有机化学 烷烃和环烷烃

合集下载

有机化学-烷烃和环烷烃

有机化学-烷烃和环烷烃
环戊烷及其以上的环烷烃,分子中碳碳之间的键角保持 或接近109°28′。都是稳定的。
成键的电子云并不沿轴向重叠,而是形成一种弯曲键。 造成重叠程度小, 键能下降,产生角张力。
开链或较大脂环化合物 中轨道可达到最大重叠
Banana bond
环丙烷分子中 轨道部分重叠
H
H
C
105.5°
H
60°
H
C
C
CH2
亚甲基
CH
次甲基
系统命名法
关键是如何确定主链和处理取代基的位置
分三步:一选主链、二编号、三写全称。 1.选主链(母体):选取代基最多的最长碳链 2.编号: 从靠近取代基一端开始 3.写全称:按先小后大,把取代基的位次、数
目及名称列在母体前。
在英文命名中,取代基按词首的字母排列顺序先后列出
烷烃系统命名法的要点:
张力学说:
1885年,Baeyer AV 假定,环烷烃具有平面正多边形的结构 :
60° 90° 108° 120°
128.6 135°
• 环上C-C之间的键角偏离正常键角109°28′,
•环丙烷每个键必须向内偏转24.75°,就会产生角张力。
•环丁烷、环己烷分别向内偏转9.75°, 0.75°。
•环己烷每个键向外偏转5.25°。
第二节、烷烃的命名
(一)普通命名法 (二)系统命名法(IUPAC法)
(一)普通命名法
• 1~10以内的碳原子数用天干字表示:
甲、乙、丙、丁、戊、己、庚、辛、 壬、癸。从十一个碳原子开始用中文数
字表示。
• 直链的烷烃称“正某烷”,“正”(n-)一般 略去。如:
CH3CH2CH3
丙烷
CH3(CH2)10CH3 十二烷

烷烃、环烷烃

烷烃、环烷烃

烷烃烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的一类有机化合物。

烷烃分子里的碳原子之间以单键结合成链状(直链或含支链)外,其余化合价全部为氢原子所饱和。

烷烃分子中,氢原子的数目达到最大值,它的通式为CnH2 n+2。

分子中每个碳原子都是sp3杂化。

最简单的烷烃是甲烷。

烷烃中,每个碳原子都是四价的,采用sp3杂化轨道,与周围的4个碳或氢原子形成牢固的σ键。

连接了1、2、3、4个碳的碳原子分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原子分别叫做伯、仲、叔氢。

为了使键的排斥力最小,连接在同一个碳上的四个原子形成四面体(tetrahedro n)。

甲烷是标准的正四面体形态,其键角为109°28′(准确值:arccos(-1/3))。

理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。

但自然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。

由于烷烃中的碳原子可以按规律随意排列,所以烷烃的结构可以写出无数种。

直链烷烃是最基本的结构,理论上这个链可以无限延长。

在直链上有可能生出支链,这无疑增加了烷烃的种类。

所以,从4个碳的烷烃开始,同一种烷烃的分子式能代表多种结构,这种现象叫同分异构现象。

随着碳数的增多,异构体的数目会迅速增长烷烃还可能发生光学异构现象。

当一个碳原子连接的四个原子团各不相同时,这个碳就叫做手性碳,这种物质就具有光学活性。

烷烃失去一个氢原子剩下的部分叫烷基[1],一般用R-表示。

因此烷烃也可以用通式RH来表示。

烷烃最早是使用习惯命名法来命名的。

但是这种命名法对于碳数多,异构体多的烷烃很难使用。

于是有人提出衍生命名法,将所有的烷烃看作是甲烷的衍生物,例如异丁烷叫做2-一甲基丙烷。

现在的命名法使用IUPAC命名法,烷烃的系统命名规则如下:找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。

有机化学第章烷烃和环烷烃

有机化学第章烷烃和环烷烃

脂环烃:碳原子之间相互连成环,其性质类似链烃 的碳氢化合物。
脂环烃
饱和脂环烃,又称环烷烃,通式:CnH2n
不饱和脂环烃
环烯烃 环炔烃
单环脂环烃:分子中只有1个碳环。 环丙烷
环丁烷
分子中含有两个或两个以上碳环结构的脂环烃称为双环或 多环脂环烃。
两个碳环共用一个碳原子的脂环烃,称为螺环烃(spiro hydrocarbon)。“螺”字表示两个碳环只共用一个碳原子,此 碳原子称为螺原子。
Alkyl group names are obtained by removing the –ane from the alkane name , and replacing it with -yl
中文名 英文名 中文名 英文名 甲烷 methane 甲基 methyl 乙烷 ethane 乙基 ethyl 丙烷 propane 丙基 propyl 丁烷 butane 丁基 butyl
2. 编号:从第一桥头(共用碳原子)开始,沿最长桥路到第二桥 头,再沿次长桥路回到第二桥头,然后编最短的桥路。(先编大 桥,再编小桥)。取代基的位置最小。
3.命名: 某基二环[n.m.p]某烷。 n.m.p---指各桥路上碳原子数。
2 1
3
7
4
6
5
8 6
4 5
7 1
2
3
1-甲基二环[4.1.0]庚烷
Homolog
同系物: 同系列中各化合物互称同系物。
同系列差:相邻两个同系物在组成上的不变差数 CH2。
烷烃中的伯、仲、叔、季碳原子。
伯碳原子:只与1个碳原子直接相连的碳原子。 (primary) 也称一级碳原子,以1° 表示。 仲碳原子:只与2 个碳原子直接相连的碳原子。 (secondary) 也称二级碳原子,以2 ° 表示。 叔碳原子:只与3 个碳原子直接相连的碳原子。 (tertiary) 也称三级碳原子,以3 ° 表示。 季碳原子:与4个 碳原子直接相连的碳原子。 (quaternary) 是四级碳原子,以4 ° 表示。

有机化学课件第-二-章烷烃和环烷烃_图文

有机化学课件第-二-章烷烃和环烷烃_图文
熔点高低取决于分子间的作用力 和晶格堆积的密集度。
烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较

第2章 烷烃、环烷烃

第2章  烷烃、环烷烃

第二章 烷烃、环烷烃
2.2.2 烷烃、环烷烃的同分异构现象 二、环烷烃的异构现象 2.顺反异构 1,2-二甲基环丁烷、1,4-二甲基环己烷的顺反异构如下:
顺-1,2-二甲基环丁烷
反-1,2-二甲基环丁烷
顺- 1,4-二甲基环己烷
反-1,4-二甲基环己烷
当环上的取代基增多时,顺反异构体的数目也相应增加。
CH2 CH3
CH2
CH3
正丁烷 ( b.p. -0.5℃)
CH3 CH CH3
异丁烷 (b.p. –10.2℃)
CH3 CH3 CH2 CH2 CH2 CH3
正戊烷(b.p. 36.1℃)
CH3 CH3 C CH3 CH3
CH3 CH CH2 CH3
新戊烷(b.p. 9.5℃)
异戊烷(b.p. 28℃)
(a)交叉式构象
(b)重叠式构象
透视式好像锯木架,故也叫锯架式。纽曼式投影式是从C—Cσ键的延长线上 观察,两个碳原子在投影式中处于重叠位置,用 近的碳原子及其三个键,用 表示距离观察者较
表示距离观察者较远的碳原子及其上的
三个键。每一个碳原子上的三个键,在投影式中互呈120°角。
第二章 烷烃、环烷烃
第二章 烷烃、环烷烃
2.2 烷烃、环烷烃同分异构现象和命名
2.2.1 烷烃、环烷烃的通式
甲 烷 分 子 式 CH4 H 结构式 H C H 碳 数 氢 数 H H 乙 烷 C2H6 H C H H C H H H H C H 丙 烷 C3H8 H H C C H H H C H 丁 烷 C4H10 H H C C H C H H
` `
` `
... ... )
CH3
... ... )

烷烃和环烷烃

烷烃和环烷烃
1o
10 只与一个碳原子相连 20 与两个碳原子相连 30 与三个碳原子相连 40 与四个碳原子相连
2o 1o
CH3 CH3 3o 2o 2o 1o H3C C4o CH2CHCH2CH2CH3 H3C C3o CH3 CH3 CH3
CH3CH2CH CH3
CH3CH2CH2CH2
叔丁基 tert-butyl
第四章 烷烃和环烷烃
重点讲解内容 一、烷烃的结构 二、烷烃的命名 三、烷烃的物理性质 四、烷烃的化学性质 五、烷烃的构象异构
烃(hydrocarbon):仅由碳和氢两种元素组
成的有机化合物。
烷烃(alkane):烃分子中的碳原子彼此以C-C
单键连接,碳的其余键都与氢原子相连。
最简单的烷烃为甲烷:Molecular formula CH4
CH3
CH3CH2CH CHCH CHCH3 2,3,5- 三甲基-4-丙基庚烷 CH3 CH2 CH3 CH2CH3
(B)主链的编号(最近、最小、小小)
原则:从最靠近支链的一端开始编号,用 1 , 2 , 3……表示,即取代基位次最小。有几个取代基 时,取代基位次的和最小。和相同时,小的取 代基位次小为宜。
另外,若要画出三维结构,可用下述方法表示:
F Cl C Br H
表示该键指向纸面的背后 表示该键指向纸面的前面
二、构造异构和命名 (一)碳链异构
烷烃同系列中,甲、乙、丙无同分异构,丁烷有: CH3CH2CH2CH3 C4H10 b.p. -0.5℃ CH3CHCH3 C4H10 b.p. -10.2℃
重叠式的能量比交叉式高12.6kJ/mol(单键旋转的能垒 一般在12.6~41.8kJ/mol),这种能垒非常低,室温下的 分子热运动即可达到,因此常温下分离不出纯的烷烃的分 子构象)。

有机化学第四章烷烃和环烷烃

有机化学第四章烷烃和环烷烃

1. 乙烷的构象
小于两个H 的 von der waals 半 径(1.2Å)之和, 有排斥力
<60o
2 H
H C H H
2.3 Å
H C H H
60o
H H H H 1 1 2 H H H
C1旋转
H H
1 1 H
C1旋转
H H
2H 11 H H H
H
交叉式构象 staggered conformer 原子间距离最远 内能较低 (最稳定)
奇数碳
沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低(非极性,只有色散力)。 (2)随相对分子质量增大而增大(运动能量增大,范德华引力增大)。 (3)相对分子质量相同、叉链多、沸点低。(叉链多,分子不易接近)
密度
烷烃的密度均小于1(0.424-0.780) 偶极矩均为0。
饱和烃的偶极矩 溶解度
自由基型链反应(chain reaction)

甲烷的溴代反应机理
(1) (2) (3)
Br Br Br +
hv or
Br
+ Br Br H + CH3
链引发 chain initiation
H
CH3
CH3 + Br
Br
CH3 Br + Br
第(2), (3)步反应重复进行 (4) (5) (6) Br Br CH3 + + + Br CH3 CH3 Br Br
扭曲式构象 skewed conformer (有无数个)
重叠式构象 eclipsed conformer 键电子云排斥, von der waals排斥力,内能较高 (最不稳定)

有机化学-烷烃和环烷烃

有机化学-烷烃和环烷烃

24/64
2.2 烷烃和环烷烃的命名 2.2.4 环烷烃的命名 (1)分类
单环脂环烃
2. 烷烃和环烷烃
二环脂环烃
多环脂环烃 当碳环为饱和碳环时则为环烷烃。
25/64
2.2 烷烃和环烷烃的命名 2.2.4 环烷烃的命名 (2)单环环烷烃
(a)碳链较短
2. 烷烃和环烷烃
根据成环碳原子总数,称为“环(cyclo)某烷” 环上有1个取代基时,取代基名称放在“环某烷”之前 环上有不止1个取代基时,与烷烃命名类似 1 2 3
CH3
1’
CH3
C CH2CH3 CH3
2’
3’
CH3CH2CH2CH2CH2CHCH2CH2CHCH3
2-甲基-5- 1’,1’-二甲基丙基癸烷 2-甲基-5-(1,1-二甲基丙基)癸烷
23/64
2.2 烷烃和环烷烃的命名 练习
1. 给下列分子式命名
2. 烷烃和环烷烃
2,5,7-三甲基-7-乙基-3-氯壬烷 2. 写出“2,3,4,6-四甲基-6-乙基壬烷”的分子式。
烷烃和环烷烃分子从形式上去掉一个氢原子后余下的基
团称为烷基(R—)和环烷基。
(2)亚烷基
烷烃分子从形式上去掉两个氢原子后余下的基团称为亚 烷基。
14/64
2.2 烷烃和环烷烃的命名 2.2.2 烷基和环烷基
烷 基 CH3 CH3CH2 CH3CH2CH2 CH3CHCH3 CH3CH2CH2CH2 CH3CH2CHCH3 (CH3)2CHCH2 (CH3)3C (CH3)3CCH2 烷基名称 甲基 乙基 正丙基 异丙基 正丁基 仲丁基 异丁基 叔丁基 新戊基
何谓“饱和”? 烃分子中的碳原子之间都以单键(C-C)相连, 其余的价键都与氢原子相连。 烷烃(烷): 饱和烃 【烷wan】取完全之意,碳被氢完全饱和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H
H
H
H
H
H
HH
H
➢ 相间的两根键相互平行(画 Z 字形) ➢ 六个碳原子交替分布在两个平面上 ➢ 每个碳均有一根C-H键在垂直方向,上平面的向上
画,下平面的向下画 ➢ 其它C-H键分别向左(左边的三个)或向右(右边
的三个),且上下交替
两种类型C-H键
a键 (axial bond) 竖键, 直键, 直立键
三环[2. 2. 1. 02, 6]庚烷
8-methylbicyclo[4. 3. 0]nonane
tricyclo[2. 2. 1. 02, 6]heptane
螺环烃(spiro hydrocarbon)的命名
2
16 7
5
8
3
4 10 9
1
4
5
3
2
6
7
螺[4. 5]癸烷 spiro[4. 5]decane
2.27Å
环己烷的其它构象式
椅式
半椅式 (half chair form)
扭船式 (twist boat form)
……
船式
椅式
半椅式构象
H
H
H
H
H
H H
H HH
H H
扭船式构象
>1.84Å
H H
H
H H
H H
H
5个碳在同一平面上 ➢ 有角张力(C-C键角接
近120o) ➢ 平面碳上的C-H键为重叠
不反应(难开环)
注意区分:
Cl2 / hv
自由基取代反应
Cl
➢ 小环化合物与 HI 或 H2O/ H2SO4的反应
HI
H2O
H2SO4
2
HI
3
1 CH3
HI
H
I
CH2CH2CH2
H
OH
CH2CH2CH2
H
I
CH2CHCH2 CH3
3 21
H
I
CH2CH2CH2CH2
反应选择性 与碳正离子 稳定性有关
3-甲基-4-环丁基庚烷 4-cyclobutyl-3-methylheptane
2
2'
1 1'
3
3'
联环丙烷
bicyclopropane
➢ 环可作为取代基 (称环基) ➢ 相同环连结时,可
用词头“联”开头。
桥环烃(Bridged hydrocarbon)的命名
桥头碳原子
10 2
9
1
3
8
6
4
7
5
H H
HH
H
H
H
H
H
HH
H
H H
H H
e键 (equatorial bond) 横键, 平键, 平伏键
H H
H H
a键和e键的相互转换
H
H
3
H
H
4
H 2H
56
1
H H
H
H
H
H
翻转
翻转后,原来的a键转变 为e键,而e键转变为a键
H
H
4
H H
H 3H 2
5
6
H
1
H
H
H
H
H
椅式构象中C-H键的顺反关系
H H
664.0 658.6 662.4
中 C8
环 C11
大 C12 环
每个CH2的燃烧热 (KJ/mol)
环辛烷 环壬烷 环癸烷
663.8 664.6 663.6
环十四烷 658.6 环十五烷 659.0
对比:开链烷烃每个CH2的燃烧热:658.6 KJ/mol
环的大小与化学性质
五元以上 环烷烃
性质相似
链状烷烃
Cl2 / hv
H2 / Pt 催化加氢
HI
Cl 自由基取代反应
不反应 不反应
!!!
小环环烷烃
活泼,易开环
小环化合物的特殊性质 —— 易开环加成)
➢ 小环化合物的催化加氢
H2 / Pt, 50oC or Ni, 80oC
CH3CH2CH3
(打开一根 C-C 键)
2
3
1 CH2CH3
H2 / Pt, 50oC or Ni, 80oC
HH
H
H
H
H H
HH
H
➢相邻碳上的a键和e键为顺式 ➢两个相邻的a键(或e键)为反式
船式构象
H C3-C2 H
HH
4
1
H
2
H
3
HH
5
C5-C6 H
6H
H H
旗杆键
1.84Å
HH
1 4
6 HH
3
5
2
HH
HH
重叠式
(有扭转张力)
HH H
HH H
H
H
H
H 2.27Å
H H
有几组H~H之间距 离均小于H的Van der Waal’s半径之 和(2.40Å )
十氢萘
桥头间的碳原子数
(用"."隔开)
环的数目
二环[4. 4. 0]癸烷
组成桥环的 碳原子总数
bicyclo[4. 4. 0]decane
桥 头 碳:几个环共用的碳原子, 环的数目:断裂二根C—C键可成链状烷烃为二环;断裂三根C—C
键可成链状烷烃为三环 桥头碳原子数:不包括桥头C,由多到少列出 环的编号方法:从桥头开始,先长链后短链
两者互为构象异构体
椅式构象
H
H
3
H
H
2
1
H H4
56
H H
H
H
H
H
C4-C3
C6-C1
H H3
4
H
5
1H
6
H H2H H
交叉式
2.50Å
HH H
H HH
H H
H
2.49Å
H H
H
2.49Å
H~H之间距离均 大于H的Van der Waal’s半径之和 (2.40Å )
环己烷椅式构象的画法
H
HH
C4-C3 H 4 HH
1
C1-C2 H
3H HH 2H
90o
➢稳定构象
88o
H
H4 H
H3
1
H
HH
2
H
C1-C2
HH 3
2 HH
4
1
H H
HH
重叠式构象
•角张力 •扭转张力
H
42 H
H2C
1
H2C3
HH
扭曲式构象
角张力稍增 加, 扭转张 力明显减小
2. 环己烷的结构及构象
环己烷不是平面型分子
如果环己烷的 6 个碳原子在同一平面上:
2
CH3
3 CH3CHCH2CH3
1
主要产物
H2 / Pt, 120oC or Ni, 200oC
CH3CH2CH2CH3
支链多 较稳定
➢ 小环化合物与卤素的反应
Br2 / r.t. Cl2 / FeCl3
Br2 / r.t.
Br
Br
CH2CH2CH2
Cl
Cl
CH2CH2CH2
(离子型) 加成反应
螺环烃
普通环烷烃的命名
CH3
环丙烷
环己烷
甲基环丙烷
cyclopropane cyclohexane methylcyclopropane
➢ 以环为母体,名称 用“环” (英文 用 “cyclo”)开 头。
➢ 环外基团作为环上 的取代基
1
1
2
2 3
➢ 取代基位置数字取
3 4
最小
1, 3-二甲基环己烷
➢ 将有角张力
➢ 将有扭转张力
120o
H
H H H
H
H
H
H H H
H H
偏离109.5o
C-H 重叠
环己烷碳架是折叠的
H
H
3
H
2H
1
H H
H H
H
4
H1 H
2
H
3
H
H H
4
5H 6
H
H
H
HH 5 H 6
C2, C3, C5, C6 共平面 H
H
椅式构象 (chair form)
船式构象 (boat form)
式构象(有较大的扭转张 力)
H H
HH
扭曲式构象
各种环己烷构象的势能图
kJ / mol


46
5.4 23.5
扭转过程
萘 naphthalene
莰烷 camphane
O
2-莰酮(樟脑) camphor
二.环烷烃的性质
环的大小与稳定性
稳定性 普通环 > 中环 > 小环
环烷烃的燃烧热数据
小 C3 环 C4
普 C5 通 环 C7
每个CH2的燃烧 (KJ/mol)
环丙烷 环丁烷
环戊烷 环己烷 环庚烷
697.1 686.1
1, 3-dimethylcyclohexane
1-甲基-4-异丙基环己烷
1-isopropyl-4methylcyclohexane
CH3
CH3
H
H
H3C H
CH3 H
H3C
CH3
顺-1,3-二甲基环戊烷
(cis-1, 3-dimethylcyclopentane)
相关文档
最新文档