太阳能光伏发电系统原理与应用技术习题答案

太阳能光伏发电系统原理与应用技术习题答案

热斑效应:在一定条件下,一串联支路中被遮蔽的太阳能电池组件将被当做负载消耗其他被光照的太阳能电池组件所产生的部分能量或所有能量,被遮挡的太阳能电池组件此时将会发热,这就是热板效应。

热斑效应的防护:串联回路,需要在太阳能电池组件的正负极间并联一个旁路二极管Db,以避免串联回路中光照组件所产生的能量被遮蔽的组件所消耗。并联支路,需要串联一只防反二极管Ds ,以避免并联回路中光照组件所产生的能量被遮蔽的组件所吸收,串联二极管在独立光伏发电系统中可同时起到防止蓄电池在夜间反充电的功能。

太阳高度角:太阳中心直射到地面的光线与当地水平面间夹角(h),表示太阳的高度。

太阳方位角:太阳光线在地平面上的投影与当地子午线正南方的夹角,向西为正,向东为负,变化范围180;它表示太阳的方位,决定太阳光的入射方向。

大气质量m:太阳光线通过大气的实际距离与大气的垂直厚度之比,它是一个无量纲的量,用m表示。

峰值日照时数:是指将当地的太阳辐射量,折算成标准测试条件(辐照度1000W/m2)下的时数。

p-n结:n型半导体和p型半导体紧密接触,在交界处n区中电子浓度高,要向p区扩散,在n区一侧就形成一个正电荷的区域;同样,p区中空穴浓度高,要向n区扩散,p区一侧就形

成一个负电荷的区域。这个n区和p区交界面两侧的正、负电荷薄层区域称为“空间电荷区”,即p-n结。

光伏效应:p-n结及两边产生的光生载流子就被内建电场所分离,在p区聚集光生空穴,在n区聚集光生电子,使p 区带正电,n区带负电,在p-n结两边产生光生电动势。上述过程通常称作光生伏特效应或光伏效应。

开路电压:受光照的太阳电池处于开路状态,光生载流子只能积累于p-n结两侧产生光生电动势,这时在太阳电池两端测得的电势差叫做开路电压

短路电流:把太阳电池从外部短路测得的最大电流,称为短路电流,用符号Isc表示。

填充因子(FF):表征太阳电池性能优劣的一个重要参数,它是最大输出功率与开路电压和短路电流乘积之比:

太阳电池的结构;太阳电池是由p-n结构成的其上表面有栅线形状的上电极,背面为背电极,在太阳电池表面通常还镀有一层减反射膜(增加光的吸收率)。

测试条件;光谱辐照度1000W/m2 ;大气质量为AM1.5时的光谱分布;电池温度25℃。在该条件下,太阳电池(组件)输出的最大功率称为峰值功率。

最大功率点跟踪型控制器的原理是将太阳能电池方阵的电压和电流检测后相乘得到的功率,判断太阳能电池方阵此时的输出功率是否达到最大,若不在最大功率点运行,则调整脉冲宽度、调制输出占空比、改变充电电流,再次进行实时采样,并做出是否改变占空比的判断。

最大功率跟踪型控制器的作用:通过直流变换电路和寻优跟踪控制程序,无论太阳辐照度、温度和负载特性如何变化,始终使太阳能电池方阵工作在最大功率点附近,充分发挥太阳能电池方阵的效能,这种方法被称为“最大功率点跟踪”,即MPPT (Maximum Power Point Tracking)。同时,采用PWM调制方式,使充电电流成为脉冲电流,以减少蓄电池的极化,提高充电效率。

最大功率跟踪型方法:干扰观测法,原理:每隔一定的时间增加或者减少电压,并观测其后的功率变化方向,来决定下一步的控制信号。优点:①模块化控制回路;②跟踪方法简单,实现容易;③对传感器精度要求不高。缺点:①响应速度很慢,只适用于那些光照强度变化非常缓慢的场合。②稳态情况下,这种算法会导致光伏阵列的实际工作点在最大功率点附近小幅振荡,只能在光伏阵列最大功率点附近振荡运行,导致一定功率损失。③跟踪步长对跟踪精度和响应速度无法兼顾。光照发生快速变化时,跟踪算法可能会失效,判断得到错误的跟踪方向。电导增量法:优点:电导增量法控制精确,响应速度比较快,适用于大气条件变化较快的场合。缺点:对硬件的要求特别是传感器的精度要求比较高,系统各个部分响应速度都要求比较快,因而整个系统的硬件造价也会比较高。

铅酸蓄电池的工作原理:铅酸蓄电池由两组极板插入稀硫酸溶液中构成。电极在完成充电后,正极板为二氧化铅,负极板为海绵状铅。放电后,在两极板上都产生细小而松软的硫酸铅,充电后又恢复为原来物质。

放电过程:PbO2 + 2H2SO4 + Pb →PbSO4+2H2O+PbSO4

充电过程:PbO2 + 2H2SO4 + Pb ←PbSO4+2H2O+PbSO4

总反应:PbO2+2H2SO4+Pb ≒2PbSO4+2H2O

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

太阳能光伏发电原理与应用实验报告资料

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

光伏发电技术及应用专业课程

公共必修课 思想道德修养及法律基础、毛泽东思想、邓小平理论和“三个代表”重要思想概论、大学英语、大学体育、计算机文化基础、大学语文、军事理论、大学生就业与创业指导、沐浴经典、红色江西、形势政策 专业基础课 高等数学、大学物理、光伏技术概论、电工电子学、半导体物理器件、太阳电池材料、光伏设备概论 专业课 专业技能课 工程计价与计量、工程制图、AutoCAD 专业必修课 太阳电池原理与工艺、太阳能发电技术、光伏建筑电气控制技术、光伏系统设计与施工、供配电系统、光伏建筑工程 专业任选课 高级语言程序设计、工业计算机控制技术、新能源发电技术、专业英语 集中实践教学 太阳能发电技术课程设计、光伏系统设计与施工课程设计、光伏建筑工程课程设计、军事训练、入学教育、岗位实训、毕业设计(论文) 主干课程 (1)《太阳电池原理与工艺》 课程简介:本课程主要讲授光生伏打效应机理、p-n结、太阳电池的工作原理、制造工艺、测试和应用等方面的技术,使学生对太阳电池器件的原理及工艺有较为系统的掌握。 (2)《太阳能发电技术》 课程简介:本课程主要讲授太阳能光伏发电工作原理、内容包括太阳能电池组件的特性、结构及种类,功率调节器的工作原理、功能、电路构成及种类、选择方法、相关设备及部件,太阳能光伏发电系统设计与施工、维护检查与测量,熟悉太阳能光伏发电系统的法律法规及并网系统技术要求准则。 (3)《光伏系统设计与施工》 课程简介:主要介绍光伏系统的构成及设计原理和规则,阐述光伏系统的施工技术和方法。使学生初步掌握光伏系统的设计方法,了解光伏系统的施工步骤,为学生将来独立参与光伏系统的设计和施工打下基础。 (4)《光伏建筑电气控制技术》 课程简介:本课程主要结合光伏发电讲授建筑配电系统常用的电器元件、继电器、接触器控制的基本控制电路、建筑电气控制技术的设计、建筑中常用的电气设备的控制原理、可编程控制器的基本工作原理及其在光伏建筑中的应用等方面知识。 (5)《太阳电池材料》 课程简介:介绍太阳能及光电转换的基本原理、太阳电池的基本结构和工艺,着重从材料制备和性能的角度出发,阐述常用的太阳能光电材料的基本制备原理、制备技术以及材料结构组成对太阳电池的影响。 (6)《工程计价与计量》 课程简介:本课程主要介绍太阳发电建设项目在决策、设计、招投标、实施、竣工验收等阶段的计价方法,使学生初步掌握工程计价与计量专业技能,扩展学生的工程经济知识与相关能力。

太阳能发电过程与原理

太阳能发电过程与原理 太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。 1太阳能发电原理 太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。1.1太阳能电源系统 太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。 ⑴电池单元 由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当

葵"式控制器,将固定电池组件的效率提高了50%左右。 1.3DC-AC逆变器 逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流 电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照 明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。 1.4发电系统反充二极管 太阳能光伏发电系统的防反充二极管又称阻塞二极管,在太阳电池组件中其作用是避免由于太阳电池方阵在阴雨和夜晚不发电或出现短路故障时,擂电池组通过太阳电池方阵放电。防反充二极管串联在太阳电池方阵电路中,起单向导通作用。因此它必须保证回路中有最大电流,而且要承受最大反向电压的冲击。一般可选用合适的整流二极管作为防反充二极管。一块板的话可以不用任何二极管,因为控制器本来就可防反冲。板子串联的话,需要安装旁路二极管,如果是并联的话就要装个防反冲二极管,防止板子直接冲电。防反充二极管只是保护作用,不会影响发电效果。 2效率 在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、

太阳能光伏技术的运用与进展

太阳能光伏技术的运用与进展1太阳能光伏发电技术的应用方式 1.1太阳能照明系统 “光环境”是指光与颜色建立的生理和心理环境,它对人的精神状态和心理感受具有积极影响。“绿色照明”是指“节约能源、保护环境、促进效率、改善质量、有益身心”的照明光环境,太阳能照明即属于绿色照明。太阳能照明系统由太阳能电池板、蓄电池、充放电控制器、逆变器和节能灯具、灯杆等组成。建筑领域的太阳能灯主要有路灯、草坪灯、庭园灯、楼道灯等。太阳能灯的控制器除了要具备一般光伏系统的防反充、防过充和过放、防短路和反接等功能以外,还要具有自动开关照明灯的功能。通常使用定时和光控两种方式对太阳能灯的工作时间进行控制。定时控制可采用模拟线路或单片机控制两种方法,根据实际需要,事先设定路灯每天晚上的工作时间,调整电子或者机械计时器的接通或断开时刻,到时路灯便可以自动开或关。另一种控制方式是光控,可以单独安装光敏器件,也可以利用太阳能电池本身作为光敏器件,即在周围环境暗到一定程度(照度低于某一设定值)时自动开灯,一直到天亮(照度高于某一设定值)时再自动关灯。 1.2太阳能、LED光源的结合

应用太阳能给传统的灯具光源供电并不十分经济。随着固体物理和半导体技术的发展,人类开发出了第四代光源——固体光源LED(第一代为白炽灯,第二代为荧光灯,第三代为气体放电灯)。太阳能发电与LED照明的结合立即成为一大亮点,迅速吸引了人们的目光。固体光源——LED具有功耗低、寿命长(1.0×105h)、光效高(目前为5080lm/W,今后可达100120lm/W)、反应速度快(可在高频下使用,可任意控制其功耗和亮度,而不影响其寿命)、直流低压工作安全可靠(24V、12V、4.8V,免逆变器)、环保(耐震、耐冲击、不易破、废弃物可回收、没有污染)、可平面封装、易开发成轻薄短小产品等优点;没有白炽灯泡高耗电、易碎以及日光灯废弃物含汞污染等缺点;兼备照明、装饰功效,是被业界看好在未来10年内,成为替代传统照明器具的一大潜力产品。 1.3太阳能水泵 太阳能水泵一般不需要蓄电池,而由太阳能电池板直接带动水泵工作。大型光伏水泵站通常备有逆变器,首先将太阳能电池板的直流电变为交流电,然后用交流电机带动水泵工作,这样可以与常规供电互补。虽然太阳能光伏水泵系统一次性投资较高,但它的运行费用低、维修少,使用寿命比较长,通常来说比小型柴油机抽水更合算。特别是对于太阳辐射强的干旱地区,发展光伏水泵具有良好的前景。

太阳能发电原理

太阳能发电原理 1、原理概述 太阳能光伏发电系统是利用太阳能电池板将太阳能转换成电能的一种可再生清洁发电机制。当光线照射到太阳能电池表面时,一部分光子被太阳电池板反射掉,另一部分光子被硅材料吸收,光子的能量传递给硅原子,使电子发生越迁,成为自由电子在P-N结两侧集聚形成电位差。当外部接通电路时,在该电压的作用下,则会有直流电流流过外部电路产生一定的输出功率。 通常每块太阳能电池组件输出的直流电压较低,一般为35V。为了提高电压,达到逆变器最佳工作状态的额定输入直流电压,将一定数量的太阳能电池串联到一起形成回路,然后接入逆变器中,逆变器将输入的直流电转换成交流电。逆变后得到的交流电通过站内的升压变压器升至指定电压后并入电网。 图1 太阳能发电系统原理 2、系统部件 2.1 太阳电池 在太阳能光伏发电系统中,太阳能电池板占据着举足轻重的地位,它是将太阳能转换成电能核心部件。太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的,这种光电转换过程通常叫做“光生伏打效应”,因此太阳能电池又称为“光伏电池”。用于制造太阳能电池的半导体材料是一种介于导体和绝缘体之间的特殊物质,和任何物质的原子一样,半导体的原子也是由带

正电的原子核和带负电的电子组成,半导体硅原子的外层有4个电子,按固定轨道围绕原子核转动。当受到外来能量的作用时,这些电子就会脱离轨道而成为自由电子,并在原来的位置上留下一个“空穴”,在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体中掺入硼、镓等元素,由于这些元素能够俘获电子,它就成了空穴型半导体,通常用符号P表示;如果掺入能够释放电子的磷、砷等元素,它就成了电子型半导体,以符号N代表。若把这两种半导体结合,交界面便形成一个P-N结。太阳能电池的核心技术就在这个“结”上,P -N结就像一堵墙,阻碍着电子和空穴的移动。当太阳能电池受到阳光照射时,电子接受光子的能量,向N型区移动,使N型区带负电,同时空穴向P型区移动,使P型区带正电。这样,在P-N结两端便产生了电动势,也就是通常所说的电压。如果分别在P型层和N型层焊上金属导线,接通负载,则外电路便有电流通过,如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 图2 太阳能电池结构 目前,制作太阳能电池的原料有单晶硅、多晶硅、非晶硅等。由于生产能力的不断提高和和科学技术的不断进步,单晶硅以其较高的转化率,高稳定性,低衰减率,成为各太阳电池生产企业重点研发的项目。单晶硅太阳电池的生产工艺一般分五个流程完成:提纯过程拉棒过程切片过程制电池过程封

太阳能电池历史、原理、分类

太阳能电池历史、原理、分类 引言 太阳能作为一种巨量可再生能源,是人类取之不尽、用之不竭的可再生能源,是地球上最直接最普遍也是最清洁的能源。将太阳能转换为电能是大规模利用太阳能的重要技术基础,其转换途径很多,有光电直接转换,有光热电间接转换等。但利用太阳能电池进行光电直接转换是运用最为广泛的方式。 历史: 太阳能电池发展历史可以追溯到1 8 3 9 年,当时的法国物理学家Alexander-Edmond Becquerel发现了光伏特效应(P h o t o v o l t a i ceffect )。直到1883 年,第一个硒制太阳能电池才由美国科学家Charles Fritts 所制造出来。在1930年代,硒制电池及氧化铜电池已经被应用在一些对光线敏感的仪器上,例如光度计及照相机的曝光针上。 而现代化的硅制太阳能电池则直到1946 年由一个半导体研究学者Russell Ohl 开发出来。接着在1954年,科学家将硅制太阳能电池的转化效率提高到6% 左右。随后,太阳能电池应用于人造卫星。1973年能源危机之后,人类开始将太阳能电池转向民用。最早应用于计算器和手表等。1974 年,Haynos 等人,利用硅的非等方性(a n i s o t r o p i c)的蚀刻(etching)特性,慢慢的将太阳能电池表面的硅结晶面,蚀刻出许多类似金字塔的特殊几何形状。有效降低太阳光从电池表面反射损失,这使得当时的太阳能电池能源转换效率达到17%。 1976年以后,如何降低太阳能电池成本成为业内关心的重点。1990年以后,电池成本降低使得太阳能电池进入民间发电领域,太阳能电池开始应用于并网发电。 世界太阳能电池发展的主要节点: 1839年法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。 1876年亚当斯等在金属和硒片上发现固态光伏效应。 1883年制成第一个“硒光电池”,用作敏感器件。 1930年肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。 1931年布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。1932年奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。 1941年奥尔在硅上发现光伏效应。 1954年恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳电池,效率为6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。 1955年吉尼和罗非斯基进行材料的光电转换效率优化设计。同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。 1957年硅太阳电池效率达8%。 1958年太阳电池首次在空间应用,装备美国先锋1号卫星电源。 1959年第一个多晶硅太阳电池问世,效率达5%。 1960年硅太阳电池首次实现并网运行。 1962年砷化镓太阳电池光电转换效率达13%。 1969年薄膜硫化镉太阳电池效率达8%。 1972年罗非斯基研制出紫光电池,效率达16%。 1972年美国宇航公司背场电池问世。 1973年砷化镓太阳电池效率达15%。

光伏技术的应用论文

序言 太阳能光伏技术是利用半导体材料的光电效应将太阳能直接转化为电能的一种技术形式,是太阳能利用的一种重要形式。光伏发电技术近年来发展很快,成本持续下降。据EPIA、Greenpeace和德意志银行的预测,到2015年左右,光伏发电就可以做到每度电15美分,达到“平价上网”,即与常规发电成本相一致。届时,光伏发电的市场将会迅速增长 太阳光伏发电优势明显,具体表现为以下几点:体积小、重量轻,单位重量比功率为50-1000W/kg;寿命长:20-50年(工作25年,效率下降20%);零排放:无燃料消耗,无噪声,无污染;发电不用水(高倍聚光电池也如此),可在荒漠地区建设;运行可靠,无机械转动部件,使用安全,免维护,无人值守;太阳能资源永不枯竭(至少50亿年),各地区差异不大,可实现分布式电站;生产资料丰富,硅材料储量丰富,为地壳上除氧之外的丰度排列第二,达到26%之多;不单独占地:可以安装到建筑上;规模大小皆宜,可为10W-100GW,可以“搭积木”式建设和安装;安装容易,建设周期短,安装成本低;能量回收期短,只有0.8-3.0年,能量增值效应明显,达8-30倍;规律性强,可预测,调峰效果明显,调度比风力发电容易;降价潜力大。 因此,太阳光伏发电具有最广阔的发展前景,是各国最着力发展的可再生能源技术之一。欧洲联合研究中心(JRC)对光伏发电的未来发展作出如下预测:2020年世界太阳能发电的发电量占世界总能源需求的1%,2050年占到20%,2100年则将超过50%。 最近国外的研究报告指出,几年内我国将成为温室气体量排放最多的国家。世界银行估计,2020年我国由于空气污染造成的环境和健康损失将达到GDP总量的13%。为此,我国政府积极努力,承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%-45%。根据我国可再生能源中长期发展规划给出的数据,看出我国未来的能源和电力来源将是太阳能。 我国太阳电池的研究开发始于1958年,1971年就成功地将自主研发的太阳电池首次应用于我国发射的东方红二号卫星上,于1973年开始将太阳电池用于地面。自1981年开始,太阳电池及其应用开始列入国家的科技攻关计划,通过“六五”(1981-1985年)到“十一五”(2006-2010年)六个五年计划,在太阳电池器件和应用技术方面取得了可喜的成绩;2000年以后国家科技部又启动了国家“863”计划和“973”计划,分别对光伏发电的产业化技术和基础性研究给予支持。

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能光伏发电原理与应用

第一章绪论 能源是现代社会存在和发展的基石。随着全球经济社会的不断发展,能源消费也相应的持续增长。随着时间的推移,化石能源的稀缺性越来越突显,且这种稀缺性也逐渐在能源商品的价格上反应出来。在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。 太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿命和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。我们对太阳能的利用大致可以分为光热转换和光电转换两种方式,其中,光电利用(光伏发电)是近些年来发展最快,也是最具经济潜力的能源开发领域。太阳能电池是光伏发电系统中的关键部分,包括硅系太阳电池(单晶硅、多晶硅、非晶硅电池)和非硅系太阳能电池等。在晶体硅太阳能电池的产业链上分布着晶硅制备、硅片生产、电池制造、组件封装四个环节。 光伏发电系统主要由太阳能电池、蓄电池、控制器和逆变器构成。光伏发电系统可分为独立太阳能光伏发电系统和并网太阳能光伏发电系统:独立太阳能光伏发电是指太阳能光伏发电不与电网连接的发电方式,典型特征为需要蓄电池来存储能量,在民用范围内主要用于边远的乡村,如家庭系统、村级太阳能光伏电站;在工业范围内主要用于电讯、卫星广播电视、太阳能水泵,在具备风力发电和小水电的地区还可以组成混合发电系统等。并网太阳能光伏发电是指太阳能光伏发电连接到国家电网的发电的方式,成为电网的补充。 在各国政府的扶持下,世界太阳能电池产量快速增长,1995-2005年间,全球太阳能电池产量增长了17倍。我们预计,2010年全球太阳能电池的年产量有望较2005年的年产量增长6.3倍,整个行业的销售收入有望增长3.5倍。 我国太阳能资源非常丰富,开发利用的潜力非常大。我国太阳能发电产业的应用空间也非常广阔,可以应用于并网发电、与建材结合、解决边远地区用电困难问题等。我国政府对太阳能发电产业也给予了充分的扶持,先后出台了一系列法律、政策,有力的支持了产业的发展。

光伏发电技术应用及推广

光伏发电技术应用及推广 发表时间:2018-04-28T16:18:48.547Z 来源:《电力设备》2017年第33期作者:张昱 [导读] 摘要:近十几年来,为了满足我国不断发展的经济需要,大大提升了资源的利用率,致使可以使用的资源越来越少。 (国网河北省电力有限公司魏县供电分公司河北邯郸 056800) 摘要:近十几年来,为了满足我国不断发展的经济需要,大大提升了资源的利用率,致使可以使用的资源越来越少。生态环境问题已经引起国际社会的重视,中国作为一个负责人的大国,必须起模范带头作用,主动保护生态环境,维护现有的不可再生资源,节能减排实现人与自然的和谐发展。电力是消耗资源的大行业,其产业结构给煤炭资源带来不小的压力,为了满足人们日趋增加的用电需求,寻找新能源发电亟不可待。科技的不断进步,使人们发现太阳能资源能够发电,利用光伏发电技术减少环境污染、节省资源、满足人们的用电需求。基于此,本文对光伏发电技术的应用及推广进行了研究,希望笔者的研究能为相关工作人员提供理论帮助,为我国现代化电力事业的发展贡献自己的绵薄之力。 关键词:光伏发电技术应用推广 一、光伏发电技术的概念及原理 光伏发电技术的简易定义是将太阳能直接转换为电能的技术,它是利用半导体界面的光生伏特效应实现太阳能向电能的转化,想要充分利用这种技术必须先发展太阳能电池,太阳能电池是一种很关键的元部件,将其进行串联后实现封装保护能塑造大型的太阳能电池组件,然后再加上其他的控制器就组成了一个完整的光伏发电装置。当太阳光照射到太阳能电池组件上,组件能产生物理反应,电池的正负两极电子运转后形成电压,促进电能的产生。这是一种清洁环保的能源,该技术被发现之后,迅速被广泛使用,它不受地域限制,并且装置系统可靠,没有噪音亦不需要消耗燃料,同时建设周期不会很长,可以说优点非常多,所以受到了人们的青睐。 二、光伏发电技术的特点 (一)太阳能资源比较广泛 太阳能是实现光伏发电技术的必要条件,它是一种可再生资源,相对于人的寿命而言,太阳每天都会按时‘工作’,因此太阳能资源具有无限性和广泛性。基本上太阳能每天都会照射到光伏发电的太阳能电池组件上。随着科研人员的不断研发,太阳能电池组件对光源的捕捉越来越敏感,对太阳能的收集能力越来越强。尽管我国国土辽阔,经纬度跨度较大,但是由于太阳与地球的空间关系良好,使得我国每一块土地都能感受到阳光的沐浴,所以太阳能资源能够非常广泛的使用。 (二)太阳能资源属于清洁型能源 就目前的研究来看,太阳能属于用于发电的最清洁能源之一,以前我们通常使用煤炭和天热气作为发电的基础资源,但是这两者用于发电技术都有大小不一的环境破坏力,尤其是煤炭技术。煤炭在燃烧过程中不仅会产生热量,还会产生硫化物等有害气体,对空气质量带来损伤。上述我们简短的阐述了太阳能发电的工作原理,从太阳能向电能的转化过程上看,其对环境的影响较小,且回报率高,属于目前公认的清洁无污染能源。 三、我国发展光伏发电技术的必要性 (一)我国国情需要 虽然我国的国土辽阔,地大物博,但是我国的人口众多,近几年为了提高经济水平,大力发展工业,对国内现有的资源不断利用,从而造成我国资源越来越少的状况。根据世界排行来看,我国虽然资源总量多,但是人均资源非常少,在世界排行中属于落后的态势。其次,我国能源能源利用技术发展的还不够完善,也就是说目前我国对现有资源的开采和利用还不能实现最大化,能源使用效率不算高,一定程度上造成资源的浪费,进而导致生态环境的恶化。有关数据显示,我国局部地区大气污染严重,甚至大气中能达到百分之八十多的二氧化硫,这与煤炭的燃烧是分不开的。并且煤炭和天然气有不可再生的性质,开发太阳能资源能缓解资源的压力,还能解决环境破坏的问题,可以说是一箭双雕。 (二)提高电力资源供应的稳定性 由于我国人口总数较大,传统的火力发电要想满足每个人的用电需求,必须要对国家现有的煤炭石油进行开采,必要时还要向国外进口,我国经济发展速度越快,对进口资源的依赖就越高,如果不依靠进口就得减少人均用电的供应,造成不稳定性。太阳能发电具有稳定性,假设国家电网出现故障,太阳能发电利用光伏直接满足用户的用电需求,上述中也说到太阳能具有广泛性,基本不会出现断电情况。(三)缩小与其他国家的差距 我国现阶段仍然是发展中国家,科技研发起步晚,人才培养系统不完善,相较于西方国家对太阳能光伏发电技术的掌握还不全面。不过中国人具有钻研精神,对太阳能资源的开发利用会进一步深入研究,利用太阳能发电只是实现太阳能资源利用的分支,笔者相信经过不断努力,未来肯定会有较大的光伏发电技术研究成果,提高光伏发电的技术含量,抢占市场竞争优势。 四、我国光伏发电存在的问题 (一)硅材料不足 单晶硅是实现光能转化电能的重要基础,要想制作太阳能电池,需要大量的硅资源,但是它的制作成本很高,要想以它为建设光伏发电技术的基础材料还比较难实现,不能进行大规模的推广使用。稍微便宜一点的多晶硅也需要很多硅原料作为实施基础,由于前几年我国工业化的需要,造成硅资源的短缺。要想缓解这一状况,政府必须鼓励发展硅事业,实行政策倾斜,帮助光伏发电技术的成长。(二)太阳能光电转化率低 单晶硅的是制作太阳能电池最好的原料,因为它能最大化的实现太阳能向电能的转化,一般科研实验中,采用单晶硅能达到百分之二十多的转化率,不过实际使用中转化率低一些,大概有百分之十七八左右。多晶硅也能作为太阳能电池的原料使用,但是它的转化性能比较差,实际应用大约只有百分之十二三左右的转化率。所以光伏发电技术的转换率还不能达到推广的水平,科研实验室与实际投入生产的光能转换率不一致时目前最需要解决的大问题,也是接下来研发的重点。 五、光伏发电技术的发展前景 (一)可作为独立的光伏发电系统 现在最常见的光伏发电应用即大场景的照明,多用于公开场合,比如飞机场、火车站或者其他交通枢纽上,这些地区的灯光照明系

太阳能光伏发电技术及其发展前景

本文由午夜寒光贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 (s' 『 1 Ⅲ…节能减排 :e l { 1 l o n l na l 一 太阳能光伏发电技术及其发展前景 ●湖北十堰刘道春 1 太阳能光伏发电市场前景广阔 当煤炭 , 油等化石能源频频告急 , 源问题日益成石能为制约国际社会经济发展的瓶颈时 ,越来越多的国家开始实行" 阳光计划 " 开发太阳能资源 , 求经济发展的新 , 寻动力 .欧洲一些高水平的核研究机构也开始转向可再生能源 . 国际光伏市场巨大潜力的推动下 , 国的太阳能在各电池制造商争相投入巨资 , 大生产 , 争一席之地 . 扩以 美国推出了" 阳能路灯计划 "旨在让美国一部分城太 , 阳能发电往往指的就是太阳能光伏发电 . 太阳能发电有两种方式 : 种是光一热一电转换方式 , 一种是光一电一另 直接转换方式 . 光一热一电转换方式通过利用太阳辐射 产生的热能发电 .一般是由太阳能集热器将所吸收的热能转换成工质的蒸气 . 驱动汽轮机发电 .与普通的火力再发电一样 .太阳能热发电的缺点是效率很低而成本很高 , 估计它的投资至少要比普通火电站贵 5 1 — O倍 . 一座 l0 MW 的太阳能热电站需要投资 2 ~ 5亿美元 ,平均O0 02 lW 的投资为 2 0 ~ 5 0美元 .因此 . k 002O 目前只能小规模地市的路灯都改为由太阳能供电 , 据计划 , 盏路灯每年根每 可节电 8 0 Wh 日本也正在实施太阳能 " 0k . 7万套工程计 应用于特殊的场合 . 大规模利用在经济上很不合算 , 而还 不能与普通的火电站或核电站相竞争 .光一电直接转换 划 " 准备普及太阳能住宅发电系统 , 是装设在住宅屋 , 主要 方式是利用光电效应 , 太阳辐射能直接转换成电能 , 将它的基本装置就是太阳能电池 .太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件 ,是一 个半导体光电二极管 .当太阳光照到光电二极管上时 , 光电二极管就会把太阳的光能变成电能 , 生电流 .当多个产电池串联或并联起来就可以成为有比较大的输出功率的 顶上的太阳能电池发电设备, 家庭剩余的电量还可以卖给 电力公司 .欧洲则将研究开发太阳能电池列入著名的" 尤里卡 " 科技计划 , 出了 "O万套工程计划 " 日本 , 国高推 l . 韩以及欧洲地区总共8个国家最近决定携手合作 , 亚洲内在 陆及非洲沙漠地区建设世界上规模最大的太阳能发电站 . 他们的目标是将占全球陆地面积约 l , 4的沙漠地区的长时间日照资源有效地利用起来 ,为 3 0万用户提供 1 0万 0 太阳能电池方阵 .太阳能电池是一种大有前途的新型电源 , 有永久性 , 洁性和灵活性三大优点 . 太阳能电池具清

太阳能电池工作原理与应用

太阳能电池工作原理及应用 摘要:太阳能电池又称为“太阳能芯片”或光电池,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏。 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向rt型区,空穴被驱向P型区,从而使rt区有过剩的 电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。关键词:太阳能;光伏发电;半导体;电池 太阳能电池的分类简介 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成 本很困难,为了节省硅材料,发展了多晶硅薄膜和 非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10% (截止2011,为17%)。因此,多晶硅薄膜电池 不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换 效率较高,便于大规模生产,有极大的潜力。但受 制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

太阳能电池工作原理及应用

太阳能电池工作原理及应用 摘要:太阳能电池又称为“太阳能芯片”或光电池,就是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photov oltaic,photo光,voltaics伏特,缩写为PV),简称光伏。 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向rt型区,空穴被驱向P型区,从而使rt区有过剩的 电子,P区有过剩的空穴。于就是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 关键词:太阳能;光伏发电;半导体;电池 太阳能电池的分类简介 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池就是发展最成熟的,在应用中居主导地位 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池与非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24、7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用与工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其 成本很困难,为了节省硅材料,发展了多晶硅薄膜 与非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为1 0%(截止2011,为17%)。因此,多晶硅薄膜电池 不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换 效率较高,便于大规模生产,有极大的潜力。但受制 于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑就是太阳能电池的主要发展产品之一。 2)多晶体薄膜电池

太阳能发电原理及应用论文

太阳能发电原理及应用 指导老师: 关键词:半导体,蓄电池,光伏充电控制器 摘要:本文介绍了由本人所构想的一种新型干电池,由目前比较成熟的太阳能发电系统所得到灵感经过一定的理论分析和创造所发明的一种新型干电池。主要由太阳能半导体,蓄电池,光伏充电控制器构成。太阳能半导体产生“光生电流”,“光生电流”储存在蓄电池内,需要时通过电路释放出来,而光伏充电控制器则连接在半导体与蓄电池之间可以控制太阳能电池的输出电压, 可以保护电池不被过充, 同时, 也晚上太阳能电池不发电时, 防止蓄电池的电倒流。 正文 引言 我国是电池生产和消费大国,去年电池的产量和消费高达140亿只,占世界总量的1/3。平均每人每年3.5枚。但我国目前的废旧电池的回收情况却令人非常担忧。据有关部门统计,北京市每年消耗2亿只电池,共计6000吨,1999年回收了60吨,回收率仅为1%,2005年的回收率也只有5%,回收量实在是微乎其微。上海市每年小号电池约4.5亿节,但每年回收量约50吨,不足每年耗量的1%,最近,来自上海市环保部门的一份报告显示,含铅最多的铅蓄电池回收率也比较低,150万只报废电瓶四处抛散。所以我就想到了太阳能干电池,太阳能干电池所耗太阳能无限可再生和零排放能源,对当地环境没有影响,可重复使用对于偏于地区手电筒照明,个类儿童玩具,各类家用遥控器。 一方案设计 发电原理:硅原子的外层电子壳层中有4个电子。在太阳辐照时,会摆脱原子核的束缚而成为自由电子,并同时在原来位置留出一个空穴。电子带负电;空穴带正电。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体中搀入能够俘获电子的3价杂质,如:硼,鋁,镓或铟等,就成了空穴型半导体,简称p型半导体。如果在硅晶体中搀入能够释放电子的磷,砷,或锑等5价杂质,就成了电子型半导体,简称n型半导体。 p-n结内建电场:

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者 A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高

相关文档
最新文档