九江三中高中数学竞赛专题讲座立体几何

合集下载

2020年高三数学总复习专题三:立体几何

2020年高三数学总复习专题三:立体几何

专题三立体几何第1讲空间几何体的三视图、表面积及体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019三棱锥的外接球、球的体积·T12空间几何体的结构特征、直观图、几何运算、数学文化·T16空间两直线的位置关系的判定·T8简单几何体的组合体、长方体和棱锥的体积·T16 2018空间几何体的三视图、直观图及最短路径问题·T7圆锥的性质及侧面积的计算·T16三视图与数学文化·T3与外接球有关的空间几何体体积的最值问题·T10 2017空间几何体的三视图与直观图、面积的计算·T7空间几何体的三视图及组合体体积的计算·T4球的内接圆柱、圆柱的体积的计算·T8(1)“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第12或16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图、直观图与截面图[例1](1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A.52B. 2C.355D.32(3)(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32 [解析] (1)由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.故选A.(2)在棱长为2的正方体中还原该四面体P ­ABC 如图所示,其中最短的棱为AB 和BC ,最长的棱为PC .因为正方体的棱长为2,所以AB =BC=2,PC =3,所以该四面体最长的棱长与最短的棱长的比值为32.故选D.(3)如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin 60°=334.故选A. [答案] (1)A (2)D (3)A[解题方略]1.识别三视图的步骤(1)应把几何体的结构弄清楚或根据几何体的具体形状,明确几何体的摆放位置;(2)根据三视图的有关规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面;(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置;(3)确定几何体的直观图形状.3.由几何体的部分视图判断剩余的视图的思路先根据已知的一部分视图,还原、推测直观图的可能形状,然后再找其剩下部分视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.4.常见三类空间几何体的截面图轴截面、横截面与斜截面:利用截面图可将空间问题转化为平面问题解决.[多练强化]1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON2=22+42=2 5.故选B.2.已知球O是正三棱锥A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面中面积最小的截面圆的面积是________.解析:如图,设△BCD的中心为点O 1,球O的半径为R,则A,O,O1三点共线.连接O1D,O1E,OD,OE,则O1D=3,AO1=AD2-O1D2=3.在Rt△OO1D中,R2=3+(3-R)2,即R=2,所以OO1=1.在△O1DE中,DE=23BD=2,∠O1DE=30°,所以由余弦定理得O1E=3+4-2×3×2× cos 30°=1.所以OE= 2.过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为22-(2)2=2,所以截面圆的面积为2π.答案:2π考点二 几何体的表面积与体积题型一 求空间几何体的表面积[例2] (1)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD 为矩形,棱EF ∥AB .若此几何体中,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则该几何体的表面积为( )A .8 3B .8+8 3C .62+2 3D .8+62+2 3(2)我国古代数学名著《算法统宗》中有如下问题:“今有倚壁外角堆米,下周九十尺,高十二尺.”其意思为:在屋外墙角处堆放米(其三视图如图所示),米堆底部的弧长为90尺,米堆的高为12尺.圆周率约为3.若将此堆米用草席盖上,则此草席的面积至少约为(计算结果保留整数,如544≈23,550≈23)( )A .250平方尺B .990平方尺C .1 035平方尺D .518平方尺[解析] (1)如图所示,取BC 的中点P ,连接PF ,则PF ⊥BC ,过F 作FQ ⊥AB ,垂足为Q .因为△ADE 和△BCF 都是边长为2的等边三角形,且EF ∥AB ,所以四边形ABFE 为等腰梯形,FP =3,则BQ =12(AB -EF )=1,FQ = BF 2-BQ 2=3,所以S 梯形EFBA =S 梯形EFCD =12×(2+4)×3=33, 又S △ADE =S △BCF =12×2×3=3,S 矩形ABCD =4×2=8, 所以该几何体的表面积S =33×2+3×2+8=8+8 3.故选B.(2)由三视图可知,米堆为圆锥的34,其中,圆锥的高为12尺,底面圆的周长的34为90尺.设圆锥的底面半径为r ,则34×2πr =90,由π≈3可得,r =20. 所以圆锥的母线长为202+122=544≈23(尺).易知草席的面积为圆锥的侧面积的34,即34×π×20×23=34×3×20×23=45×23=1035(平方尺).故选C.[答案](1)B(2)C[解题方略]求几何体的表面积的方法1.求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点.2.求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.题型二求空间几何体的体积[例3](1)(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为______.[解析](1)法一:由题意知圆柱的高恰为四棱锥的高的一半,圆柱的底面直径恰为四棱锥的底面正方形对角线的一半.因为四棱锥的底面正方形的边长为2,所以底面正方形对角线长为2,所以圆柱的底面半径为12.又因为四棱锥的侧棱长均为5,所以四棱锥的高为(5)2-12=2,所以圆柱的高为1.所以圆柱的体积V=π⎝⎛⎭⎫122·1=π4.法二:如图所示,在四棱锥V-ABCD中,O为正方形ABCD的中心,也是圆柱下底面的中心,由四棱锥底面边长为2,可得OC=1.设M为VC的中点,过点M作MO1∥OC交OV于点O1,则O1即为圆柱上底面的中心.∴O 1M =12OC =12,O 1O =12VO . ∵VO = VC 2-OC 2=2, ∴O 1O =1. 可得V 圆柱=π·O 1M 2·O 1O =π×⎝⎛⎭⎫122×1=π4. (2)把三视图还原成几何体ABC -DEF ,如图所示,在AD 上取点G ,使得AG =2,连接GE ,GF ,则把几何体ABC -DEF 分割成三棱柱ABC -GEF 和三棱锥D -GEF ,所以V ABC ­DEF =V ABC ­GEF +V D ­GEF =43×2+13×43×2=3233. [答案] (1)π4 (2)3233[解题方略]求空间几何体体积的常用方法公式法直接根据常见柱、锥、台等规则几何体的体积公式计算 等积法 根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等割补法 把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体1.(2019·重庆市学业质量调研)已知某几何体的三视图如图所示,则该几何体的体积为( )A.323B .643 C.1283 D .1603 解析:选B 由三视图知,该几何体是一个正方体切去四个三棱锥后所得的,其直观图如图中ABCD 所示,由三视图知正方体的棱长为4,正方体的体积为4×4×4=64,切去三棱锥的长、宽、高均为4,体积为13×12×4×4×4=323,所以所求几何体的体积为64-4×323=643.故选 B. 2.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135D .135 解析:选A 由菱形的对角线长分别是9和15,得菱形的边长为 ⎝⎛⎭⎫922+⎝⎛⎭⎫1522=3342,则这个棱柱的侧面积为4×3342×5=3034.故选A. 3.已知直四棱柱ABCD -A 1B 1C 1D 1的所有棱长都是1,∠ABC =60°,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,点H 在线段OB 1上,OH =3HB 1,点M 是线段BD 上的动点,则三棱锥M -C 1O 1H 的体积的最小值为________.解析:V 三棱锥M -C 1O 1H =V 三棱锥C 1­MO 1H =13×S △M O 1H ×h (h 为C 1到平面BDD 1B 1的距离),由已知可得C 1O 1⊥平面BDD 1B 1,又直四棱柱的所有棱长都为1,且∠ABC =60°,所以A 1B 1C 1D 1是菱形,C 1O 1=12,所以V 三棱锥M -C 1O 1H =13×12×12×O 1H ×h ′,其中h ′为M 到直线O 1H 的距离,O 1H 是定值,所以h ′最小时,V 三棱锥M -C 1O 1H 最小.如图,延长O 1H 交B 1B 于点F ,交OB 的延长线于点N ,连接OO 1,因为B 1H HO =13,所以B 1O 1NO =13,NO =332,NB =3,NO 1=1+⎝⎛⎭⎫3322=312,O 1H =14×312=318,M 到直线O 1H 的距离的最小值即B 到直线O 1H 的距离,NF =(3)2+⎝⎛⎭⎫232=3+49=313,所以h ′=3×23313=29331,所以(V 三棱锥M -C 1O 1H )min =112×318×29331=348. 答案:348考点三 与球有关的切、接问题题型一 外接球[例4] (2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π[解析] 因为点E ,F 分别为PA ,AB 的中点,所以EF ∥PB ,因为∠CEF =90°,所以EF ⊥CE ,所以PB ⊥CE .取AC 的中点D ,连接BD ,PD ,易证AC ⊥平面BDP ,所以PB ⊥AC ,又AC ∩CE =C ,AC ,CE ⊂平面PAC ,所以PB ⊥平面PAC .所以PB ⊥PA ,PB ⊥PC ,因为PA =PB =PC ,△ABC 为正三角形,所以PA ⊥PC ,即PA ,PB ,PC 两两垂直,将三棱锥P ­ABC 放在正方体中如图所示.因为AB =2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P -ABC的外接球的半径R =62,所以球O 的体积V =43πR 3=43π⎝⎛⎭⎫623=6π.故选D. [答案] D[解题方略] 解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.题型二 内切球[例5] 已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B .4π3 C.2π3 D .π2 [解析] 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C. [答案] C[解题方略]求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.题型三 与球有关的最值问题[例6] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A .12 3 B .18 3 C .24 3 D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B. [答案] B[解题方略]多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[多练强化]1.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A .83π B .323π C .16π D .32π解析:选B 设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R=2,所以所求球的体积V =43πR 3=43π×23=323π.故选B. 2.(2019·福建五校第二次联考)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为______.解析:如图,设BC 的中点为D ,B 1C 1的中点为D 1,连接DD 1,取其中点O ′,连接AD ,A 1D 1,则DA =DB =DC ,D 1A 1=D 1B 1=D 1C 1,且DD 1垂直于直三棱柱的上、下底面,所以点O ′到直三棱柱的各个顶点的距离相等,即点O ′为直三棱柱的外接球的球心O ,连接OB ,则球O 的直径为2BO =2BD 2+DO 2=2 ⎝⎛⎭⎫522+⎝⎛⎭⎫12×122=13. 答案:133.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积为______.解析:由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC=2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π. 答案:6423π直观想象——三视图中相关问题的求解[典例] 已知某几何体的三视图如图所示,则该几何体的体积等于( )A .2π+4B .4π+2 C.2π3+4 D .4π3+8 [解析] 由三视图可知,该几何体的直观图为左侧半球、中间正方体、右侧圆锥的组合体.其中,半球的半径r 1与圆锥的底面半径r 2相等,皆为1,即r 1=r 2=1,正方体的棱长a =2,圆锥的高h =2.所以半球的体积V 1=12×4π3r 31=12×4π3×13=2π3, 正方体的体积V 2=a 3=23=8,圆锥的体积V 3=13×πr 22h =13×π×12×2=2π3. 所以该组合体的体积V =V 1+V 2+V 3=2π3+8+2π3=4π3+8.故选D.[答案] D[素养通路]本题以组合体的三视图为背景,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.[专题过关检测]A组——“12+4”满分练一、选择题1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A.故选A.2.(2019·福州市质量检测)棱长为1的正方体ABCD-A1B1C1D1木块的直观图如图所示,平面α过点D且平行于平面ACD1,则该木块在平面α内的正投影面积是()A.3B.32 3C. 2 D.1解析:选A棱长为1的正方体ABCD-A1B1C1D1木块在平面α内的正投影是三个全等的菱形,如图,正投影可以看成两个边长为2的等边三角形,所以木块在平面α内的正投影面积是2×12×2×2×32= 3.故选A.3.已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所成几何体的侧面积分别记为S1,S2,则S1与S2的比值等于()A.12B .1C .2D .4 解析:选B 设BC =a ,AB =2a ,所以S 1=2π·a ·2a =4πa 2,S 2=2π·2a ·a =4πa 2,S 1∶S 2=1.故选B.4.设球O 是正方体ABCD -A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为6π,则球O 的半径为( )A.32 B .3 C.32D . 3解析:选B 如图,易知B 1D 过球心O ,且B 1D ⊥平面ACD 1,不妨设垂足为M ,正方体棱长为a ,则球半径R =a 2,易知DM =13DB 1,∴OM =16DB 1=36a ,∴截面圆半径r =⎝⎛⎭⎫a 22-OM 2=66a ,由截面圆面积S =πr 2=6π,得r =66a =6,a =6,∴球O 的半径为R =a 2=3.故选B. 5.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A.12 B .14C.16D .112解析:选C VA ­BC 1M =VC 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.6.(2019·武汉市调研测试)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.23π B .43πC .2πD .25π解析:选B 由三视图知,该几何体是由两个底面半径为1,高为2的圆锥组成的,所以该几何体的体积V =2×13×12×π×2=4π3.故选B.7.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为( ) A. 6 B .66C .6D .2 6解析:选B 由△ABC ,△ACD ,△ADB 的面积分别为22,32,62,且AB ,AC ,AD 两两垂直,可得⎩⎪⎨⎪⎧12AB ·AC =22,12AD ·AC =32,12AB ·AD =62,三个式子相乘可得(AB ·AC ·AD )2=6,∴该三棱锥的体积V =13×12AB ·AC ·AD =66.故选B.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4 C.π2D .π4解析:选B 设圆柱的底面半径为r ,球的半径为R ,过圆柱的轴线作一截面,如图.由勾股定理得r =R 2-⎝⎛⎭⎫122=32.∴该圆柱的体积V =Sh =π×⎝⎛⎭⎫322×1=3π4.故选B.9.若一个球与四面体的六条棱都相切,则称此球为四面体的棱切球.已知正四面体的棱长为2,则它的棱切球的体积为( )A .3π54B .π6 C .π3D .3π2解析:选B 将棱长为2的正四面体放入棱长为1的正方体中,则正四面体的棱为正方体的面对角线,所以正四面体的棱切球即为正方体的内切球,则球的半径R =12,体积V=43πR 3=π6.故选B. 10.已知点A ,B ,C ,D 均在球O 上,AB =BC =3,AC =3.若三棱锥D -ABC 体积的最大值为334,则球O 的表面积为( )A .36πB .16πC .12πD .163π 解析:选B 设△ABC 的外接圆的半径为r ,∵AB =BC =3,AC =3,∴∠ABC =120°,∴2r =3sin 120°=23,∴S △ABC =334,△ABC 的外接圆的半径为 3.∵三棱锥D -ABC 的体积的最大值为334,∴点D 到平面ABC 的最大距离为3.设球O 的半径为R ,则r 2=R 2-(3-R )2,解得R =2,∴球O 的表面积为4πR 2=16π.故选B.11.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则正三棱柱的体积是( )A .18B .16C .12D .8解析:选A 设正三棱柱的棱长为2a ,如图,取球心为O ,过点O 作OO ′垂直三棱柱的上底面于点O ′,连接点O ′与上底面顶点A 交对棱于点B .则AB =3a ,AO ′=233a ,OO ′=a .在Rt △OO ′A 中,由勾股定理,得OA 2=OO ′2+O ′A 2. ∵OA =7,∴7=a 2+43a 2=73a 2.整理得a 2=3,∴a = 3.∴棱长为2a =2 3.∴正三棱柱的体积V =12×23×23× sin 60°×23=18.故选A.12.(2019·福州市质量检测)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2D .9π4解析:选C 正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C. 二、填空题13.(2019·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为______.解析:记所有棱长都是2的三棱锥为P -ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ­ABC 的体积V =13S △ABC ·OP =13×34×(2)2×233=13. 答案:1314.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为______.解析:依题意知,四棱锥M -EFGH 为正四棱锥,正方形EFGH 的边长为⎝⎛⎭⎫122+⎝⎛⎭⎫122=22,四棱锥M ­EFGH 的高为12,所以四棱锥M -EFGH 的体积为13×⎝⎛⎭⎫222×12=112. 答案:11215.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为______.解析:由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为π×32×5+12×43π×33=63π.答案:63π16.已知三棱锥P-ABC的四个顶点都在球O的表面上,PA⊥平面ABC,AB⊥BC,且PA=8.若平面ABC截球O所得截面的面积为9π,则球O的表面积为______.解析:设球O的半径为R,由平面ABC截球O所得截面的面积为9π,得△ABC的外接圆的半径为3.设该外接圆的圆心为D,因为AB⊥BC,所以点D为AC的中点,所以DC =3.因为PA⊥平面ABC,易证PB⊥BC,所以PC为球O的直径.又PA=8,所以OD=12PA =4,所以R=OC=42+32=5,所以球O的表面积为S=4πR2=100π.答案:100πB组——“5+3”提速练1.(2019·合肥市第二次质量检测)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对解析:选C由三视图知该几何体是一个四棱锥,它有一个侧面与底面垂直,且顶点在底面上的射影在底面的一条边的中点处,即如图所示的四棱锥S-ABCD,平面SCD⊥平面ABCD.因为AD⊥DC,BC⊥DC,且平面SCD∩平面ABCD=DC,所以AD⊥平面SCD,BC⊥平面SCD,所以平面SAD⊥平面SCD,平面SBC⊥平面SCD.又由三视图知SC⊥SD,同时由AD⊥平面SCD,知AD⊥SC,又SD∩AD=D, 所以SC⊥平面SAD,所以平面SBC⊥平面SAD.综上可知,该多面体各表面所在平面互相垂直的有4对.故选C.2.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为( )A .1B .32C.92D .与M 点的位置有关解析:选B ∵BP PD 1=12,∴点P 到平面BCC 1B 1的距离是D 1到平面BCC 1B 1距离的13,即为D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M ­PBC =V P ­MBC =13×92×1=32.故选B.3.已知正方体ABCD -A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD -A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎤0,13 B .⎝⎛⎦⎤0,12 C.⎣⎡⎭⎫12,1D .⎣⎡⎦⎤12,23解析:选B 由题意,正方体ABCD -A 1B 1C 1D 1的棱长为1,如图所示,当点M 为线段BC 的中点时,截面为四边形AMND 1,当0<BM ≤12时,截面为四边形,当BM >12时,截面为五边形.故选B.4.已知直三棱柱ABC -A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( )A .2 2B .3C .2 3D .4解析:选C 如图,不妨设N 在B 处,设AM =h ,CQ =m ,则MB 2=h 2+4,BQ 2=m 2+4,MQ 2=(h -m )2+4,由MB 2=BQ 2+MQ 2,得m 2-hm +2=0.Δ=h 2-8≥0⇒h 2≥8,该直角三角形斜边MB =4+h 2≥23,故该直角三角形斜边长的最小值为2 3.故选C.5.(2019·郑州市第二次质量预测)在△ABC 中,已知AB =23,BC =26,∠ABC =45°,D是边AC上的一点,将△ABD沿BD折叠,得到三棱锥A-BCD,若该三棱锥的顶点A在底面BCD上的射影M在线段BC上,设BM=x,则x的取值范围是() A.(0,23) B.(3,6)C.(6,23) D.(23,26)解析:选C将△ABD沿BD折起,得到三棱锥A-BCD,且点A在底面BCD上的射影M在线段BC上,所以在图b中,AM⊥平面BCD,MN,AN 都与BD垂直,因此,折叠前在图a中,AM⊥BD,垂足为N,在图a中可得当D点与C 点无限接近时,折痕BD接近BC,此时M与点M1无限接近.在图b中,由于AB是Rt△ABM的斜边,BM是直角边,所以BM<AB,由此可得BM1<BM<AB,因为在Rt△AM1B 中,BM1=AB cos 45°=23×22=6,所以6<BM<23,即6<x<2 3.故选C.6.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥B-ACC1D的体积为________.解析:取AC的中点O,连接BO(图略),则BO⊥AC,所以BO⊥平面ACC1D.因为AB=2,所以BO= 3.因为D为棱AA1的中点,AA1=4,所以AD=2,所以S梯形ACC1D=12×(2+4)×2=6,所以四棱锥B-ACC1D的体积为13×6×3=2 3.答案:2 37.已知在正四棱锥S-ABCD中,SA=63,那么当该棱锥的体积最大时,它的高为________.解析:设正四棱锥的底面正方形的边长为a,高为h,因为在正四棱锥S-ABCD中,SA=63,所以a22+h2=108,即a2=216-2h2,所以正四棱锥的体积V S­ABCD=13a2h=72h-23h3,令y =72h -23h 3,则y ′=72-2h 2,令y ′>0,得0<h <6,令y ′<0,得h >6,所以当该棱锥的体积最大时,它的高为6.答案:68.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=3 3.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:334π81第2讲 空间位置关系的判断与证明[全国卷3年考情分析](1)高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择题(或填空题)和一道解答题或只考一道解答题.(2)选择题一般在第9~11题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小.(3)解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.考点一 空间点、线、面的位置关系[大稳定——常规角度考双基]1.[命题真假的判定]已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ; ③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β. 其中正确的命题是( ) A .①④ B .③④ C .①②D .①③解析:选A 对于①,若α∥β,m ⊥α,则m ⊥β,又l ⊂β,所以m ⊥l ,故①正确,排除B.对于④,若m ∥l ,m ⊥α,则l ⊥α,又l ⊂β,所以α⊥β.故④正确.故选A.2.[判断直线与直线的位置关系](2019·全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线解析:选B 法一:取CD 的中点O ,连接EO ,ON .由△ECD 是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD .∴EO ⊥CD ,EO ⊥ON .又N 为正方形ABCD 的中心,∴ON ⊥CD .以CD 的中点O 为原点, OD ―→方向为x 轴正方向建立空间直角坐标系,如图①所示. 不妨设AD =2,则E (0,0,3),N (0,1,0),D (1,0,0), M ⎝⎛⎭⎫12,0,32,B (-1,2,0),∴EN =12+(-3)2=2,BM =⎝⎛⎭⎫322+4+34=7,∴EN ≠BM . 连接BD ,BE ,∵点N 是正方形ABCD 的中心,∴点N 在BD 上,且BN =DN ,∴BM ,EN 是△DBE 的中线,∴BM ,EN 必相交.故选B.法二:如图②,取CD 的中点F ,DF 的中点G ,连接EF ,FN ,MG ,GB .∵△ECD 是正三角形,∴EF ⊥CD .∵平面ECD ⊥平面ABCD ,∴EF ⊥平面ABCD .∴EF ⊥FN .不妨设AB =2,则FN =1,EF =3,∴EN = FN 2+EF 2=2.∵EM =MD ,DG =GF ,∴MG ∥EF 且MG =12EF ,∴MG ⊥平面ABCD , ∴MG ⊥BG .∵MG =12EF =32, BG = CG 2+BC 2= ⎝⎛⎭⎫322+22=52, ∴ BM = MG 2+BG 2=7.∴ BM ≠EN .连接BD ,BE ,∵ 点N 是正方形ABCD 的中心,∴ 点N 在BD 上,且BN =DN ,∴ BM ,EN 是△DBE 的中线,∴ BM ,EN 必相交.故选B.3.[线面垂直、面面垂直的判定]如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF。

高中数学立体几何知识点总结及例题下PPT课件

高中数学立体几何知识点总结及例题下PPT课件
• 设O点在平面D1AP上的射影是H,求证:D1H⊥AP;
D1 ·O
A1 ·H
D
A
C1 B1
P C B
第10页/共23页
• 3 如图,在四棱锥 ABCD, PB于点F。 (I)证明 (II)证明
中,底面ABCD是正方形,侧棱
,E是PC的中点,

平面 EDB

平面EFD;
底面 交
第11页/共23页
• 4、如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F 是棱CD上的动点.
平面AAB1BD;C A1B1C1
• (II)求证A:B 2 AA平1面AB1D。
BC1 //
A1C
A1
D
C1 B1
C
A
B
第19页/共23页
• 预测(3) 线线垂直+线面平行
• 如图,在四棱锥
, AD AB, A;D DC 1 AB, BC PC.
• (I)试确定点F的位置,使得D1E⊥平面AB1F;
第12页/共23页
• 5、已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD 和CC1的中点,O1为下底面正方形的中心。
• (Ⅰ)证明:AF⊥平面FD1B1;
D E A
C B
F
D1 O1 A1
C1 H B1
第13页/共23页
• (Ⅰ)求证:
平面PDC;
PAD
PA PD • (II)已知E为棱AB的中点,问在棱PD上是否存在一点Q,使EQ平行于平面 PBC?若存在,写出点Q的位置,并证明你的结论;若不存在,试说明理由。
PA
第21页/共23页

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案

专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。

[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。

[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。

[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。

[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。

高中数学第九章-立体几何

高中数学第九章-立体几何

高中数学第九章-立体几何考试内容平面与其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理与其逆定理.平行平面的判定与性质.平行平面间的距离.二面角与其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求〔1〕掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.〔2〕掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.〔3〕掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理与其逆定理.〔4〕掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理.〔5〕会用反证法证明简单的问题.〔6〕了解多面体、凸多面体的概念,了解正多面体的概念.〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.〔9〕了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9〔B〕.直线、平面、简单几何体考试内容:平面与其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理与其逆定理.两个平面的位置关系.空间向量与其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角与其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:〔1〕掌握平面的基本性质.会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.〔2〕掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念.掌握直线和平面垂直的判定定理;掌握三垂线定理与其逆定理.〔3〕理解空间向量的概念,掌握空间向量的加法、减法和数乘.〔4〕了解空间向量的基本定理;理解空间向量坐标的概念.掌握空间向量的坐标运算.〔5〕掌握空间向量的数量积的定义与其性质:掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.〔6〕理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.〔7〕掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离掌握直线和平面垂直的性质定理掌握两个平面平行、垂直的判定定理和性质定理.〔8〕了解多面体、凸多面体的概念.了解正多面体的概念.〔9〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.〔10〕了解棱锥的概念,掌握正棱锥的性质.会画正棱锥的直观图.〔11〕了解球的概念.掌握球的性质.掌握球的表面积、体积公式.〔考生可在9〔A 〕和9〔B 〕中任选其一〕§09. 立体几何知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.〔①两个平面平行,②两个平面相交〕3. 过三条互相平行的直线可以确定1或3个平面.〔①三条直线在一个平面内平行,②三条直线不在一个平面内平行〕[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.〔X 、Y 、Z 三个方向〕二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.〔×〕〔可能两条直线平行,也可能是点和直线等〕 ②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.〔×〕〔射影不一定只有直线,也可以是其他图形〕⑥在同一平面内的射影长相等,则斜线长相等.〔×〕〔并非是从平面外一点..向这个平面所引的垂线段和斜线段〕 ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.〔不在任何一个平面内的两条直线〕3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等〔如下图〕. 〔二面角的取值X 围[) 180,0∈θ〕〔直线与直线所成角(] 90,0∈θ〕〔斜线与平面成角() 90,0∈θ〕〔直线与平面所成角[] 90,0∈θ〕〔向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角〔或直角〕相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交〔共面〕垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. 〔1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面〕三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.〔"线线平行,线面平行〞〕[注]:①直线a 与平面α内一条直线平行,则a ∥α. 〔×〕〔平面外一条直线〕②直线a 与平面α内一条直线相交,则a 与平面α相交. 〔×〕〔平面外一条直线〕③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. 〔√〕〔不是任意一条直线,可利用平行的传递性证之〕④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. 〔×〕〔可能在此平面内〕⑤平行于同一直线的两个平面平行.〔×〕〔两个平面可能相交〕12方向相同12方向不相同⑥平行于同一个平面的两直线平行.〔×〕〔两直线可能相交或者异面〕⑦直线l 与平面α、β所成角相等,则α∥β.〔×〕〔α、β可能相交〕3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.〔"线面平行,线线平行〞〕4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO 〔三垂线定理〕, 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.〔"线线垂直,线面垂直〞〕直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.〔×〕〔可能相交,垂直于同一条直线.....的两个平面平行〕 ②垂直于同一直线的两个平面平行.〔√〕〔一条直线垂直于平行的一个平面,必垂直于另一个平面〕③垂直于同一平面的两条直线平行.〔√〕5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.〔×〕]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.〔"线面平行,面面平行〞〕推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.〔"面面平行,线线平行〞〕4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.〔"线面垂直,面面垂直〞〕注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l , 因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=〔θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ〕 7. ⑴最小角定理:21cos cos cos θθθ=〔1θ为最小角,如图〕⑵最小角定理的应用〔∠PBN 为最小角〕简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.P OA a 图1θθ1θ2图2P αβθM A B O成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =〔C 为底面周长,h 是高〕该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=〔1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长〕该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全.等的矩形..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. 〔×〕〔直棱柱不能保证底面是钜形可如图〕②〔直棱柱定义〕棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.〔×〕〔斜四面体的两个平行的平面可以为矩形〕②各侧面都是正方形的棱柱一定是正棱柱.〔×〕〔应是各侧面都是正方形的直.棱柱才行〕 ③对角面都是全等的矩形的直四棱柱一定是长方体.〔×〕〔只能推出对角线相等,推不出底面为矩形〕④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. 〔两条边可能相交,可能不相交,若两条边相交,则应是充要条件〕2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.〔不是等边三角形〕ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii.正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形〔即侧棱相等〕;底面为正多边形. ②正棱锥的侧面积:'Ch 21S =〔底面周长为C ,斜高为'h 〕 ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =〔侧面与底面成的二面角为α〕 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.l abc则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积〔可分别多个三角形的方法〕.⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等〔它叫做正棱锥的斜高〕. ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.〔×〕〔各个侧面的等腰三角形不知是否全等〕 ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:A B ⊥CD,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,, 得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. ⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=〔r 为半径,h 为高〕②圆锥体积:h r V 231π=〔r 为半径,h 为高〕 ③锥形体积:Sh V 31=〔S 为底面积,h 为高〕 4. ①内切球:当四面体为正四面体时,设边长为a,a h 36=,243a S =底,243a S =侧 O rOR得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.1. 〔1〕共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.〔×〕 [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.〔×〕 [可能异面] ③若a ∥b ,则存在小任一实数λ,使b a λ=.〔×〕[与0=b 不成立] ④若a 为非零向量,则00=⋅a .〔√〕[这里用到)0(≠b b λ之积仍为向量]〔2〕共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ〔具有唯一性〕,使b a λ=. 〔3〕共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α.〔4〕①共面向量定理:如果两个向量b a ,不共线,则向量P 与向量b a ,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是P ABC 四点共面的充要条件.〔简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面〕注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=<这里隐含x+y+z≠1>.注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=3. 〔1〕空间向量的坐标:空间直角坐标系的x 轴是横轴〔对应为横坐标〕,y 轴是纵轴〔对应为纵轴〕,z 轴是竖轴〔对应为竖坐标〕.①令a =<a 1,a 2,a 3>,),,(321b b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥D B)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔0332211=++⇔⊥b a b a b a b a222321a a a ++==<a a =⇒⋅=> ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.〔2〕法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.〔3〕用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n ②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小〔21,n n 方向相同,则为补角,21,n n 反方,则为其夹角〕.③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.〔常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交〕.II. 竞赛知识要点一、四面体.1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心;③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1; ④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. 〔在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径与侧面上的高〕,则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.〔在等腰四面体ABCD 中,记BC = AD =a,AC = BD = b,AB = CD = c,体积为V,外接球半径为R,内接球半径为r,高为h 〕,则有 ①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; ②等腰四面体的外接球半径可表示为22242c b a R ++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=; ④h = 4r.O A B CD二、空间正余弦定理.空间正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin∠CBD/sin∠C-BA-D 空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D立体几何知识要点一、知识提纲〔一〕空间的直线与平面⒈平面的基本性质⑴三个公理与公理三的三个推论和它们的用途.⑵斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑴公理四〔平行线的传递性〕.等角定理.⑵异面直线的判定:判定定理、反证法.⑶异面直线所成的角:定义〔求法〕、X围.⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑴直线和平面垂直:定义、判定定理.⑵三垂线定理与逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面与其判定定理、性质定理.〔二〕直线与平面的平行和垂直的证明思路〔见附图〕〔三〕夹角与距离7.直线和平面所成的角与二面角⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平面所成的角、直线和平面所成的角.⑵二面角:①定义、X围、二面角的平面角、直二面角.②互相垂直的平面与其判定定理、性质定理.8.距离⑴点到平面的距离.⑵直线到与它平行平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑷异面直线的距离:异面直线的公垂线与其性质、公垂线段.〔四〕简单多面体与球9.棱柱与棱锥⑴多面体.⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、正方体;平行六面体的性质、长方体的性质.⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑸直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑴简单多面体的欧拉公式.⑵正多面体.11.球⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.⑵球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC,若∠AOB=∠AOC,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ; 4.异面直线所成角的求法:〔1〕平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;〔2〕补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段与斜线段在平面上的射影.通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;6.二面角的求法〔1〕定义法:直接在二面角的棱上取一点〔特殊点〕,分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;〔2〕三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 〔3〕垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;〔4〕射影法:利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此法不必在图形中画出平面角; 特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法〔尤其要考虑射影法〕.7.空间距离的求法〔1〕两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算; 〔2〕求点到直线的距离,一般用三垂线定理作出垂线再求解;〔3〕求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;8.正棱锥的各侧面与底面所成的角相等,记为θ,则S 侧cos θ=S 底;9.已知:长方体的体对角线与过同一顶点的三条棱所成的角分别为,,,γβα因此有cos 2α+cos 2β+cos 2γ=1; 若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,,γβα则有cos 2α+cos 2β+cos 2γ=2;10.正方体和长方体的外接球的直径等与其体对角线长;11.欧拉公式:如果简单多面体的顶点数为V,面数为F,棱数为E.那么V+F -E=2;并且棱数E =各顶点连着的棱数和的一半=各面边数和的一半;12.柱体的体积公式:柱体〔棱柱、圆柱〕的体积公式是V 柱体=Sh.其中S 是柱体的底面积,h 是柱体的高.13.直棱柱的侧面积和全面积S 直棱柱侧= c <c 表示底面周长, 表示侧棱长> S 棱柱全=S 底+S 侧14.棱锥的体积:V 棱锥=Sh 31,其中S 是棱锥的底面积,h 是棱锥的高. BC AD A 1α。

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。

解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。

高中数学立体几何判定定理及性质大全课件-高三数学二轮专题复习课件

高中数学立体几何判定定理及性质大全课件-高三数学二轮专题复习课件

知识清单
线∥面的判定定理
图形语言
文字语言
符号语言
如果平面外一条直线和 这个平面内一条直线平行 , 那么这条直线和这个平面 平行.
a
b
a

a

b
作用
直线∥直线 直线∥平面
知识清单
线∥面的性质定理
图形语言
文字语言
符号语言
如果一条直线和一个平 面平行 , 经过这条直线的平
a∥
面和这个平面相交 , 那么这 a

B
作用
直线 平面 平面∥平面
a∥b
条直线和交线平行.
b
作用
直线∥平面 直线∥直线
知识清单
面∥面的判定定理
图形语言
文字语言
符号语言
aA b
如果一个平面内有两条 相交直线都平行于另一个平 面 , 那么这两个平面平行.
a∥
a b∥

b
a b A
作用
直线∥平面 平面∥平面
知识清单
面∥面的性质定理
图形语言
文字语言
文字语言
符号语言
如果两个平面互相垂直,
那么在一个平面内垂直于它 们交线的直线垂直于另一个 平面.

a a
MN
MN
a
作用
平面 平面 直线 平面
知识清单
面∥面的判定定理
图形语言
文字语言
符号语言
l
A
如果一个平面内有两条 相交直线都平行于另一个平 面 , 那么这两个平面平行.
l l
a∥b c∥b
a

c
作用
判定:线∥线的依据
知识清单

高三数学一轮复习 第九章《立体几何》96课件

yO→B+zO→C.
4.空间向量的数量积
(1)已知两个非零向量a,b,在空间任取一点O,作 O→A
=a,O→B=b,则∠AOB叫做a与b的夹角,记作〈a,b〉. • (2)空间向量a、b的数量积的定义,性质及运算律与平
面向量相同.
• 5.空间向量的直角坐标运算
• (1)空间向量的直角坐标
• 设i,j,k是单位正交基底,对于空间任一向量a,由空 间向量的基本定理,存在惟一的有序实数组(a1,a2, a3),使a=a1i+a2j+a3k.有序实数组(a1,a2,a3)叫做a 在空间直角坐标系O-xyz中的坐标,记为a=(a1,a2, a3).
A.12a-23b+12c B.-23a+12b+12c C.12a+12b-23c D.23a+23b-12c
分析:∵OM=2MA,∴ O→M 可以用 O→A 表示,∵N为 BC的中点,∴ O→N 可以用 O→B 与 O→C 表示,向量 M→N 可以用 O→N与解O析→M:表M→示N,=因O→N此-M→O→NM可=以12用(O→aB、+bO→、Cc)-表23示O→.A
• 重点难点
• 重点:①掌握空间向量加、减、数乘、数量积的运算和 运算律.
• ②掌握共面、共线向量定理和空间向量分解定理. • 难点:共面向量定理与空间向量基本定理的理解与应用
• 知识归纳
• 1.空间向量及其加减与数乘运算
• (1)在空间中,具有大小和方向的量叫做向量.同向且 等长的有向线段表示同一向量或相等的向量.
• 5.特别注意向量的数量积运算与实数的积的区别
• (1)两个向量的数量积是一个实数,不是向量,符号由 cosθ的符号所决定.
• (2)在实数中,若a≠0,且a·b=0,则b=0;但是在数量 积中,若a≠0,且a·b=0,不能推出b=0,因为其中 cosθ有可能为0,即两向量垂直时a·b=0.

高考数学(理)三年真题专题演练—立体几何(解答题)

高考数学三年真题专题演练—立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD , 因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥. (2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =,所以22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,22),(3,0,0)A P D -,(0,0,0),(3,1,0)M C -又N 为PC 中点,所以31335,,2,,,22222N AN ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||2725244AN n AN n θ⋅===++‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案. 【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥ 因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥, 又1BB BF B ⋂=,所以AB ⊥平面11BCC B . 所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥. (2)设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos 2m BA m BAθ⋅===⋅⨯当12a =时,2224a a -+取最小值为272, 此时cos θ=.所以()minsin θ== 此时112B D =. 【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1)2;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =,故2BC a ==; (2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-,由11110220m AM x y m APz ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =,可得()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM x n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,147m n m n m n⋅<>===⨯⋅,所以,270sin ,1cos,14m n m n <>=-<>=, 因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --5111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =. 【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C , 由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD , 从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF , 据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合, 即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤, 则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-, 设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩, 令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:215,5,51m n m n λ⎛⎫⋅==+= ⎪-⎝⎭, 则:2,155155cos 3m n m n m nλ⋅⎛⎫+⨯ ⎪-⎝⎭===⨯,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【解析】(1)设DO a =,由题设可得63,,PO AO AB a ===, 2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为255. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3 连接NP ,则四边形AONP 为平行四边形,故23231(,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 10.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n . 因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD CO ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH ==, 所以3sin 3OH OCH OC ∠==, 因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,CA 〈〉=n .所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33. 12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2)32. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为32. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH =3.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,03CG =(1,03),AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,20.x z x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,3又平面BCGE 的法向量可取为m =(0,1,0), 所以3cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(23;(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P 为锐角,所以其余弦值为33.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m . 由题意,有224||1cos ,||||3432h h -⋅〈〉===+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛试题选讲之六:立体几何一、选择题部分1. (2006吉林预赛)正方体ABCD -A 1B 1C 1D 1中,过顶点A 1作直线l ,使l 与直线AC 和直 线BC 1所成的角均为60°,则这样的直线l 的条数为 ( C )A. 1B. 2C. 3D. 大于32.(2006陕西赛区预赛)如图2,在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面AB 11C D 均成030角,则这样的直线l 的条数为(B )A. 1 B .2 C. 3 D .43.(集训试题)设O 是正三棱锥P-ABC 底面是三角形ABC 的中心,过O 的动平面与PC 交于S ,与PA 、PB 的延长线分别交于Q 、R ,则和式PSPR PQ 111++ ( ) A .有最大值而无最小值B .有最小值而无最大值 C .既有最大值又有最小值,两者不等D .是一个与面QPS 无关的常数解:设正三棱锥P-ABC 中,各侧棱两两夹角为α,PC 与面PAB 所成角为β,则v S-PQR =31S △PQR ·h=21(31PQ ·PRsin α)·PS ·sin β。

另一方面,记O 到各面的距离为d ,则v S-PQR =v O-PQR +v O-PRS +v O-PQS ,31S △PQR ·d=31△PRS ·d+31S △PRS ·d+31△PQS ·d=213⋅d PQ ·PRsin α+213⋅d PS ·PRsin α+213⋅d PQ ·PS ·sin α,故有:PQ ·PR ·PS ·sin β=d(PQ ·PR+PR ·PS+PQ ·PS),即dPS PR PQ βsin 111=++=常数。

故选D 。

4.(2006年江苏)过空间一定点P 的直线中,与长方体1111ABCD A B C D -的12条棱所在直线成等角的直线共有(C )A .0条B .1条C .4条D .无数多条5.(2006天津)已知P 为四面体ABC S -的侧面SBC 内的一个动点,且点P 与顶点S 的距离等于点P 到底面ABC 的距离,那么在侧面SBC 内,动点P 的轨迹是某曲线的一部分,则该曲线一定是 ( D ) A .圆或椭圆 B .椭圆或双曲线 C .双曲线或抛物线 D .抛物线或椭圆 6.(2006年南昌市)四棱锥P ABCD -的底面ABCD 是单位正方形(,,,A B C D 按反时针方向排列),侧棱PB垂直于底面,且PB =3,记APD θ∠=,则sin θ=(C )A .22 B .33 C .55 D .667.(2005年浙江)正方体的截平面不可能是: (1) 钝角三角形 (2) 直角三角形 (3) 菱 形 (4) 正五边形 (5) 正六边形; 下述选项正确的是(B ) A .(1)(2)(5) B .(1)(2)(4) C .(2)(3)(4) D .(3)(4)(5)【解】 正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形,直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形,矩形、但不可能是直角梯形(证明略);对五边形来讲,可以是任意五边形,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形)。

∴选 【 B 】8.(2005全国)如图,D C B A ABCD ''''-为正方体。

任作平面α与对角线C A '垂直,使得α 与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l .则( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值解:将正方体切去两个正三棱锥A A BD '-与C D B C '''-后,得到一个以平行平面A BD D B C '''与为上、下底面的几何体V ,V 的每个侧面都是等腰直角三角形,截面多边形W 的每一条边分别与V 的底面上的一条边平行,将V 的侧面沿棱B A ''剪开,展平在一张平面上,得到一个11A B B A '',而多边形W 的周界展开后便成为一条与1A A '平行的线段(如图中1E E '),显然11A A E E '=',故l 为定值.当E '位于B A ''中点时,多边形W 为正六边形,而当E '移至A '处时,W 为正三角形,易知周长为定值l 的正六边形与正三角形面积分别为2243l 与2363l ,故S 不为定值。

选B. 9.(2006浙江省)在正2006边形中,与所有边均不平行的对角线的条数为(C )A .2006B .21003C .100310032-D .100210032-.解: 正2n 边形n A A A 221 ,对角线共有)32()32(221-=-⨯⨯n n n n 条. 计算与一边21A A 平行的对角线条数,因2121//++n n A A A A ,与21A A 平行的对角线的端点只能取自2n-4个点,平行线共n-2条。

故与某一边平行的对角线共n(n-2)条。

由此可得与任何边都不平行的对角线共有n(2n-3)-n(n-2)=n(n-1)条。

因此正确选项是 C. 10.(2005四川)如图,一个立方体,它的每个角都截去一个三棱锥,变成一个新的立体图形。

那么在新图形顶点之间的连线中,位于原立方体内部的有120条.解:据题意新的立体图形中共有24个顶点,每两点连一条线,共2762312224=⨯=C ,其中所有的棱都在原立方体的表面, 有36条.原立方体的每个面上有8个点,除去棱以外,还可以 连20285=⨯条,6个面共120条都在原立方体的表面,除此 之外的直线都在原立方体的内部.二、填空题部分1.(2006年南昌市)棱长为1的正四面体在水平面上的正投影面积为s ,则s 的最大值为_12_. 2.(2006天津)在一个棱长为5的正方体封闭的盒内,有一个半径等于1的小球,若小球在盒内任意地运动,则小球达不到的空间的体积的大小等于 33144π-. 3.(2006年上海)在△ABC 中,已知30,105A B ∠=︒∠=︒,过边AC 上一点D 作直线DE ,与边AB 或者BC相交于点E ,使得60CDE ∠=︒,且DE 将△ABC 的面积两等分,则2CD AC ⎛⎫= ⎪⎝⎭. 4.(2006年上海)在直三棱柱中,已知底面积为s 平方米,三个侧面面积分别为m 平方米,n 平方米,p 平方米,则它的体积为立方米.5.(2006陕西赛区预赛)用6根等长的细铁棒焊接成一个正四面体形框架,铁棒的粗细和焊接误差不计设此框架能容纳得下的最大球的半径为1R ,能包容此框架的最小球的半径为2R ,则12R R 等于 33.6.(2006年江苏)长方体1111ABCD A B C D -中,已知14AB =,13AD =,则对角线1AC 的取值范围是()4,5 .7.(2005全国)如图,四面体DABC 的体积为61,且满足,32,45=++︒=∠AC BC AD ACB 则=CD 3. 解:,61)45sin 21(31=≥︒⋅⋅⋅⋅DABC V AC BC AD即.12≥⋅⋅AC BC AD 又,32233≥⋅⋅≥++=AC BC AD AC BC AD等号当且仅当12===AC BC AD 时成立,这时⊥=AD AB ,1面ABC ,3=∴DC .8.(2004 全国)如图、正方体1111ABCD A B C D -中,二面角11A BD A --的度数是____.解:连结1,D C ⊥1作CE BD ,垂足为E ,延长CE 交1A B 于F ,则1FE BD ⊥,连结AE ,由对称性知1,AE BD FEA ⊥∴∠是二面角第7题图11A BD A --的平面角.连结AC ,设AB=1,则11AC AD BD ===1Rt ABD ∆在中,11AB AD AE BD ⋅==,在22222242213cos 42223AE CE AC AE AC AEC AEC AE CE AE -+--∆∠====-⋅中,.0120,AEC FEA AEC ∴∠=∠∠而是的补角,060FEA ∴∠=.【原创】2008年高考立体几何问题研究综述直线、平面、简单几何体是高考的必考内容。

一般以客观题的形式考查基础知识,以解答题的形式考查综合问题。

2008年高考立体几何的考点主要包括:空间位置关系的判断与论证,空间角与距离的计算,直线、平面、简单几何体与其它知识的交汇与运用等。

试题设置形式和数量不一:有12份试卷是“两小一大”共三道题、4份试卷是“一小一大”共两道题、全国Ⅱ和四川卷是“三小一大”共四道题、江苏卷仅一道大题,分值由13 27不等,平均分不足22,题目难度一般仍在中等左右。

1、客观题的考查研究1.1、线面位置关系的判断问题例1. (湖南5)设有直线m 、n 和平面α、β.下列四个命题中,正确的是( ) A.若m ∥α,n ∥α,则m ∥n B.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C.若α⊥β,m ⊂α,则m ⊥β D.若α⊥β,m ⊥β,m ⊄α,则m ∥α 解析 对每个选支逐一分析判断,可得正确答案(D )。

评注 本题综合考查直线与直线、直线与平面、平面与平面的位置关系,同类的还有天津5、安徽4。

线面位置关系的判断是立体几何的基本知识和基本技能,是高考的必考内容,多出现在填空、选择题中。

1.2、几何元素的计数问题例2.(辽宁11)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线( )A .不存在 B .有且只有两条 C .有且只有三条 D .有无数条解析 方法1:易知三条异面直线A 1D 1,EF ,CD 平行于同一平面,记它 们依次为a,b,c,在直线a 上任取一点E ,过E 作直线11,b b c c (如图1)。

设直线1,b b 确定平面α,直线1,c c 确定平面β,又两平面有公共点E ,故它们必交于过E 的一条直线l 。

在α内直线l 与1b 交于E ,则必与1b 的平行线b 相交,记交点为F ;同理记直线l 与c 的交点为G ,则直线l 与直线a,b,c 分别交于点E ,F ,G 。

相关文档
最新文档