2014年全国高考文科数学试题及答案-重庆卷

合集下载

2014学年高考文科数学年重庆卷

2014学年高考文科数学年重庆卷

重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B .【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义,OA OB =43AB OC =242=3π.所以22ax a ,由①得a 只能等于【考点】一次函数图象与坐标轴的交点、解不等式组、三角形的面积计算等,DC BC =62210BC CE BE ⨯=CF BE ⊥︒,OCF ∴∠+∠又OBM ∠+BM CF =等腰R MF【解析】解:AD BC ⊥tan 4BAD ∠=,12AD =9BD ∴=CD BC ∴=2(1)(x 1)x x -+-1111x +-+补图如下:(2)用1A ,2A 表示餐饮企业,1B ,2B 表示非餐饮企业,画树状图如下:10%)150(19-24.【答案】证明:如图) BAC ∠=12∴∠=∠,AB AC =,∴∠B FCA ∠=∠ABF ∴△BE CF ∴=(2)①过E 45B ∠=AD BC ⊥2BM ED =⊥②AD BC∠=∠15=MC MC78∴∠=∠,∠=BAC∴∠=ACB∴∠=∠57∠=ADE【解析】【考点】全等三角形的判定和性质、等腰直角三角形的性质、角乎分线的性质等1AM ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =2222543BE AB AE ∴=-=-=若点Q 在线段BD 的延长线上时,如图1,34∠=∠'A Q A ∴=在Rt BF ∆若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'5F Q ∴='1A ∠=∠设QB QA =在Rt BF ∆③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠253DQ ∴=11 / 11。

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的3.(5分)(2014•河南)设z=+i,则|z|=().C D4.(5分)(2014•河南)已知双曲线﹣=1(a>0)的离心率为2,则a=()C D5.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论6.(5分)(2014•河南)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=().C D.7.(5分)(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周8.(5分)(2014•河南)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()9.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=().C D.10.(5分)(2014•河南)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,x0=()11.(5分)(2014•河南)设x,y满足约束条件,且z=x+ay的最小值为7,则a=()12.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围二、填空题:本大题共4小题,每小题5分13.(5分)(2014•河南)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_________.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是_________.16.(5分)(2014•河南)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°,以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=_________m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2014•河南)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)(2014•河南)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)(2014•河南)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)(2014•河南)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分,作答时清写清题号。

【高考试题】2014年高考文科数学试题 (新课标Ⅰ卷) ★答案

【高考试题】2014年高考文科数学试题  (新课标Ⅰ卷) ★答案

【高考试题】2014年高考文科数学试题 (新课标Ⅰ卷) ★答案2014年普通高等学校招生全国统一考试数学文科(新课标Ⅰ卷)一、 选择题:本大题共12小题,每小题5分, 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={x|-1<x<3},N ={x|-2<x<1},则M ∩N 等于( )A. (-2,1)B. (-1,1)C. (1,3)D. (-2,3) 2. 若tan α>0,则( ) A. sin α>0 B. cos α>0 C. sin 2α>0 D. cos 2α>03. 设复数z =11+i +i(i 为虚数单位),则|z|等于( )A. 12B. 22C. 32D. 2 4. 已知双曲线x 2a 2-y 23=1(a>0)的离心率为2,则 a 等于( )A. 2B.62 C. 52D. 1 5. 设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A. f(x)g(x)是偶函数B. |f(x)|g(x)是奇函数C. f(x)|g(x)|是奇函数D. |f(x)g(x)|是奇函数6. 设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A. AD → B. 12AD → C. BC →D. 12BC →7. 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A. ①②③B. ①③④C. ②④D. ①③8. 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱(第8题)9. 执行如图所示的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M 等于( ) A. 203 B. 72 C. 165 D. 158(第9题)10. 已知抛物线C :y 2=x 的焦点为F ,A(x 0,y 0)是C 上一点,AF =54x 0,则x 0等于( )A. 1B. 2C. 4D. 811. 设x ,y 满足约束条件⎩⎨⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则实数a 等于( )A. -5B. 3C. -5或3D. 5或-312. 已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A. (2,+∞)B. (1,+∞)C. (-∞,-2)D. (-∞,-1)二、 填空题:本大题共4小题,每小题5分.13. 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14. 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.15. 设函数f(x)=⎩⎪⎨⎪⎧e x -1,x<1,x 13,x ≥1,则使得f(x)≤2成立的x 的取值范围是________.16. 如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从点A 测得点M 的仰角∠MAN =60°,点C 的仰角∠CAB =45°以及∠MAC =75°,从点C 测得∠MCA =60°.已知山高BC =100m ,则山高MN =________m.(第16题)三、 解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1) 求数列{a n }的通项公式;(2) 求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.18. (本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(第18题)(2) 估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3) 根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19. (本小题满分12分)如图,在三棱柱ABC-A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C.(1) 求证:B 1C ⊥AB ;(2) 若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC-A 1B 1C 1的高.(第19题)20. (本小题满分12分)已知点P(2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1) 求M 的轨迹方程;(2) 当OP =OM 时,求l 的方程及△POM 的面积.21. (本小题满分12分)设函数f(x)=aln x +1-a 2x 2-bx(a ≠1),曲线y =f(x)在点(1,f(1))处的切线斜率为0.(1) 求b ;(2) 若存在x 0≥1,使得f(x 0)<aa -1,求实数a 的取值范围. 请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分. 22. (本小题满分10分)选修41:几何证明选讲如图,四边形ABCD 是圆O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE.(1) 求证:∠D =∠E ;(2) 设AD 不是圆O 的直径,AD 的中点为M ,且MB =MC ,求证:△ADE 为等边三角形.(第22题)23. (本小题满分10分)选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1) 写出曲线C 的参数方程与直线l 的普通方程;(2) 过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.24. (本小题满分10分)选修45:不等式选讲若a>0,b>0,且1a +1b=ab.(1) 求a 3+b 3的最小值;(2) 是否存在a ,b ,使得2a +3b =6?并说明理由.2014年普通高等学校招生全国统一考试 数学文科(新课标Ⅰ卷)1. B 【解析】借助数轴可得M ∩N =(-1,1),故选B.2. C 【解析】由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 2α=2sin αcos α>0,故选C.3. B 【解析】11+i +i =1-i (1+i )·(1-i )+i =1-i 2+i =12+12i ,则|z|=⎝⎛⎭⎫122+⎝⎛⎭⎫122=22,故选B. 4. D 【解析】因为双曲线的方程为x 2a 2-y 23=1,所以e 2=a 2+3a2=4,因此a 2=1,a =1,故选D.5. C 【解析】因为f(x)为奇函数,g(x)为偶函数,故f(x)g(x)为奇函数,|f(x)|g(x)为偶函数,f(x)|g(x)|为奇函数,|f(x)g(x)|为偶函数,故选C.6. A 【解析】EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A.7. A 【解析】①y =cos|2x|的最小正周期为π;②y =|cos x|的最小正周期为π;③y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π;④y =tan(2x -π4)的最小正周期为π2,故选A.8. B 【解析】由题意知,该几何体的三视图为一个三角形和两个四边形,经分析可知该几何体为三棱柱,故选B.9. D 【解析】第一次循环:M =32,a =2,b =32,n =2;第二次循环:M =83,a =32,b=83,n =3;第三次循环:M =158,a =83,b =158,n =4,则输出M =158,故选D. 10. A 【解析】由题意知抛物线的准线方程为x =-14.因为AF =54x 0,根据抛物线的定义可得x 0+14=AF =54x 0,解得x 0=1,故选A.11. B 【解析】当a ≥1时,联立方程组⎩⎨⎧x +y =a ,x -y =-1,解得⎩⎨⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或a =-5(舍去).当a <1时,不符合条件,故选B.12. C 【解析】由题意知f′(x)=3ax 2-6x =3x(ax -2),当a =0时,不满足题意.当a ≠0时,令f′(x)=0,解得x =0或x =2a.当a>0时,f(x)在(-∞,0),⎝⎛⎭⎫2a ,+∞上单调递增,在⎝⎛⎭⎫0,2a。

2014年高考(大纲全国卷)数学(文科) 详细答案解析

2014年高考(大纲全国卷)数学(文科) 详细答案解析

2014年普通高等学校招生全国统一考试(大纲全国卷)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为().A.2B.3C.5D.7【答案】B【解析】∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},∴M∩N中元素的个数为3,故选B.2.已知角α的终边经过点(-4,3),则cosα=().A.45B.35C.- 35D.- 45【答案】D【解析】设角α的终边上点(-4,3)到原点O的距离为r,则r=√(-4)2+32=5,∴由余弦函数的定义,得cosα=xr =-45,故选D.3.不等式组{x(x+2)>0,|x|<1的解集为().A.{x|-2<x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1} 【答案】C【解析】{x(x+2)>0,①|x|<1,②由①得,x<-2或x>0,由②得,-1<x<1,因此原不等式组的解集为{x|0<x<1},故选C.4.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为().A.16B.√36C.13D.√33【答案】B【解析】如图所示,取AD的中点F,连EF,CF,则EF∥BD, ∴异面直线CE与BD所成的角即为CE与EF所成的角∠CEF.由题知,△ABC ,△ADC 为正三角形,设AB=2,则CE=CF=√3,EF=12BD=1.∴在△CEF 中,由余弦定理, 得cos ∠CEF=CE 2+EF 2-CF 22CE·EF=√3)22√3)22×√3×1=√36,故选B .5.函数y=ln(√x 3+1)(x>-1)的反函数是( ). A .y=(1-e x )3(x>-1) B .y=(e x -1)3(x>-1) C .y=(1-e x )3(x ∈R ) D .y=(e x -1)3(x ∈R ) 【答案】D【解析】由y=ln(√x 3+1),得e y =√x 3+1,∴√x 3=e y -1,x=(e y -1)3,∴f -1(x )=(e x -1)3. ∵x>-1,∴y ∈R ,即反函数的定义域为R . ∴反函数为y=(e x -1)3(x ∈R ),故选D .6.已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =( ). A .-1 B .0 C .1 D .2 【答案】B【解析】由已知得|a |=|b |=1,<a ,b >=60°,∴(2a -b )·b =2a ·b -b 2=2|a ||b |cos <a ,b >-|b |2 =2×1×1×cos 60°-12=0,故选B .7.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种 【答案】C【解析】从6名男医生中选出2名有C 62种选法,从5名女医生中选出1名有C 51种选法,故共有C 62·C 51=6×52×1×5=75种选法,选C .8.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ). A .31 B .32 C .63 D .64 【答案】C【解析】∵S 2=3,S 4=15,∴由等比数列前n 项和的性质,得S 2,S 4-S 2,S 6-S 4成等比数列, ∴(S 4-S 2)2=S 2(S 6-S 4),即(15-3)2=3(S 6-15),解得S 6=63,故选C .9.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4√3,则C 的方程为( ). A .x 23+y 22=1 B .x 23+y 2=1 C .x 212+y 28=1 D .x 212+y 24=1【答案】A 【解析】∵x 2a2+y 2b2=1(a>b>0)的离心率为√33, ∴ca =√33,∴a ∶b ∶c=3∶√6∶√3.又∵过F 2的直线l 交椭圆于A ,B 两点, △AF 1B 的周长为4√3, ∴4a=4√3,∴a=√3. ∴b=√2,∴椭圆方程为x 23+y 22=1,选A .10.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ). A .81π4B .16πC .9πD .27π4【答案】A【解析】由图知,R 2=(4-R )2+2,∴R 2=16-8R+R 2+2,∴R=94,∴S 表=4πR 2=4π×8116=814π,选A .11.双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为√3,则C 的焦距等于( ).A .2B .2√2C .4D .4√2 【答案】C【解析】∵e=2,∴ca =2.设焦点F 2(c ,0)到渐近线y=ba x 的距离为√3, 渐近线方程为bx-ay=0,∴√b 2+a 2=√3.∵c 2=a 2+b 2,∴b=√3. 由ca =2,得√c 2-b 2=2,∴c 2c 2-3=4,解得c=2.∴焦距2c=4,故选C .12.奇函数f (x )的定义域为R .若f (x+2)为偶函数,且f (1)=1,则f (8)+f (9)=( ). A .-2 B .-1 C .0 D .1 【答案】D【解析】∵奇函数f (x )的定义域为R ,∴f (-x )=-f (x ),且f (0)=0.∵f (x+2)为偶函数,∴f (-x+2)=f (x+2).∴f [(x+2)+2]=f (-x-2+2)=f (-x )=-f (x ),即f (x+4)=-f (x ). ∴f (x+8)=f [(x+4)+4]=-f (x+4)=-(-f (x ))=f (x ). ∴f (x )是以8为周期的周期函数,∴f (8)=f (0)=0,f (9)=f (8+1)=f (1)=1. ∴f (8)+f (9)=0+1=1.故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(x-2)6的展开式中x 3的系数为 .(用数字作答) 【答案】-160【解析】由通项公式得T 4=C 63x 6-3(-2)3=-8C 63x 3,故展开式中x 3的系数为-8C 63=-8×6×5×43×2×1=-160.14.函数y=cos 2x+2sin x 的最大值为 . 【答案】32【解析】∵y=cos 2x+2sin x=1-2sin 2x+2sin x=-2(sinx -12)2+32,∴当sin x=12时,y max =32.15.设x ,y 满足约束条件{x -y ≥0,x +2y ≤3,x -2y ≤1,则z=x+4y 的最大值为 .【答案】5【解析】画出x , y 的可行域如图阴影区域.由z=x+4y ,得y= - 14x+z4.先画出直线y=-14x ,再平移直线y=-14x , 当经过点B (1,1)时,z=x+4y 取得最大值为5.16.直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 . 【答案】43【解析】如图所示,设l 1与圆O :x 2+y 2=2相切于点B ,l 2与圆O :x 2+y 2=2相切于点C , 则OB=√2,OA=√10,AB=2√2. ∴tan α=OB AB=√22√2=12.∴tan ∠BAC=tan 2α=2tanα1−tan 2α=2×121−14=43.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2. (1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.分析:本题主要考查等差数列的概念、通项公式以及累加法求数列通项公式.(1)可用定义证明b n+1-b n =2(常数)即可.(2)利用(1)的结果,求出{b n }的通项公式及a n+1-a n 的表达式,再用累加法可求数列{a n }的通项公式.(1)证明:由a n+2=2a n+1-a n +2得a n+2-a n+1=a n+1-a n +2, 即b n+1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)解:由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是∑k=1n(a k+1-a k )=∑k=1n(2k-1),所以a n+1-a 1=n 2,即a n+1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n+2.18.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos C=2c cos A , tan A=13,求B.分析:先由已知及正弦定理,将边的关系转化为角的关系,再由同角三角函数基本关系化弦为切,求出tan C.根据三角形内角和定理及两角和的正切公式求出tan B ,即可求角B. 解:由题设和正弦定理得3sin A cos C=2sin C cos A.故3tan A cos C=2sin C ,因为tan A=13,所以cos C=2sin C ,tan C=12. 所以tan B=tan[180°- (A+C )]= - tan(A+C ) =tanA+tanC tanAtanC -1=-1,即B=135°.19.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC 1=2. (1)证明:AC 1⊥A 1B ;(2)设直线AA 1与平面BCC 1B 1的距离为√3,求二面角A 1-AB-C 的大小.分析:解法一:(1)由已知可证平面AA 1C 1C ⊥平面ABC ,再由面面垂直证线面垂直,利用三垂线定理即得线线垂直.(2)为利用已知,先寻找并证明AA 1与平面BCC 1B 1的距离为A 1E.再由三垂线定理,确定二面角A 1-AB-C 的平面角为∠A 1FD.最后通过解直角三角形求出∠A 1FD 的正切值,即可得出二面角的大小.解法二:建立空间直角坐标系,利用向量知识求解.(1)设出A 1点坐标,确定点及向量坐标,利用数量积为0,证明线线垂直. (2)设法向量,由已知垂直关系,确定坐标.利用向量夹角公式求二面角大小.解法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC. 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C.连结A 1C.因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C. 由三垂线定理得AC 1⊥A 1B.(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. 又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,A 1E=√3. 因为A 1C 为∠ACC 1的平分线,故A 1D=A 1E=√3.作DF ⊥AB ,F 为垂足,连结A 1F.由三垂线定理得A 1F ⊥AB , 故∠A 1FD 为二面角A 1-AB-C 的平面角.由AD=√AA 12-A 1D 2=1得D 为AC 中点,DF=12×AC×BC AB=√55,tan ∠A 1FD=A 1DDF =√15.所以二面角A 1-AB-C 的大小为arctan √15.解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-xyz. 由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)证明:设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0),B (0,1,0), 则AB ⃗⃗⃗⃗⃗ =(-2,1,0),AC ⃗⃗⃗⃗⃗ =(-2,0,0),AA 1⃗⃗⃗⃗⃗⃗⃗ =(a-2,0,c ), AC 1⃗⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =(a-4,0,c ),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,-1,c ). 由|AA 1⃗⃗⃗⃗⃗⃗⃗ |=2得√(a -2)2+c 2=2, 即a 2-4a+c 2=0.①于是AC 1⃗⃗⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 2-4a+c 2=0,所以AC 1⊥A 1B.(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB ⃗⃗⃗⃗⃗ ,m ⊥BB 1⃗⃗⃗⃗⃗⃗⃗ , 即m ·CB ⃗⃗⃗⃗⃗ =0,m ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0.因CB ⃗⃗⃗⃗⃗ =(0,1,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ =(a-2,0,c ), 故y=0,且(a-2)x+cz=0.令x=c ,则z=2-a ,m =(c ,0,2-a ),点A 到平面BCC 1B 1的距离为 |CA ⃗⃗⃗⃗⃗ |·|cos <m ,CA⃗⃗⃗⃗⃗ >|=|CA ⃗⃗⃗⃗⃗·m||m|=√c 2+(2−a)2= c.又依题设,A 到平面BCC 1B 1的距离为√3,所以c=√3. 代入①解得a=3(舍去)或a=1.于是AA 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3). 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⊥AB ⃗⃗⃗⃗⃗ ,即n ·AA 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AB ⃗⃗⃗⃗⃗ =0, -p+√3r=0,且-2p+q=0.令p=√3,则q=2√3,r=1,n =(√3,2√3,1). 又p =(0,0,1)为平面ABC 的法向量, 故cos <n ,p >=n·p |n||p|=14.所以二面角A 1-AB-C 的大小为arccos 14.20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.分析:(1)先用字母表示各事件,再由互斥与独立事件的概率可求.(2)由(1)分析k 的可能取值情况,比较即得结果.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备,E 表示事件:同一工作日4人需使用设备,F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·C ,P (B )=0.6,P (C )=0.4,P (A i )=C 2i×0.52,i=0,1,2,所以P (D )=P (A 1·B ·C+A 2·B+A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C ) =0.31.(2)由(1)知,若k=2,则P (F )=0.31>0.1. 又E=B ·C ·A 2,P (E )=P (B ·C ·A 2)=P (B )P (C )P (A 2)=0.06. 若k=3,则P (F )=0.06<0.1. 所以k 的最小值为3.21.(本小题满分12分)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.分析:(1)由于导函数的判别式含参数a ,因此要根据导数值的正负判断单调性,需对a 进行分类讨论.当判别式为正时,导函数有两根,为比较两根的大小,需对a 进行二重讨论.(2)根据f (x )在(1,2)上是增函数可列出关于a 的不等式,注意对a>0或a<0进行讨论. 解:(1)f'(x )=3ax 2+6x+3,f'(x )=0的判别式Δ=36(1-a ).①若a ≥1,则f'(x )≥0,且f'(x )=0当且仅当a=1,x=-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a<1时,f'(x )=0有两个根: x 1=-1+√1−aa,x 2=-1-√1−aa.若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f'(x )>0, 故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数; 当x ∈(x 2,x 1)时f'(x )<0,故f (x )在(x 2,x 1)是减函数; 若a<0,则当x ∈(-∞,x 1)或(x 2,+∞)时f'(x )<0, 故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数; 当x ∈(x 1,x 2)时f'(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a>0,x>0时,f'(x )=3ax 2+6x+3>0,故当a>0时,f (x )在区间(1,2)是增函数. 当a<0时,f (x )在区间(1,2)是增函数当且仅当f'(1)≥0且f'(2)≥0,解得 - 54≤ a<0.综上,a 的取值范围是[-54,0)∪(0,+∞).22.(本小题满分12分)已知抛物线C :y 2=2px (p>0)的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l'与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.分析:(1)设出Q 点坐标,利用|QF|=54|PQ|列出关于p 的方程,借助于p 的几何意义及抛物线的性质确定p.(2)通过题设分析判断直线l 与x 轴不垂直.因直线l 过F (1,0),可设l 的方程为x=my+1(m ≠0).直线l 方程与抛物线方程联立,利用韦达定理得到y 1+y 2,y 1y 2关于m 的表达式,借助弦长公式得|AB|=√m 2+1|y 1-y 2|(其中A (x 1,y 1),B (x 2,y 2)),同理可得|MN|=√1+1m |y 3-y 4|(其中M (x 3,y 3),N (x 4,y 4)).由题目中的A ,M ,B ,N 四点在同一圆上得到关于m 的方程,进而求出m ,得到直线l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p .所以|PQ|=8p ,|QF|=p2+x 0=p2+8p . 由题设得 p2+8p=54×8p,解得p=-2(舍去)或p=2. 所以C 的方程为y 2=4x. (2)依题意知l 与坐标轴不垂直, 故可设l 的方程为x=my+1(m ≠0). 代入y 2=4x 得y 2-4my-4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ), |AB|=2+1|y 1-y 2|=4(m 2+1).又l'的斜率为-m ,所以l'的方程为x=-1m y+2m 2+3. 将上式代入y 2=4x ,并整理得y 2+4m y-4(2m 2+3)=0. 设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3). 故MN 的中点为E (2m 2+2m 2+3,−2m ), |MN|=√1+1m 2|y 3-y 4|=4(m 2+1)√2m 2+1m .由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|, 从而14|AB|2+|DE|2=14|MN|2,即4(m 2+1)2+(2m +2m )2+(2m 2+2)2=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.。

2014年全国高考新课标卷Ⅱ(文科)答案及考点分析

2014年全国高考新课标卷Ⅱ(文科)答案及考点分析

2014年普通高等学校招生全国统一考试(新课标II )文科数学参考答案一、选择题(1)B [解析] B=﹛-1,2﹜,故A B=﹛2﹜(2)B [解析]131i i +=-221+3)(1)1334221(1)(1)12i i i i i i i i i i ++++-===--+-( (3)C [解析]若3(),(0)00()f x x f x f x '===有,但不是的极值点(4)A [解析]224()()4=1a b a b a b a b ⋅=+--=⋅,故 (5)A [解析]224281113)()(7)a a a a d a d a d =⋅+=++由得( ,所以2111(6)(2)(14)a a a +=++ ,解得12a =21(1)2n n n s na d n n -∴=+=+ (6)C [解析] 该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+π×22×4=34π(cm 3),原毛坯的体积为π×32×6=54π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故所求的比值为20π54π=1027.(7)C [解析]111112331332B DC V S h ∆=⋅=⨯⨯⨯⨯= (8)D [解析]逐次计算,可得M =2,S =5,k =2;M =2,S =7,k =3,此时输出S =7. (9)B [解析] 已知不等式组表示的平面区域是一个由(0,1),(1,0),(3,2)为三顶点组成的三角形,2z x y =+过点(3,2)时,z 最大,最大值为7 (10)C[解析]23333(,0),()434y x F AB x =-的焦点所在的直线方程为:y=2233303394()34y x y y y x =⎧⎪--=⎨=-⎪⎩由得 ,由弦长公式得 2291(3)(33)4()124AB =+⋅-⨯-=(11)D [解析] 1()01+f x k x '=->∞在(,)上恒成立, 11+k x>∞所以在(,)上恒成立,1k ≥所以(12)A[解析] 在△OMN 中,OM =1+x 20≥1=ON ,所以设∠ONM =α,则45°≤α<135°.根据正弦定理得1+x 20sin α=1sin 45°,所以1+x 20=2sin α∈[1,2],所以0≤x 20≤1,即-1≤x 0≤1, 故符合条件的x 0的取值范围为[-1,1].二、填空题 (13)31[解析]甲乙各选一种运动服共有9种选法,两人选相同颜色有3种选法(14)1 [解析] ()sin()2sin cos f x x x ϕϕ=+-⋅=sin cos cos sin 2sin cos x x x ϕϕϕ⋅+⋅-⋅ =sin cos cos sin x x ϕϕ⋅-⋅ =sin()1x ϕ-≤(15)3 [解析] 因为偶函数()f x 的图像关于直线x =2对称,(1)(1)(21)(21)3f f f f -==-=+=所以(16)21[解析] 21121a a ==-三、解答题 (17)解:(I)由题意及余弦定理,2222cos 1312cos BD BC CD BC CD C C =+-⋅=- ① 2222cos 54cos BD AB DA AB DA A C =+-⋅=+ ②由①,②得 21=C cos ,故7600==BD ,C (II )四边形ABCD 的面积 11sin sin 22S AB DA A BC CD C =⋅+⋅ 3260232121210=⨯⨯+⨯⨯=sin )( (18) 解:(I )设BD 交AC 于点O ,连结EO 。

2014年全国高考文科数学试题及答案-新课标1

2014年全国高考文科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试数学(文科含答案) 1.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21 B. 22 C. 23 D. 2 (4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. ADB.AD 21 C. BC 21D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158(10) 已知抛物线C :x y =2的焦点为F ,()y x A,是C 上一点,xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A .-5 B. 3 C .-5或3 D. 5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2014年全国I卷文科数学高考试卷(原卷 答案)

2014年全国I卷文科数学高考试卷(原卷 答案)

绝密★启用前2014年普通高等学校招生全国统一考试(全国I 卷)(适用地区:河南、河北、山西)文科数学本试卷共24题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( )A. )1,2(−B. )1,1(−C. )3,1(D. )3,2(−(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21 B. 22 C. 23 D. 2 (4)已知双曲线)0(13222>=−a y a x 的离心率为2,则=aA. 2B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC D. BC 21(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π−=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158(10)已知抛物线C :x y =2的焦点为F,A(x 0,y 0)是C 上一点,x F A 045=,则x 0=( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨−≤−⎩且z x ay =+的最小值为7,则a =A .-5 B. 3C .-5或3 D. 5或-3(12)已知函数32()31f x ax x =−+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2−∞−D.(),1−∞−第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_ _. (14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为____ ____.(15)设函数()113,1,,1,x e x f x x x −⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__ _____.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =_ ___m .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x −+=的根。

2014年全国高考数学卷文科卷1试题及答案解析

2014年全国高考数学卷文科卷1试题及答案解析

2014年全国高考数学卷文科卷1学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释)1.已知集合{}{}|13,|21M x x N x x =-<<=-<<,则MN =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- 2.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 3.设i iz ++=11,则=||z A. 21 B.22 C.23D. 2 4.已知双曲线)0(13222>=-a y a x 的离心率为2,则=aA. 2B.26C.25D. 1 5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数 6.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B.AD 21 C. BC 21 D. BC7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 00,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 811.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-二、填空题(题型注释) 12.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-313.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________. 15.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .三、解答题(题型注释)17.已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年重庆高考数学试题(文) 一、选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个选项中,只有一项是符合题目要求的、 1、 实部为-2,虚部为1 的复数所对应的点位于复平面的( ) .A 第一象限 .B第二象限

.C 第三象限 .D第四象限

2、 在等差数列{}na中,1352,10aaa,则7a( ) .5A .8B .10C .14D 3、 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) .100A .150B .200C .250C 4、 下列函数为偶函数的是( )

.()1Afxx 3.()Bfxxx

.()22xxCfx .()22xxDfx 5、 执行如题(5)图所示的程序框图,则输出,的值为 .10A .17B .19C .36C 6、已知命题 :p对任意xR,总有||0x;

:"1"qx是方程"20"x的根

则下列命题为真命题的是( ) .Apq .Bpq .Cpq .Dpq 7. 某几何体的三视图如图所示,则该几何体的体积为( ) A、12 B、18 C、24 D、30 8. 设12FF,分别为双曲线22221(0,0)xyabab的左、右焦点,双曲线上存在一点P使得2212(||||)3,PFPFbab则该双曲线的离心率为( )

A、2 B、15 C、4 D、17 9. 若42log34log,ababab()则的最小值是( )

A、326 B、327 C、346 D、347

10. 已知函数13,(1,0](),()()1,1]1,(0,1]xfxgxfxmxmxxx且在(内有且仅有两个不同的零点,则实数m的取值范围是( ) A、]21,0(]2,49( B、]21,0(]2,411( C、]32,0(]2,49( D、]32,0(]2,411( 二、填空题 11、已知集合{1,2,3,5,8},{1,3,5,8,13},ABAB则______、 12、已知向量60(2,6),||10,ababab与的夹角为,且则_________、 13. 将函数sin022fxx,图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6的单位长度得到sinyx的图像,则6f______、 14. 已知直线0xya与圆心为C的圆222440xyxy相交于,AB两点,且ACBC,则实数a的值为_________、

15. 某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答) 三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、 16. (本小题满分13分、(I)小问6分,(II)小问5分)

已知na是首相为1,公差为2的等差数列,nS表示na的前n项和、 (I)求na及nS; (II)设nb是首相为2的等比数列,公比q满足24410qaqS,求nb的通 项公式及其前n项和nT、 17. (本小题满分13分、(I)小问4分,(II)小问4分,(III)小问5分) 20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:

(I)求频数直方图中a的值; (II)分别球出成绩落在6050,与7060,中的学生人数; (III)从成绩在7050,的学生中人选2人,求次2人的成绩都在7060,中的概率、 18、(本小题满分12分) 在ABC中,内角,,ABC所对的边分别为,,abc,且8abc

(1)若52,2ab,求cosC的值; (2)若22sincossincos2sin22BAABC,且ABC的面积9sin2SC,求a 和b的值、 19、(本小题满分12分) 已知函数3()ln42xafxxx,其中Ra,且曲线()yfx在点(1,(1))f处的切线垂直于12yx

(1)求a的值; (2)求函数()fx的单调区间和极值.

20.(本小题满分12分,(1)问4分,(2)问8分) 如题(20)图,四棱锥PABCD中,底面是以O为中心的菱形,PO底面ABCD,

2,3ABBAD,M为BC上一点,且12BM、

(1)证明:BC平面POM; (2)若MPAP,求四棱锥PABMO的体积、

21、 如题(21)图,设椭圆22221(0)xyabab的左右焦点分别为12,FF,点D在椭圆上,112DFFF,121

||22||FF

DF,12DFF的面积为22、 (1)求该椭圆的标准方程; (2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由、 参考答案 一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1、B 2、B 3、A 4、D 5、C 6、A 7、C 8、D 9、D 10、A 二、填空题:本题考查基本知识和基本运算.每小题5分,满分25分.

11、 {3,5,13} 12、 10 13、22 14、 0或6 15、932 三、解答题:满分74分. 16、(本题13分) 解:(Ⅰ)∵{}na是首项11a,公差2d的等差数列, ∴1(1)21naandn 故21()(121)13...(21)22nnnaannSnn (Ⅱ)由(Ⅰ)得,447,16aS,因为244(1)0qaqS,即28160qq, 所以2(4)0q,从而4q 又因12,{}nbb是公比4q的等比数列,所以 11211242nnnnbbq

从而{}nb的前n项和1(1)2(41)13nnnbqTq 17、(本题13分) 解:(Ⅰ)据直方图知组距=10,由 (23672)101aaaaa,解得10.005200a

(Ⅱ)成绩落在[50,60)中的学生人数为2×0、005×10×20=2, 成绩落在[60,70)中的学生人数为3×0、005×10×20=3. (Ⅲ)记成绩落在[50,60)中的2人为12,AA,成绩落在[60,70)中的3人为123,,BBB,则成绩在[50,70)的学生任选2人的基本事件共有10个: 12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)AAABABABABABABBBBBBB 其中2人的成绩都在[60,70)中的基本事件有3个: 121323(,),(,),(,)BBBBBB,

故所求概率为310p 18、(本题13分) 解:(Ⅰ)由题意可知:78()2cab

由余弦定理得:222222572()()122cos525222abcCab (Ⅱ)由22sincossincos2sin22BAABC可得: 1cos1cossinsin2sin22BAABC,

化简得sinsincossinsincos4sinAABBBAC 因为sincoscossinsin()sinABABABC,所以sinsin3sinABC 由正弦定理可知:3abc,又因8abc,故6ab 由于19sinsin22SabCC,所以9ab,从而2690aa,解得3,3ab 19、(本题12分) 解:(Ⅰ)对()fx求导得211()4afxxx, 由()fx在点(1,(1))f处的切线垂直于直线12yx知3(1)24fa, 解得54a (Ⅱ)由(Ⅰ)知53()ln442xfxxx,

则2245()4xxfxx, 令()0fx,解得1x或5x 因1x不在()fx的定义域(0,)内,故舍去. 当(0,5)x时,()0fx,故()fx在(0,5)内为减函数; 当(5,)x时,()0fx,故()fx在(5,)内为增函数; 由此知函数()fx在5x时取得极小值(5)ln5f 20、(本题12分) (Ⅰ)证明:如图所示,因ABCD为菱形,O为菱形中心,连结OB,则AOOB, 因3BAD, 故sin2sin16OBABOAB 又因12BM,且3OBM,在OBM中, 2222cosOMOBBMOBBMOBM

221131()21cos2234

所以222OBOMBM,故OMBM 又PO底面ABCD,所以POBC,从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC平面POM (Ⅱ)解:由(Ⅰ)可得,cos2cos36OAABOAB 设POa,由PO底面ABCD知,POA为直角三角形,故 22223PAPOOAa

由POM也是直角三角形,故222234PMPOOMa 连结AM,在ABM中,2222cosAMABBMABBMABM 22112212()22cos2234

由已知MPAP,故APM为直角三角形,则 222PAPMAM

,即22321344aa,

相关文档
最新文档