二、液体的压力单位面积上所受的垂直于面的压力称为压强,即p=ρ⋅h,(其中ρ是液体密度,单位是kg/3m,h是深度,单位是m).如果沉于一定深度的承压面平行于液体表面,则此时承压面上所有点处的h是常数,承压面所受的压力P=ρ⋅h⋅A,其中A是单位为m2的承压面的面积.若承压面不平行于液体表面,此时承压面不同点处的深度未必相同,压强也就因点而异.考虑一种特殊情况:设承压面如图那样为一垂直于液体表面的薄板,薄板在深度为x 处的宽度为f(x),求液体对薄板的压力.薄板沿深度为x的水平线上压强相同,为ρ⋅x,现在在薄板深x处取一高为dx的微条(见图中斜线阴影区域),设其面积为dA.微条上受液体压力为压力微元dP.近似认为在该微条上压强相同,为ρ⋅x,则dP=ρ⋅xdA;又深度为x处薄板宽为f(x),故dA=f(x)dx,因此dP=ρ⋅x⋅f(x)dx.若承压面的入水深度从a到b(a<b),则薄板承压面上液体总压力是x从a到b所有压力微元dP的累积.据微元法P=⎰badxxxf)(ρ=ρ⎰badxxxf)(.(13)。
数学分析第十章 定积分的应用

x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图
高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
三角函数的定积分解析与应用

三角函数的定积分解析与应用三角函数是数学中的基础概念,它在科学和工程中的应用广泛。
在本文中,我们将探讨三角函数的定积分解析以及其在实际问题中的应用。
一、三角函数的定积分解析1. 正弦函数的定积分解析正弦函数的定积分可以通过换元法来解析。
设正弦函数的定积分为:∫ sin(x)dx我们可以令u = cos(x),则du = -sin(x)dx。
代入上式,得到:-∫ du解得:- u + C₁ = -cos(x) + C₁其中C₁为积分常数,因此正弦函数的定积分解析为:∫ sin(x)dx = -cos(x) + C₁2. 余弦函数的定积分解析余弦函数的定积分同样可以通过换元法来解析。
设余弦函数的定积分为:∫ cos(x)dx我们可以令u = sin(x),则du = cos(x)dx。
代入上式,得到:∫ du解得:u + C₂ = sin(x) + C₂其中C₂为积分常数,因此余弦函数的定积分解析为:∫ cos(x)dx = sin(x) + C₂二、三角函数定积分的应用三角函数的定积分在实际问题中有着广泛的应用。
下面我们将介绍一些常见的应用场景。
1. 物体振动的位移和速度在物理学中,许多振动问题可以通过三角函数的定积分求解。
例如,一个质点进行简谐振动,其位移随时间变化的函数可以用正弦函数来表示。
通过对正弦函数的定积分,我们可以求解出物体在不同时间点的位移情况。
另外,根据位移函数求导的过程,我们可以得到质点的速度函数,进一步研究振动过程中的速度变化。
2. 电流和电压的周期性信号在电工领域中,交流电路中的电流和电压往往具有周期性的信号形式。
这些信号可以通过三角函数的定积分来求解。
通过对正弦函数的定积分,我们可以得到电流和电压的周期性变化情况,进而分析电路中的功率、能量等重要参数。
3. 音波的传播与声强在声学中,声波的传播和声强的计算也经常涉及到三角函数的定积分。
通过对声波函数进行定积分,我们可以推导出声波在不同位置和时间的变化情况,从而研究声波传播的特性。
定积分及其应用

①.若a=b, 则
b
f (x)dx 0.
a
②.若a>b, 则
b
a
f(x)dx f(x)dx.
a
b
从而可消除对定积分上下限的大小限制.
四.定积分的几何意义
由定义1知, 当连续函数
f (x) 0 且a<b时, 定积分
b f ( x ) d x 表示一个在 x 轴上方的曲边梯形的面积; a
当 f (x) 0, 且 a < b时,
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0,
故可将此区间的高近似看为一个常量,
从而此区间对应的小窄曲边梯形CEFH
y
y=ƒ(x)
A
C
B
Δy {
DH
的面积近似等于小窄矩形DEFH的面积.
oa
EF
x x+Δx b x
因而, 如果把区间[a, b]任意地划分为n个小区间, 并在每一
就有定积分的定义:
定义1.设ƒ(x)在[a, b]上有定义, 点 a x 0 x 1 x 2 x n 1 x n b
将区间[a, b]任意地划分为n个小区间; 每个小区间
[ xi1 , xi ]
的长度为 xi xi xi1(i1,2, ,n),在每个小区间 [ xi1 , xi ]
n
个区间上任取一点, 再以该点的高来近似代替该小区间上窄曲边 梯形的高, 从而每个窄曲边梯形就可近似地
视为一个小窄矩形, 而且全部窄矩形的面积之和也可作为曲边 梯形面积的近似值.
要想得精确值, 只需区间[a, b]的分法无限细密(即每个小区 间的长度Δ x →0)时, 全部窄矩形的面积之和的极限一定是曲边
定积分应用公式总结

定积分应用公式总结定积分在数学中是一种用来计算指定“区域”中不定积分的一种方法。
也可以看作是不定积分的一种特殊情况,在定积分中,dt、dx (或ds)等变量的范围已知,可以按照一定的规律来进行计算。
由于定积分的应用范围很广,所以它也被称为积分计算的“母亲”。
定积分的基本定义:定积分(bounded integral)是指当向量函数f(x)从一定的初始点a到某个终点b时,求其在这段路径上的积分,其计算公式为: $$int_a^bf(x)dx=sum_{i=1}^{n}f(x_{i})*triangle x_{i}$$ 其中,$triangle x_{i}$表示离散点x的间隔。
定积分的特征:定积分的计算方式和不定积分的方式不同,它的极限不是某分段的函数的极限,而是某一固定的函数的极限。
鉴于此,定积分用来计算是属于离散点的变量,而不是一般定积分中的连续变量。
定积分的常用公式:1、等差数列积分公式:$$int_a^bnf(x)dx=frac{n}{2}[f(a)+f(b)] $$其中,f(x)表示一元函数,a为起始点,b为终点,n为数列的项数。
2、等比数列积分公式:$$int_a^bnf(x)dx=frac{f(a)-f(b)}{ln r}$$其中,f(x)表示一元函数,a为起始点,b为终点,n为数列的项数,r为公差的比值。
3、定积分的把握方法:(1)由题目给出函数和边界。
(2)确定不定积分的具体形式,如极限形式、公差形式或被积函数形式等,并推导出新的定积分积分公式。
(3)确定积分的终点,并填入公式中求解。
4、定积分的运用:定积分的应用涉及面很广,主要有在统计学、几何学、概率论、力学及物理学中的应用。
(1)在统计学中,定积分可以用来求解定量分析双变量函数在一定范围内的离散点数据,或求解单变量函数的极限。
(2)在几何学中,定积分可以用来求解曲线长度、曲线与某平面图形(如圆形或矩形)的重叠情况、曲线的面积等。
定积分应用方法总结(经典题型归纳)
定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。
3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。
(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。
定积分及其应用
下面我们将应用这一方法来讨论一些问题.
、平面图形的面积
根据围成平面图形的曲线的不同情况,我们分为以下两种情形
(1)由一条曲线 和直线x=a,x=b(a<b)及x轴围成的平面图形
O
(8,4)
-2
y
y+dy
4
A1
A2
(2,-2)
y2=2x
y=x-4
x
y
图6-11
O
x
a
b
xy=f(x)ຫໍສະໝຸດ 图 6-13( b) y x+dx
x
1
x
O
图6-14
x
图6-15
(a)
y
y+dy
2
1
y
O
(b)
O
a
A(x)
b
x
图 6-16
O B x a P Q
01
02
A
a
x
R
03
图6-17
y
当 在区间[a,b]上的值有正有负时,则由曲线 和直线x=a,x=b(a<b)及 x轴围成的曲边梯形的面积A是在x轴上方和下方的曲边梯形面积之差.
O
x
b
a
y=f ( x)
y=g( x)
图
图 6-9
x
y
O
x
x+dx
y
O
图6-10
y
a
b
x+dx
x
-a
本章的基本要求 理解定积分的概念,了解定积分的性质,知道函数连续是可积的充分条件,函数有界是可积的必要条件;理解变上限积分作为其上限的函数及其求导定理,熟练掌握牛顿―莱布尼茨公式;熟练掌握定积分的换元法与分部积分法;掌握用定积分表达一些几何量(如面积和体积)的方法;了解反常积分及其收敛、发散的概念等. 重点 定积分的概念和性质, 牛顿―莱布尼茨公式, 定积分换元法和分部积分法, 利用定积分计算平面图形的面积.
高等数学第六章定积分的应用
3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b]上作定积分,得U
b
a
f
( x)dx
,
即为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
第二节 平面图形的面积
一、直角坐标系情形
y y f (x)
弧长元素 ds 1 y2dx 弧长 s b 1 y2dx. a
例1
计算曲线 y
2
x
3 2
上相应于
x
从a
到b
的一段
3
弧的长度.
解
y
1
x2,
ds
1
(
x
1 2
)2
dx
1 xdx,
所求弧长为
a
b
s
b
2
3
3
1 xdx [(1 b)2 (1 a)2 ].
a
3
x
例 2 计算曲线 y n n sin d 的弧长(0 x n) . 0
a
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx ,
面 积 元 素
dA
y f (x)
于是A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
当所求量U 符合下列条件:
(1)U 是与一个变量x 的变化区间a,b 有关
x y2 y x2
面积元素 dA ( x x2 )dx
A
1
0
(
定积分的应用
定积分的应用在我们的生活中,有很多场景都需要用到定积分。
而在数学上,定积分也起到了重要的作用。
定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。
接下来,我们将介绍一些常见的定积分的应用。
一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。
我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。
这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。
如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。
例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。
如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。
二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。
我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。
例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 n
2
0 x dx lim 0 i 1
1 2
n
i x i
1 1 1 1 lim 1 2 . n 6 n n 3
小结
1.定积分的实质:特殊和式的极限.
2.定积分的思想和方法:
分割 化整为零
求近似以直(不变)代曲(变)
x cos x sin x cos x( x tan x ) f ( x ) 0, 2 2 x x
f ( x ) 在[ , ] 上单调下降, 4 2
故 x 为最大点, x 为最小点, 4 2
2 2 M f( ) , 4
2 m f( ) , 2
求和
取极限
积零为整
取极限
精确值——定积分
五、定积分性质
对定积分的补充规定:
(1)当a b 时,a f ( x )dx 0 ;
b
(2)当a b 时, f ( x )dx f ( x )dx .
a b
b
a
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
性质1 证
并作和 S f ( i )x i ,
n
记 max{x1 , x 2 , , x n },如果不论对[a , b ]
i 1
怎样的分法, 也不论在小区间[ x i 1 , x i ] 上
点 i 怎样的取法,只要当 0 时,和 S 总趋于
I 确定的极限 , 我们称这个极限 为函数 f ( x ) I 在区间[a , b] 上的定积分, 记为
补充:不论 a , b, c 的相对位置如何, 上式总成立.
a f ( x )dx a f ( x )dx b f ( x )dx
b c
c
则
a f ( x )dx a f ( x )dx b f ( x )dx
b
c
c
a f ( x )dx c f ( x )dx.
b b b b
m(b a ) a f ( x )dx M (b a ).
(此性质可用于估计积分值的大致范围)
例 2 估计积分
0
1 dx 的值. 3 3 sin x
解
1 f ( x) , 3 3 sin x
x [0, ],
0 sin x 1,
3
1 1 1 , 3 4 3 sin x 3
而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
b
b
b
[ (3)当函数 f ( x ) 在区间 a , b] 上的定积分存在时,
称 f ( x ) 在区间[a , b] 上可积.
三、存在定理
[ 定理1 当函数 f ( x ) 在区间 a , b] 上连续时,
的负值
a f ( x )dx A 曲边梯形的面积
A1
A3 A2
A4
a f ( x )dx A1 A2
b
A3 A4
几何意义:
它是介于 x 轴、函数 f ( x ) 的图形及两条 直线 x a, x b 之间的各部分面积的代 数和. 即 x 轴上方的面积减去 x 轴下方的面积.
b
a
说明: | f ( x ) |在区间[a , b] 上的可积性是显然的.
性质6
设 M 及m 分别是函数
f ( x ) 在区间[a , b] 上的最大值及最小值,
则 m(b a ) a f ( x )dx M (b a ) .
b
证
m f ( x) M ,
a mdx a f ( x )dx a Mdx,
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间 [a , b] 内插入若干
个分点,a x0 x1 x2 xn1 xn b,
把区间 [a , b] 分成 n 个小区间[ xi 1 , xi ], 长度为 xi xi xi 1 ;
a [ f ( x ) g( x )]dx a f ( x )dx a g( x )dx .
b
b
b
b
a [ f ( x ) g( x )]dx n lim [ f ( i ) g ( i )]xi 0
lim f ( i )xi lim g( i )xi
若干个分点
a x0 x1 x2 xn1 xn b
n 把区间[a , b] 分成 个小区间,各小区间的长度依次为
x i x i x i 1 ,( i 1,2,) ,在各小区间上任取
作乘积 f ( i )x i ( i 1,2,) 一点 i ( i xi ),
y 1 x2 ,
1
x 2 y2 1
1
-1
0
如
0
1
1 x dx
2
4
,
sin xdx 0
例1 利用定义计算定积分 x 2dx.
0
1
i 解 将[0,1]n 等分,分点为 x i ,(i 1,2, , n ) n 1 小区间[ x i 1 , x i ]的长度x i ,(i 1,2, , n ) n 取 i x i ,(i 1,2,, n )
a f ( x )dx a
b
b
b
f ( x )dx . (a b)
f ( x) f ( x) f ( x) ,
a f ( x )dx a f ( x )dx a f ( x )dx,
b b
即 f ( x )dx f ( x )dx .
a
b
(2)近似: i [ xi 1 , xi ]
Ai f ( i )xi i xi
(3)求和:
A f ( i )xi .
i 1 n
(4)取极限: A lim f ( i )xi f ( x )dx 0
i 1
n
b
a
注意:
(1) 积分值仅与被积函数及积分区间有关,
则 f ( x ) 在区间[a , b] 上可积.
[ 定理2 设函数 f ( x ) 在区间 a , b] 上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.
四、定积分的几何意义
f ( x ) 0, f ( x ) 0,
a f ( x )dx A
b
b
曲边梯形的面积
积分上限
a f ( x )dx I lim f ( i )xi 0 i 1
b
n
积分和
积分下限
被 积 函 数
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
定积分定义的记忆法
(1) 分割:把区间[a , b]任意分成 n个小区间[ xi 1 , xi ],
x i x i x i 1
y
在每个小区间[ xi 1 , xi ]
上任取一点 i, 以 [ xi 1 , xi ]为底, (i ) 为高的小矩形面积为 f
o a
x1
x i 1 i x i
xn1 b
x
Ai f ( i )xi
曲边梯形面积的近似值为
A f ( i )xi
i 1
n
当分割无限加细即小区间的最大长度 ,
某时刻的速度
s v ( i )t i
i 1 n
n
(4)取极限 max{t1 , t 2 ,, t n } 路程的精确值 s lim v ( i )t i
0 i 1
二、定积分的定义
定义 设函数 f ( x ) 在[a , b]上有界, [a , b ]中任意插入 在
ba , 2 4 4
2 sin x 2 2 2 dx , 4 4 x 4 1 sin x 2 2 dx . 2 4 x 2
性质7(积分中值定理) 如果函数 f ( x ) 在闭区间[a , b] 上连续,
c b
(定积分对于积分区间具有可加性)
性质4
a 1 dx a
b a
b
b
dx b a .
性质5 如果在区间[a, b] 上 f ( x ) 0 ,
例 1 比较积分值0 e dx 和0 xdx 的大小.
x
则 f ( x )dx 0 . (a b)
2 2
f ( x ) e x x , x [2, 0] 解 令
0 i 1
b
i 1 n n
0 i 1
a f ( x )dx a g( x )dx.
b
(此性质可以推广到有限多个函数作和的情况)
性质2 证
b
a kf ( x )dx k a f ( x )dx
b
b
k 为常数). (
a kf ( x )dx lim kf ( i )xi 0 i 1
i 1
n
f ( i )xi i xi xi2 xi ,
2 i 1
i 1
n
n
1 n 2 1 n( n 1)(2n 1) i 1 3 i 3 n n i 1 n 6 i 1 n