多糖的结构测定及应用
多糖结构分析

多糖结构研究方法多糖及其复合物是来自于高等动、植物细胞膜和微生物细胞壁中的天然大分子物质之一,自然界含量丰富,与人类生活紧密相关,对维持生命活动起至关重要的作用。
多糖和核酸、蛋白质、脂类构成了最基本的4类生命物质。
由于多糖的生物活性与多糖的结构关系密切,因此清楚认识多糖的结构是进行多糖研究和利用的基础。
多糖结构比蛋白质和核酸的结构更加复杂,可以说是自然界中最复杂的生物大分子。
从化学观点来看,多糖结构解析最大的难点就在于其结构的复杂性。
糖的结构分类可沿用蛋白质和核酸的分类方法,即多糖的结构也可分为一级、二级、三级和四级结构。
与蛋白质或核酸大分子相比,糖链的一级结构“含义”要十分丰富。
测定糖链的一级结构,要解决以下几个问题:(1)相对分子质量;(2)糖链的糖基组成,各种单糖组成的摩尔比;(3)有无糖醛酸及具体的糖醛酸类型和比例;(4)各单糖残基的D-或L.构型,毗喃环或呋喃环形式;(5)各个单糖残基之间的连接顺序;(6)每个糖苷键所取的a-或B.异头异构形式;(7)每个糖残基上羟基被取代情况:(8)糖链和非糖部分连接情况;(9)主链和支链连接位点:(10)糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。
多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象,与分子主链的构象有关,不涉及侧链的空间排布;多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象四。
多糖结构的分析手段很多。
不仅有仪器分析法,如红外、核磁共振、质谱等,还有化学方法,如完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化反应等,以及生物学方法,如特异性糖苷酶酶切、免疫学方法等。
1质谱(MS)由于MS法在糖链结构分析中具有快速灵敏,样品用量少、结构信息直观的特点而得到越来越广泛的应用。
近年来各种软电离技术的诞生,如快原子轰击质谱(FAB—MS),电喷雾质谱(ESI—MS),基质辅助激光解析离子化质谱(MALDI-MS)等,使得糖结构分析的研究取得了日新月异的发展。
第九章-多糖的测定

三、其它方法
(一)旋光法 p187 1.原理
淀粉具有旋光性,在一定条件下旋光度的大小与 淀粉的浓度成正比。用氯化钙溶液提取淀粉,使之与其 他成分分离,用氯化锡沉淀提取液中的蛋白质后,测
定旋光度,即可计算出淀粉含量。 2.适用范围及特点
本法适用于淀粉含量较高,而可溶性糖类含量很 少的谷类样品,如面粉、米粉。操作简便、快速。
糊化的三个阶段:p182
第五页,编辑于星期三:十五点 四十九分。
淀粉的测定方法:
淀粉的测定方法有多种,根据淀粉的理 化性质而建立的。常用的方法有: 酶水解法 酸水解法 旋光法
第六页,编辑于星期三:十五点 四十九分。
一 、酶水解法
(一) 原理:
含淀粉 酸解 葡萄糖 液化
样品
糊精、麦芽糖酸解 单糖
糖化
淀粉酶水解 有选择性
第七页,编辑于星期三:十五点 四十九分。
(二)适用范围及特点
因为淀粉酶有严格的选择性、它只水解淀粉而 不会水解其他多糖,水解后通过过滤可除去其他多糖。
所以该法不受半纤维素、多缩戊糖、果胶质 等多糖的干扰,适合于这类多糖含量高的样品, 分析结果准确可靠,但操作复杂费时。
第八页,编辑于星期三:十五点 四十九分。
第二十二页,编辑于星期三:十五点 四十九分。
2.适用范围及特点
该法操作简便、迅速,适用于各类食品,是应用最广泛 的经典分析法。目前,我国的食品成分表中“纤维”一项的数 据都是用此法测定的,但该法测定结果粗糙,重现性差。
由于酸碱处理时纤维成分会发生不同程度的降解,使测得 值与纤维的实际含量差别很大,这是此法的最大缺点。
第十三页,编辑于星期三:十五点 四十九分。
GB/T 5009.9—2003《食品中淀粉的测定》
多糖的结构与作用

多糖的结构与作用多糖是单糖分子之间缩合脱水而成,大分子物质,结构复杂,无甜味。
还原糖是从它的分子式上来说的,看它的结构中有没有游离的醛基。
蔗糖没有。
蔗糖不是多糖而是二糖,还原糖是从它的分子式上来说的,看它的结构中有没有还原性基团(如游离的醛基),蔗糖的结构中没有还原性基团,所以不是还原糖。
常见的还原糖有葡萄糖和麦芽糖,多糖因为分子式较长是单糖的多聚体,没有机会形成自己的还原性基团,所以都不是还原糖。
我们可以这样理解:假设许多单糖分子组成了一个多糖,而且是一条直链,那么这个多糖的分子式可以表示为(C6H10O5)n ,多糖是一类分子机构复杂且庞大的糖类物质。
多糖polysaccharide 凡符合高分子化合物概念的碳水化合物及其衍生物均称为多糖。
有由一种类型的单糖如葡萄糖、甘露聚糖、半乳聚糖等(通常在英语的单糖词干上加上an这个词尾),由二种以上的单糖组成的杂多糖(hetero polysaccharide),含有氨基糖的葡糖胺葡聚糖等,在化学结构上实属多种多样。
就分子量而论,有从0.5万个单糖分子组成的到超过106个的多糖。
由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖才称为多糖。
比10个少的短链的称为寡糖。
不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖但蛋白糖绝不是多糖)。
多糖的生物学功能,通常具有贮藏生物能〔如:淀粉、糖原、菊粉(inulin)〕和支持结构〔如:纤维素、几丁质(chitin)、粘多糖〕的作用,植物多糖是由许多相同或不同的单糖以α一或β一糖苷键所组成的化合物,普遍存在于自然界植物体中,包括淀粉、纤维素、多聚糖、果胶等。
多糖结构分析

多糖结构研究方法多糖及其复合物是来自于高等动、植物细胞膜和微生物细胞壁中的天然大分子物质之一,自然界含量丰富,与人类生活紧密相关,对维持生命活动起至关重要的作用。
多糖和核酸、蛋白质、脂类构成了最基本的4类生命物质。
由于多糖的生物活性与多糖的结构关系密切,因此清楚认识多糖的结构是进行多糖研究和利用的基础。
多糖结构比蛋白质和核酸的结构更加复杂,可以说是自然界中最复杂的生物大分子。
从化学观点来看,多糖结构解析最大的难点就在于其结构的复杂性。
糖的结构分类可沿用蛋白质和核酸的分类方法,即多糖的结构也可分为一级、二级、三级和四级结构。
与蛋白质或核酸大分子相比,糖链的一级结构“含义”要十分丰富。
测定糖链的一级结构,要解决以下几个问题:(1)相对分子质量;(2)糖链的糖基组成,各种单糖组成的摩尔比;(3)有无糖醛酸及具体的糖醛酸类型和比例;(4)各单糖残基的D-或L.构型,毗喃环或呋喃环形式;(5)各个单糖残基之间的连接顺序;(6)每个糖苷键所取的a-或B.异头异构形式;(7)每个糖残基上羟基被取代情况:(8)糖链和非糖部分连接情况;(9)主链和支链连接位点:(10)糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。
多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象,与分子主链的构象有关,不涉及侧链的空间排布;多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象四。
多糖结构的分析手段很多。
不仅有仪器分析法,如红外、核磁共振、质谱等,还有化学方法,如完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化反应等,以及生物学方法,如特异性糖苷酶酶切、免疫学方法等。
1质谱(MS)由于MS法在糖链结构分析中具有快速灵敏,样品用量少、结构信息直观的特点而得到越来越广泛的应用。
近年来各种软电离技术的诞生,如快原子轰击质谱(FAB—MS),电喷雾质谱(ESI—MS),基质辅助激光解析离子化质谱(MALDI-MS)等,使得糖结构分析的研究取得了日新月异的发展。
多糖高级结构研究方法

1. 红外光谱法(IR)红外光谱在多糖的结构分析上的应用主要是确定糖苷键的构型以及常规官能团。
如:多糖化合物在890cm- 1处吸收是β-吡喃糖苷键特征峰,而820 cm- 1和850cm- 1则是α-吡喃糖苷键特征峰。
2.核磁共振法( NMR)主要用于确定多糖结构中糖苷键的构型以及重复结构中单糖的数目。
3. 原子力显微镜(AFM)该技术是在扫描隧道显微镜( STM )基础上发展起来的一种新颖的物质结构分析方法。
其用很尖的探针扫描待测样品表面, 探针附在一根可活动的微悬臂的底端上, 当探针与样品接触时, 产生的微小作用力引起微悬臂的偏转, 通过光电检测系统对微悬臂的偏转进行检测和放大, 信号经过转换可得到样品的三维立体图像。
如:该技术研究了香菇多糖在不同浓度NaOH 溶液下构型和构象的转变。
4. X- 射线衍射法(XRD)X - 射线衍射法可得到晶体的晶胞参数和晶格常数, 再加上立体化学方面的信息,包括键角、键长、构型角和计算机模拟, 就可以准确的确定多糖的构型。
5. 圆二色谱( CD)从CD 可以知道绝对构型、构象等信息, 是研究多糖的三维结构的有效办法。
中性多糖因缺少一般紫外区可提供信息的结构, 难以直接得到由CD 谱提供的结构信息,通常可进行衍生化或者将多糖与刚果红络合后测定。
6. 快原子轰击质谱( FAB - M S)FAB- MS适合于分析极性大、难挥发、热不稳定的样品。
在快原子轰击过程中, 样品通过正离子方式增加一个质子或阳离子, 或通过负离子方式失去一个质子产生准分子离子作为谱图的主要信号, 并给出反映连接顺序等信息的碎片。
因此FAB- MS可用来测定寡糖链的分子量。
通过FAB- MS形成[M - H ] - 离子是确定寡糖中单糖组成的一种方便的方法。
7. 气质联用(GC - M S)气相色谱与质谱联用可以得到有关单糖残基类型、链的连接方式、糖的序列和糖环形式、聚合度等多种结构信息。
多糖结构表征

多糖结构表征多糖结构表征的重要性及其挑战多糖是一种复杂的生物大分子,在自然界中广泛存在。
它们在许多生物过程中扮演着关键角色,如细胞识别、免疫应答和能量储存等。
了解多糖的结构对于揭示其生物活性及其生理功能具有重要意义。
本文将介绍多糖的种类、功能及其结构表征的重要性,并探讨当前在测定和解析多糖结构方面存在的技术挑战以及可能的发展趋势。
一、多糖简介多糖是由多个单糖分子通过糖苷键连接而成的聚合物。
根据其来源和结构特点,多糖可分为不同的类型,包括同质多糖、异质多糖、半纤维素、脂多糖和肽聚糖等。
同质多糖是由一种类型的单糖组成的,如淀粉、纤维素和糖原。
异质多糖是由不同种类的单糖组成的,如阿拉伯胶和海藻酸盐。
半纤维素是一种与纤维素类似的生物聚合物,但其结构和组成与纤维素不同。
脂多糖和肽聚糖则是由多个单糖分子与脂肪酸或氨基酸连接而成的。
多糖在生物体中具有重要的功能和作用。
例如,纤维素是植物细胞壁的主要成分,参与了植物的生长发育和形态建成;淀粉是动物体内主要的能量来源;海藻酸盐是某些海洋生物的细胞外基质,参与了细胞间的识别和信号传递;脂多糖则是细菌细胞壁的一部分,具有免疫刺激作用等。
二、多糖结构表征的重要性了解多糖的结构对于揭示其生物活性及其生理功能具有重要意义。
多糖的结构表征可以帮助我们认识其在生物体内的功能和作用,以及其与生物大分子的相互作用机制。
此外,对于多糖的结构表征也有助于开发新的药物和疗法,以及优化现有药物和疗法的疗效。
三、常见表征方法常用于测定多糖结构表征的方法和技术包括核磁共振(NMR)、红外光谱、X射线衍射、质谱和糖基化位点分析等。
其中,NMR是一种非破坏性的分析方法,可以提供多糖中单糖组成、连接方式和序列信息等;红外光谱可以提供多糖中化学键的信息;X射线衍射可以提供多糖的晶体结构和构象信息;质谱可以用于测定多糖的分子量和组成;糖基化位点分析则可以确定多糖中单糖的位置和连接方式等。
四、具体案例分析以纤维素为例,它是一种由葡萄糖分子组成的同质多糖。
多糖含量测定的方法综述
多糖含量测定的方法综述多糖是一种以糖为主要组成成分的生物大分子,包括多种不同类型的糖类,如葡萄糖、果糖、半乳糖等。
多糖在生物体内具有重要的生理功能,包括能量供应、结构支持、细胞识别和信号传递等。
测定多糖的含量对于分析生物体内的代谢物质和生物功能很重要。
下面将综述几种常用的多糖含量测定方法。
1. 酚-硫酸法:酚-硫酸法是一种常用的测定糖类含量的方法。
该方法通过将样品与酚和硫酸反应,产生带有吸收峰的复合物,然后使用紫外光谱仪测定复合物的吸光度来计算糖含量。
该方法适用范围广,对于多种糖类都可以测定。
2. 酶法:酶法是通过特定酶对特定的糖类进行反应,生成比色物或荧光物质来测定糖含量的方法。
常用的酶法包括葡萄糖氧化酶法、木糖醇氧化酶法和半乳糖标准酶法等。
这些方法具有灵敏、快速的特点,适用于糖类含量较高的样品。
3. 高效液相色谱法:高效液相色谱法是一种通过分离和检测糖类来测定多糖含量的方法。
该方法使用高压注射仪将样品中的糖类分离,然后通过色谱柱进行分离,并使用检测器测定峰的面积或高度来计算糖含量。
该方法具有高分辨率、高灵敏度和高准确性的特点,适用于多糖含量较低的样品。
4. 红磷法:红磷法是一种比色法,通过氧化红磷,使其转变成淡黄色后与不同浓度的糖溶液比较颜色的深浅来测定糖含量。
该方法简单、快速,适用于粗测糖含量。
5. 聚合度测定法:多糖的聚合度是指多糖分子中含有的糖基个数。
测定多糖的聚合度可以通过核磁共振和凝胶渗透色谱等方法进行。
这些方法可以确定多糖的分子量和聚合度分布,从而间接地测定糖含量。
测定多糖含量的方法有很多种,每种方法都有其适用范围和优缺点。
在实际应用中,根据样品的特点和研究目的选择合适的方法进行多糖含量的测定。
多糖含量测定的方法综述
多糖含量测定的方法综述多糖是指由多个单糖分子通过糖苷键连接而成的碳水化合物,是生物体中的重要成分之一,在食品工业、医药和生物技术领域具有重要的应用价值。
对多糖含量进行准确的测定是非常重要的。
目前,针对多糖含量测定的方法有很多种,包括光度法、比色法、高效液相色谱法、质谱法等。
本文将对多糖含量测定的方法进行综述,并对各种方法的原理、优缺点以及适用范围进行分析。
一、光度法光度法是一种常用的多糖含量测定方法,其原理是通过测定多糖在特定波长下的吸光度来确定其含量。
常用的方法有邻苯二甲酰氯法、硫酸-安替土林蓝法等。
邻苯二甲酰氯法是一种简便快速的多糖含量测定方法,其原理是多糖与邻苯二甲酰氯在酸性条件下反应生成二糖苷,然后与二甲基氨基苯酚生成有色产物,利用紫外分光光度计在510nm处测定吸光度。
该方法操作简便、灵敏度高,但只适用于测定淀粉样品。
硫酸-安替土林蓝法是一种比色法,通过多糖与硫酸反应产生的酸性羟乙基酚与安替土林蓝在酸性条件下产生有色产物,利用紫外分光光度计在620nm处测定吸光度。
该方法适用于多种多糖的含量测定,但操作相对复杂,且对于含有还原糖的多糖测定结果会存在误差。
二、比色法三、高效液相色谱法高效液相色谱法是一种准确快速的多糖含量测定方法,其原理是通过高压注射将多糖样品进样到色谱柱中,利用高效液相色谱仪分离多糖,并通过紫外检测器在270nm处检测吸光度,从而确定多糖的含量。
该方法准确性高,适用范围广,但需要专用的设备和耗材,成本较高。
四、质谱法根据实际需要和条件,选择合适的多糖含量测定方法非常重要。
对于一般实验室而言,光度法和比色法是常用的方法,操作简便、成本低,适用于大多数多糖的含量测定。
对于要求准确性和高通量的实验室而言,高效液相色谱法和质谱法是更好的选择,能够满足实验需要。
不同的方法可以组合使用,以提高测定准确性和可靠性。
在实际操作中,需要根据样品的性质和含量范围,综合考虑方法的原理、操作难易度和设备条件,选择合适的多糖含量测定方法。
测定多糖的方法
测定多糖的方法:蒽酮—硫酸法,苯酚—硫酸法,比色定量法,纸色谱法,离子交换色谱法,酶法,原子吸收法,HPLC法,DNS(还原法),磷钼比色法。
一、苯酚—硫酸法1、原理:糖在浓硫酸作用下脱水生成的糠醛或羟甲基糠醛能与苯酚缩合成一种橙红色化合物。
在10~100mg范围内其颜色与糖的含量成正比。
在485nm波长下有最大吸收峰,故可用比色法在波长下测定。
苯酚法可用于甲基化的糖和多糖的测定方法。
简单,灵敏度高,实验室基本不受蛋白住存在的干扰。
2、实验药品浓硫酸苯酚3苯酚溶液的配制(1)先配制80%苯酚溶液,然后称取80.0g苯酚加20.0g水,使之溶解,置于冰箱中,避光长期保存。
取80%苯酚37.5mL定容到500Ml.配制成60%的苯酚溶液,避光保存。
(2)取苯酚100g,加铝片0.1g和碳酸氢钠0.05g,蒸馏收集182℃馏分。
称取7.5g加水150mL溶解,置棕色瓶内放冰箱备用。
二、蒽酮—硫酸显色法1、实验药品蒽酮硫酸2、溶液的配制称取蒽酮0.2g,加浓硫酸100mL混均即可(现用现配)三、高效液相色谱法多糖溶液进行高效液相色谱,利用TSK—GEL G4000PW柱.RI—10A示差折光检测器,以双蒸馏水为流动相,溶液浓度为0.5mg/Ml,进样量50μL,根据峰形判断样品的纯度。
四、DNS法为排除还原性单糖的干扰,可采用DNS(3,5—二硝基水杨酸)比色法测定还原糖的含量。
1、原理在碱性溶液中3,5—二硝基水杨酸与还原性糖共热后被还原成棕红色氨基化合物,在一定范围内还原糖的量与反应液的颜色强度呈比例关系。
再将通过硫酸—苯酚,或者蒽酮—硫酸法得到的总糖结果减去还原糖,即得较准确的多糖含量。
五、地衣酚—硫酸法溶液的配制称取400mg地衣酚(3,5—二羟基甲苯)溶于155mL浓盐酸中,另加45mL含0.33%三氯化铁的0.01mol·mL_1盐酸,临用前配制。
苯酚—硫酸法和蒽酮—硫酸法的缺陷:首先葡萄糖是单糖而植物多糖的组成是多样的,只是用葡萄糖作为参照不确切,其次,显色试剂的不专属单糖的干扰严重,实际上测得的结果是总糖的结果。
多糖含量测定的方法综述
多糖含量测定的方法综述
多糖是指由多个单糖单元通过糖苷键连接而成的生物大分子聚合物。
多糖广泛存在于
生物体内,包括植物和动物的细胞壁、粘液、胶原蛋白等组织中,对于维持细胞结构和功
能起着重要作用。
准确测定多糖含量对于研究生物过程和评估食物营养价值具有重要意义。
本文将综述常用的多糖含量测定方法。
1. 光度法
光度法是最常用于测定多糖含量的方法之一。
该方法基于多糖与酚类试剂(如苯酚硫
酸试剂)反应生成有色产物,通过测定产物的吸光度来间接测定多糖的含量。
这种方法简单、快速,适用于大多数多糖的测定,但不适用于含有酚类物质的样品。
2. 琼脂糖凝胶电泳
琼脂糖凝胶电泳是一种常用的多糖分析技术。
该方法将待测样品通过电泳在琼脂糖凝
胶上分离,根据多糖的电泳迁移率来判断其分子大小和含量。
这种方法可以同时测定多个
多糖组分,适用于多糖的组分分析和纯度检测。
3. 高效液相色谱法
高效液相色谱法是一种高分辨率、高灵敏度的多糖分析技术。
该方法通过在色谱柱上
分离多糖组分,再通过检测器测定其浓度。
该方法灵敏度高,分离效果好,适用于多组分
多糖的测定。
多糖含量的测定方法多种多样,可以根据研究目的和样品性质选择适合的方法进行测定。
无论是光度法、电泳法还是色谱法,都对多糖的含量测定提供了有力的工具,为多糖
的研究和应用提供了重要的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
me h d e e c mmo t o s i ee mia in o rmay sr cu e o oy a c a i e . T e a v n e t cu e d tr to sw r o n me h d n d tr n t fp o i r tu t r fp l s c h r s d h d a c d sr t r ee - u
多糖 ( o schr e) 又称 多 聚糖 ,是 由醛 Pl aca ds y i
多糖 的结构测定及应用
田华 ,张 义 明
( .贵州大学昆虫研究所 ,贵阳 502 ; .信 阳师范学院生命科学学院, 1 505 2 信 阳 44 0 ;3 贵州工 业 职业技 术学 院 ,贵 阳 500 ) 60 0 . 50 8
摘 要 :多糖是 由醛糖或酮糖通过脱水形成糖苷 键 ,并 以糖苷 键线性或 分枝连接 而成的链状 聚合物 。本
文就多糖 的初级结构和高级结构测定及应用做 了综 述 ,初级级结 构常用 的测定方法有 化学分析法 、仪 器分 析 法 、生物学分析法 ,高级结构常用 的测定方法有 x射线衍射法 ( R 、原子力显微镜法 ( F 、电子显 微 X D) A M) 镜 ( M) E 、扫描 隧道 显微 镜 ( T 、核磁共振 ( MR 、圆二色谱 ( D) 目前多糖在 医药 、食 品、动物 生 S M) N ) C 。 产 、烟草 、化妆 品、环境治理等领域应用广泛 。
关键词 :多糖 ;结构测定 ;初级结构 ;高级结构 ;应用 中图分类号 :T 2 2 1 S0 . 文献标 识码 :A 文章编号 :10 06—2 1 (0 2 0 0 7 0 5 3 2 1 )2— 17— 5
S r c u a e e mia i n o Oy a C a ie n t p l a i n tu t r l t r n t fp Is C h s a d i a p i t d o r d s c o
mi ai n me h d e e x—r y dfrc in, ao c f r e mir s o e, ee t n mir s o e, s a n n u n l g mir — n t t o sw r o a i at o t mi o c c o c p lcr c o c p o c n ig t n ei c o n s o e, n ce rma n t e o a c cp u la g ei rs n n e,c ru a ih o s , ec Cu r nl oy a c a i e y i ey u e n me ii e c i lr dc r im c t. re t p l s c h r s ae w d l s d i d c n , y d fo o d, a i l r d ci n,tb c o c s t sa d e vr n n a mp o e n . n ma p o u t o o a c , o mei n n i me t l c o i r v me t Ke r s:p ls c h rd s t c u a ee i ai n p i r t cu e a v n e t c u e a p ia in y wo d o y a c a i e ;sr t r d tr n t ; rmay sr t r ; d a c d sr t r ; p l t u l m o u u c o
TI AN Hua .. ZHANG g ,G i o n esy uyn 5 0 2 1 ntue f t oy uz uU i r t,G i g 5 0 5; i E mo h v i a
2. Co lg fLi ce c s, Xiy n r lUn v r i le e o f S i n e e n a g No ma i e st y, Xiy n 46 0 nag 40 0;
3 uzo n ut oy cncC l g ,G i n 5 0 0 ) .G i uId s yP l eh i o ee uy g 5 0 8 h r t l a
Ab t a t w e d s r K t s s d h d ae s r c : h n Al o e o eo e i e y r td, t e om lc sd c b n . T e h s lc sdc b n ie r o h y f r g y o ii o d h n t e e gy o i i o d l a r n b a c e ik tg t e o f r h i o y r . T e o e alp ma y s u t r a v n e tu tr n p l ain f r n h d l o eh rt o n m c an p l me s h v rl r r t cu e, d a c d sr cu e a d a p i t s o i r c o p l s e h r e e e d s u s d C e c n l ss meh d , i sr me tl a ay i o y a e a i s w r ic s e . h mia a ay i t o s n t d l u na n l ss meh d n ilg c l a ay i t o s a d b oo i a n lss