平面向量知识点总结(精华)

合集下载

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。

平面向量有两个重要的基本运算:向量的加法和数乘。

1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。

-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。

-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。

-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。

-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。

4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。

5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。

-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。

6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。

-方向角:向量与x轴的夹角称为它的方向角,用θ表示。

以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。

为了更好地理解和应用平面向量,需要进行大量的练习和实践。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

平面向量知识点总结第一部分:向量的概念与加减运算,向量与实数的积的运算。

一.向量的概念:1. 向量:向量是既有大小又有方向的量叫向量。

2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:AB 可表示为a3.模的概念:向量AB 的大小——长度称为向量的模。

记作:|AB | 模是可以比较大小的4.两个特殊的向量:1︒零向量——长度(模)为0的向量,记作0。

0的方向是任意的。

注意0与0的区别2︒单位向量——长度(模)为1个单位长度的向量叫做单位向量。

二.向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。

记作:a ∥b ∥c 规定:0与任一向量平行2. 相等向量:长度相等且方向相同的向量叫做相等向量。

记作:a =b 规定:0=0任两相等的非零向量都可用一有向线段表示,与起点无关。

3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。

三.向量的加法:1.定义:求两个向量的和的运算,叫做向量的加法。

注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则:强调: a bcAA ABB BC C a +ba +b aa b b ba a1︒“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点2︒可以推广到n 个向量连加 3︒a a a =+=+004︒不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则1︒向量加法的平行四边形法则(三角形法则): 2︒向量加法的交换律:a +b =b +a3︒向量加法的结合律:(a +b ) +c =a + (b +c )4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。

四.向量的减法:1.用“相反向量”定义向量的减法1︒“相反向量”的定义:与a 长度相同、方向相反的向量。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

第六章平面向量知识点总结

第六章平面向量知识点总结

第六章平面向量知识点总结一、平面向量的概念平面向量是指平面上具有大小和方向的量。

它是由起点和终点确定的有向线段。

在平面直角坐标系中,平面向量可以表示为一个有序数对(a, b),其中a表示横坐标的增量,b表示纵坐标的增量。

二、平面向量的表示1. 平面向量的概念平面向量是由两个向量确定的,即它的坐标是有序对(x, y)。

例如平面向量a=(1, 2),其中1表示横坐标的增量,2表示纵坐标的增量。

2. 平面向量的运算(1)平面向量的加法平面向量的加法是指将两个平面向量的对应坐标相加,即(a, b)+(c, d)=(a+c, b+d)。

(2)数乘对于平面向量a=(x, y)和实数k,数乘ka=(kx, ky)。

三、平面向量的运算平面向量的运算包括:平面向量的加法、数乘、模长和方向角。

1. 平面向量的加法设平面向量a=(x₁, y₁),b=(x₂, y₂),则a+b=(x₁+x₂, y₁+y₂)。

2. 数乘设平面向量a=(x, y),实数k,则ka=(kx, ky)。

3. 模长平面向量的模长表示向量的长度,它的计算公式是:|a| = √(x² + y²)。

4. 方向角平面向量的方向角表示向量与x轴的夹角。

它的计算公式是:θ = arctan(y/x)。

四、平面向量的线性运算1. 向量的共线如果平面向量a=λb,则a和b共线。

2. 向量的线性组合设有向量a、b,向量a' = λa,b' = μb,如果a' + b' = 0,那么向量a和b线性无关。

也就是说,向量a和向量b不是平行的,且不是共线的。

3. 平面向量线性运算的性质(1)结合律(a+b)+c=a+(b+c)(2)交换律a+b=b+a(3)数乘结合律k(la)=(kl)a五、平面向量的坐标位置关系1. 向量的平行平面向量a和b平行的充要条件是a=λb。

2. 向量的垂直平面向量a和b垂直的充要条件是a·b=0。

平面向量知识点归纳总结

平面向量知识点归纳总结

平面向量知识点归纳总结平面向量是数学中的一个重要概念,它在几何、物理、工程等领域中具有广泛的应用。

本文将对平面向量的定义、运算、性质和常见应用进行归纳总结。

一、平面向量的定义平面向量是具有大小和方向的量,用箭头表示。

一个平面向量由起点和终点确定,可以用有序对表示。

例如,向量AB表示从点A指向点B的有向线段,记作AB。

二、向量的表示方法1. 坐标表示:平面向量可以用坐标表示,一个平面上的向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的分量。

2. 线段表示:向量的起点和终点可以表示为两个点的坐标,向量本身可以表示为连接这两个点的线段。

三、向量的运算1. 加法运算:向量的加法运算满足平行四边形法则。

设有向量A和B,它们的和记作A + B,可以通过将A的终点与B的起点相连,得到一条新的有向线段,该线段的起点为A的起点,终点为B的终点。

新的线段即为向量A + B。

2. 数乘运算:向量的数乘运算满足分配律和结合律。

设有向量A和实数k,它们的数乘记作kA,向量kA的长度是向量A长度的k倍,方向与A相同(当k>0时)或相反(当k<0时)。

3. 减法运算:向量的减法可以通过将减数取负后与被减数进行加法运算得到。

即A - B = A + (-B)。

4. 零向量:零向量是长度为0的向量,记作0。

任何向量与零向量相加等于该向量本身。

四、向量的性质1. 平移不变性:向量在平面上进行平移操作时,大小和方向保持不变。

2. 相等性:两个向量相等,当且仅当它们的起点和终点重合。

3. 平行性:两个向量平行,当且仅当它们的方向相同或相反。

4. 共线性:三个或三个以上的向量共线,当且仅当它们在同一条直线上或平行于同一条直线。

5. 长度:向量的长度可以利用勾股定理计算得到,即向量AB的长度为√(x2 - x1)² + (y2 - y1)²。

6. 单位向量:长度为1的向量称为单位向量。

五、向量的应用1. 向量的分解:一个向量可以被分解成x轴和y轴上的两个分量。

平面向量知识点归纳总结图

平面向量知识点归纳总结图

平面向量知识点归纳总结图一、平面向量的定义1.1 平面向量的概念在平面上任意选定一个起点和一个终点之间的有序对称就称为平面向量,记作。

平面向量可以用有向线段来表示,有向线段的起点就是平面向量的起点,终点就是平面向量的终点。

1.2 平面向量的表示平面向量可以用坐标表示,设平面向量的起点为原点O,终点为点A(x, y),则平面向量记作。

1.3 平面向量的相等两个平面向量相等指的是它们的模相等,并且方向相同,即两个平面向量相等当且仅当。

二、平面向量的运算2.1 平面向量的加法设和,平面向量+的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。

2.2 平面向量的减法设,平面向量-的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。

2.3 数乘设,数的积是一个新的平面向量,其长度是向量的倍数,方向与向量相同。

三、平面向量的运算性质3.1 交换律3.2 结合律3.3 分配律四、平面向量的应用4.1 平面向量的线段设线段的两个端点分别为A(x1, y1)和B(x2, y2),则向量的终点减去起点的坐标差即为该线段的平面向量表示。

4.2 平面向量的位置关系(1) 共线若向量平行,则它们共线。

(2) 垂直若,则它们垂直。

4.3 平面向量的运动学应用若一个物体在平面内的任意两点A、B之间作平移运动,其位矢向量表示。

五、平面向量的数量积5.1 定义设,,则积。

5.2 计算(1)坐标法(2)数量积的几何意义5.3 性质(1)交换律(2)结合律(3)分配律5.4 应用(1)判断共线若,则共线。

(2)判断垂直若,则垂直。

(3)夹角公式若,则夹角α的余弦值是的数量积。

六、平面向量的叉乘6.1 定义设,把数视为数乘6.2 计算6.3 性质6.4 应用七、平面向量的混合积7.1 定义设、,则混合积7.2 计算7.3 性质7.4 应用八、几何向量8.1 平面向量的模8.2 单位向量8.3 平行四边形法则8.4 平面向量的夹角公式8.5 平面向量的坐标表示8.6 平面向量的位置关系总结平面向量是高中数学中的一个重要概念,它不仅有着丰富的几何意义,还具有广泛的物理意义。

平面向量知识点归纳总结

平面向量知识点归纳总结

平面向量是指在平面上具有大小和方向的量。

下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。

●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。

2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。

3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。

●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。

4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。

●向量的减法:a - b = (a₁- b₁, a₂- b₂)。

●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。

5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。

●计算公式为a ·b = a₁* b₁+ a₂* b₂。

●点积满足交换律:a ·b = b ·a。

●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。

6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。

●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。

●矢量积满足反交换律:a ×b = - (b ×a)。

●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。

7.平行向量和共线向量:●平行向量指方向相同或相反的向量。

●共线向量指在同一直线上的向量。

●如果两个向量平行,则它们的叉积为零。

8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。

●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳1、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0 的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式: a b a b a b⑷运算性质:①交换律:a ;②结合律:(a b c a b c ③aCaBbAa b C -AB=B C⑸坐标运算:设a =x y ),b =(x , y ),则a +b =x +x , y +y ).1 2 1 21 12 23、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设a x y ),b =(x , y ),则a b x -x , y -y ).1 12 2 1 2 1 2μ) a a aa b a be b = λa .设A 、B 两点的坐标分别为( x , y ) , ( x , y ) ,则 - x , y - y ).4、向量数乘运算:1122212⑴实数λ 与向量 a 的积是一个向量的运算叫做向量的数乘,记作 λa ① λaa②当λ > 0 时, λa 的方向与a 的方向相同;当λ < 0 时, λa 的方向与a 反;当λ = 0时, λa⑵运算律:① λ (μa a⑶坐标运算:设 ax y , 则λax y ) = (λx ,λ y ) .5、向量共线定理:向量 a a b 共线,当且仅当有唯一一个实数λ ,使设a = x y ), b = ( x , y ) ,其中b ≠ 0 ,则当且仅当 x y - x y= 0 时,向量 a11 2 2 1 22 1b (b ≠ 0 )共线.6、平面向量基本定理:如果e 1 、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ 、λ ,使 a = e + λ e .(不共12 1 1 2 2线的向量 、 12作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段P P 上的一点, P 、P 的坐标分别是(x , y ) ,1 2⎛ x + λ x 121 1y + λ y ⎫( x , y ) ,当P P = λPP 时,点P 的坐标是 1 2 , 1 + λ λ 2 ⎪ . 2 2 1 2⎝ 1 1+ ⎭ 8、平面向量的数量积: ⑴ a ba ba b 0 ≤ θ ≤ 180 .零向量与任一向量的数量积为 0 .⑵性质:设 ab是非零向量,则① a b a b②当 ab向时,⑷坐标运算:设两个非零向量 a = x y ),b = ( x , y ) ,则a ⋅b = x x + y y . 11221 21 2AB = ( x 1a b a b a b向时, a ba b a ⋅ a = a = a a = a ⋅aa ⋅b ≤ a b⑶运算律:① a b b a λa ⋅ b = λ a ⋅ b = a ⋅ λb(a + b ⋅ c = a ⋅c + b ⋅ ce若a x y ,则a x y2 ,或a x y2 .设a =x y ),b =(x , y ),则a b x x +y y = 0 .1 12 2 1 2 1 2设a 是非零向量,a x y ),b =(x , y ),θ是a 与b 的夹角,则cosθ=1 12 2.aa bx +y y2 1 2x2 +y2 x2 +y21 12 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么?提示:向量可以平移。

举例 1 已知,,则把向量按向量平移后得到的向量是_____。

结果:2。

零向量:长度为0的向量叫零向量,记作:,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);4。

相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5。

平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定:零向量和任何向量平行。

注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线。

6.相反向量:长度相等方向相反的向量叫做相反向量.的相反向量记作。

举例2 如下列命题:(1)若,则.(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若,则是平行四边形。

(4)若是平行四边形,则。

(5)若,,则.(6)若,则。

其中正确的是。

结果:(4)(5)二、向量的表示方法1。

几何表示:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如,,等;3。

坐标表示:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理设同一平面内的一组基底向量,是该平面内任一向量,则存在唯一实数对,使.(1)定理核心:;(2)从左向右看,是对向量的分解,且表达式唯一;反之,是对向量的合成。

(3)向量的正交分解:当时,就说为对向量的正交分解.举例3 (1)若,,,则. 结果:。

(2)下列向量组中,能作为平面内所有向量基底的是 BA。

, B。

, C。

, D.,(3)已知分别是的边,上的中线,且,,则可用向量表示为。

结果:.(4)已知中,点在边上,且,,则的值是. 结果:0。

四、实数与向量的积实数与向量的积是一个向量,记作,它的长度和方向规定如下:(1)模:;(2)方向:当时,的方向与的方向相同,当时,的方向与的方向相反,当时,,注意:。

五、平面向量的数量积1。

两个向量的夹角:对于非零向量,,作,,则把称为向量,的夹角。

当时,,同向;当时,,反向;当时,,垂直。

2.平面向量的数量积:如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)中,,,,则_________. 结果:.(2)已知,,,,与的夹角为,则 ____。

结果:1.(3)已知,,,则____。

结果:。

(4)已知是两个非零向量,且,则与的夹角为____。

结果:.3.向量在向量上的投影:,它是一个实数,但不一定大于0.举例5 已知,,且,则向量在向量上的投影为______。

结果:.4.的几何意义:数量积等于的模与在上的投影的积.5.向量数量积的性质:设两个非零向量,,其夹角为,则:(1);(2)当、同向时,,特别地,;是、同向的充要分条件;当、反向时,,是、反向的充要分条件;当为锐角时,,且、不同向,是为锐角的必要不充分条件;当为钝角时,,且、不反向;是为钝角的必要不充分条件.(3)非零向量,夹角的计算公式:;④。

举例6 (1)已知,,如果与的夹角为锐角,则的取值范围是______. 结果:或且;(2)已知的面积为,且,若,则,夹角的取值范围是_________。

结果:;(3)已知,,且满足(其中)。

①用表示;②求的最小值,并求此时与的夹角的大小. 结果:①;②最小值为,。

六、向量的运算1。

几何运算(1)向量加法运算法则:①平行四边形法则;②三角形法则。

运算形式:若,,则向量叫做与的和,即;作图:略。

注:平行四边形法则只适用于不共线的向量.(2)向量的减法运算法则:三角形法则。

运算形式:若,,则,即由减向量的终点指向被减向量的终点。

作图:略。

注:减向量与被减向量的起点相同。

举例7 (1)化简:①;②;③. 结果:①;②;③;(2)若正方形的边长为1,,,,则。

结果:;(3)若是所在平面内一点,且满足,则的形状为. 结果:直角三角形;(4)若为的边的中点,所在平面内有一点,满足,设,则的值为。

结果:2;(5)若点是的外心,且,则的内角为. 结果:.2。

坐标运算:设,,则(1)向量的加减法运算:,。

举例8 (1)已知点,,,若,则当____时,点在第一、三象限的角平分线上。

结果:;(2)已知,,且,,则。

结果:或;(3)已知作用在点的三个力,,,则合力的终点坐标是。

结果:。

(2)实数与向量的积:.(3)若,,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

举例9 设,,且,,则的坐标分别是__________。

结果:.(4)平面向量数量积:。

举例10 已知向量,,。

(1)若,求向量、的夹角;(2)若,函数的最大值为,求的值.结果:(1);(2)或.(5)向量的模:.举例11 已知均为单位向量,它们的夹角为,那么=. 结果:.(6)两点间的距离:若,,则.举例12 如图,在平面斜坐标系中,的斜坐标是这样定义的:位向量,则点斜坐标为.(1)若点的斜坐标为,求到的距离;(2)求以为圆心,1为半径的圆在斜坐标系中的方程。

结果:(1)2;(2).七、向量的运算律1。

交换律:,,;2.结合律:,,;3。

分配律:,,.举例13 给出下列命题:①;②;③;④若,则或;⑤若则;⑥;⑦;⑧;⑨.其中正确的是。

结果:①⑥⑨。

说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即,为什么?八、向量平行(共线)的充要条件.举例14 (1)若向量,,当_____时,与共线且方向相同。

结果:2.(2)已知,,,,且,则. 结果:4。

(3)设,,,则 _____时,共线. 结果:或11.九、向量垂直的充要条件.特别地.举例15 (1)已知,,若,则。

结果:;(2)以原点和为两个顶点作等腰直角三角形,,则点的坐标是。

结果:(1,3)或(3,-1));(3)已知向量,且,则的坐标是.结果:或.十、线段的定比分点1.定义:设点是直线上异于、的任意一点,若存在一个实数,使,则实数叫做点分有向线段所成的比,点叫做有向线段的以定比为的定比分点.2.的符号与分点的位置之间的关系(1)内分线段,即点在线段上;(2)外分线段时,①点在线段的延长线上,②点在线段的反向延长线上。

注:若点分有向线段所成的比为,则点分有向线段所成的比为。

举例16若点分所成的比为,则分所成的比为. 结果:.3。

线段的定比分点坐标公式:设,,点分有向线段所成的比为,则定比分点坐标公式为。

特别地,当时,就得到线段的中点坐标公式说明:(1)在使用定比分点的坐标公式时,应明确,、的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比.举例17(1)若,,且,则点的坐标为。

结果:;(2)已知,,直线与线段交于,且,则。

结果:2或.十一、平移公式如果点按向量平移至,则;曲线按向量平移得曲线.说明:(1)函数按向量平移与平常“左加右减"有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量把平移到,则按向量把点平移到点______. 结果:;(2)函数的图象按向量平移后,所得函数的解析式是,则________。

结果:。

十二、向量中一些常用的结论1。

一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2。

模的性质:.(1)右边等号成立条件:同向或中有;(2)左边等号成立条件:反向或中有;(3)当不共线.3.三角形重心公式在中,若,,,则其重心的坐标为。

举例19 若的三边的中点分别为、、,则的重心的坐标为.结果:.5.三角形“三心”的向量表示(1)为△的重心,特别地为△的重心。

(2)为△的垂心.(3)为△的内心;向量所在直线过△的内心.6。

点分有向线段所成的比向量形式设点分有向线段所成的比为,若为平面内的任一点,则,特别地为有向线段的中点.7。

向量中三终点共线存在实数,使得且.举例20 平面直角坐标系中,为坐标原点,已知两点,,若点满足,其中且,则点的轨迹是. 结果:直线.。

相关文档
最新文档