统计学统计指数法(最新)
社会统计学第5章 统计指数

二、统计指数的分类
(三)根据指数的对比性质,统计指数分 为动态指数和静态指数。
1、动态指数是将不同时间上的同类现象 水平进行比较的指数,反映现象在时间上的 变化情况。
2、静态指数包括空间指数和计划完成情 况指数。
通常所说的指数大多为动态指数。
第二节 综合指数的编制
因素分析例题
p1q1 886800 132.02% p0q0 671700 p1q1 p0q0 886800 671700 215100(元)
p0q1 865680 128.88% p0q0 671700 p0q1 p0q0 865680 671700 193980(元)
价格综合指数为:
I p
p1q0 690750 102.84% p0q0 671700
销售量综合指数为:
Iq
p0q1 865680 128.88% p0q0 671700
结论∶与2001年相比,三种商品的零售价格平均上涨 了2.84%,销售量平均上涨了28.88%
帕氏指数(例题分析)
第三节 平均指数的编制
一、概念、特点 二、加权算术平均指数 三、加权调和平均指数
一、概念、特点
(一)概念: 对个体指数进行加权平均计算的相对数。
(二)特点: 先对比,后综合(平均)
二、加权算术平均指数
计算公式:
Iq
iq p0q0 p0q0
I p
ip p0q0 p0q0
二、加权算术平均指数
(二)统计指数的作用:
1、综合地反映经济现象总体的变动方向和程度。 2、进行因素分析:分析在现象总体的变动中, 各构成因素影响的大小。
二、统计指数的分类
ZYQ的统计学原理-第六章统计指数

第六章统计指数在对社会经济现象进行对比分析时,通常有两种情况:一种是对单一事物的变动进行分析,例如:研究某种商品价格或销售量的变动,可以将不同时期的价格或者销售量的数值直接进行对比;另外一种则是对由许多计量单位、使用价值不同的事物所构成的复杂现象总体的某种特征进行综合对比,例如:研究多种商品的价格或者销售量的综合变动,此时,若采用简单的数量对比,将无法保证对比的结果具有实际经济意义!为了如实地反映他们的变动,人们转而求助于指数理论!第一节统计指数概述一、统计指数的概念统计指数(Index)的概念起源于18世纪中期的欧洲,距今只有200多年的历史。
最初的指数是指一种商品的现有价格与原来价格的对比,以此反映其价格变动的程度。
现在的指数,已经运用到我们经济生活的各个方面。
有些指数,如商品零售价格指数(Retail Price Index)、居民消费价格指数(Consumer Price Index)等,同人们的日常生活休憩相关;有些指数,如工业生产指数、股票价格指数(Stock Price Index)等,则直接影响人们的投资活动,成为社会经济的晴雨表。
1、广义的概念:——指一切说明社会经济现象数量变动或差异程度的相对数;例如:计划完成相对数、比较相对数、动态相对数等;2、狭义的概念:——指反映不能直接相加、对比的复杂社会经济现象综合变动程度的相对数;例如:某商场同时销售棉布、鞋帽和成衣等商品,由于这几种商品的性质不同、使用价值不同,故不能直接相加,对比其报告期与基期的销售量;又如:商品零售价格指数、居民消费价格指数、工业生产指数、股指等;3、狭义指数的特点:——相对性:复杂现象总体的某个变量在不同场合下综合对比所得的相对数;例如:不同时间上对比即得时间性指数、不同空间上对比即得空间性指数;——综合性:不是单一事物的变动,而是由多种事物构成的总体的综合变动;例如:股票价格指数是综合反映所有上市公司股票交易的价格变动;——平均性:狭义的指数所反映的总体变动只能是一种平均意义上的变动;例如:上海证券交易所综合指数当天与昨天相比,股票指数上涨了1.2%,表示平均来说上海证券交易所挂牌交易的上市公司平均股票价格今天比昨天上涨了1.2%,但有的上市公司上涨10%,也有的上市公司下跌了10%;二、统计指数的作用1、综合反映现象总体数量的变动方向和变动程度;1)百分比大于100%,则表示数量上升,具体大多少则表示上升的程度;2)百分比小于100%,则表示数量下降,具体小多少则表示下降的程度;例如:商品零售价格物价指数为100%,则说明多种商品零售物价总体变动呈上升状态,且上升了10%;2、对现象总体进行因素分析;1)复杂现象的总体,一般由多种因素构成,总体的变动是各构成因素变动综合影响的结果;例如:商品销售额=商品销售量单位商品价格;产品总成本=产品产量单位产品成本;原材料总费用=产品产量单位产品原材料消耗量单位原材料价格;2)可从相对数和绝对数两方面分析各因素对总体的影响方向和影响程度;3、研究现象的长期变动趋势;1)由连续编制的动态数列形成的指数数列,能反映现象的发展变化趋势;2)适合于对比分析有联系、性质不同的动态数列之间的变动关系;4、对经济现象进行综合评价和测定;例如:运用综合指数法评价和测定一个地区和单位经济效益的高低;利用平均指数法测定技术进步的程度及其在经济增长中的作用;利用指数法原理建立对国民经济发展变动的评价和预警系统等;三、统计指数的种类1、按照指数所研究对象的范围划分:1)个体指数——反映单一事物数量变动的相对数,属于广义指数,将某一指标的报告期数值与基期数值直接对比而得;例如:反映某一商品价格变动的个体价格指数反映某一产品产量变动的个体产量指数式中,k代表个体指数,p代表商品价格,q代表产品产量,下标1代表报告期,下标0代表基期;2)总指数——反映多种事物构成的复杂现象总体综合数量变动的相对数;例如:综合反映多种商品价格平均变动程度的价格总指数;综合反映多种产品产量平均变动程度的产量总指数;3)类指数——反映总体中某一类或某一组现象数量变动的相对数;本质上也是总指数,只不过它比总指数所包含事物的范围小而已;例如:零售商品物价总指数可分为粮食类价格指数、服装类价格指数等;工业总产量总指数可分为重工业类产量指数和轻工业类产量指数等;2、按照指数化指标的性质划分:所谓指数化指标,是指数所要测定其变动的统计指标;1)数量指标指数(Quantity Index Number)——指数化指标为数量指标;用来说明总体规模变动情况的指数,例如,工业产品物量指数、商品销售量指数、职工人数指数等;2)质量指标指数(Quality Index Number)——指数化指标为质量指标;用来说明总体内涵数量变动情况的指数,例如,价格指数、单位产品成本指数、劳动生产率指数、工资水平指数等;3、按照指数所反映现象的对比性质不同划分:1)时间性指数——动态指数,反映现象在时间上动态变化的指数;按照计算过程中采用的基期不同,可分为以下两类:定基指数——连续编制的指数数列中各个指数以固定时期为基期;环比指数——连续编制的指数数列中各个指数以上一期为基期;2)空间性指数——静态指数,包括以下两类:反映同一时期不同空间指标值变动而形成的指数;反映同一时期的实际与计划指标值变动的指数,即计划完成指数;4、按照总指数的计算与编制方法划分:1)综合指数——两个有联系的总量指标对比所得的相对数;例如:销售额指数、产品产量指数、GDP总指数等;2)平均指数——用加权平均的方法计算出来的指数;所掌握的资料不全时,借助个体指数进行加权平均计算;3)平均指标对比指数——两个加权算术平均指标对比所得的指数;例如:总平均工资的可变构成指数、固定构成指数、结构影响指数等;本书将以各种数量指标和质量指标为例,着重介绍综合指数、平均指数、平均指标对比指数的编制方法以及其在统计分析中的作用!第二节综合指数一、综合指数编制的基本原理总指数的基本计算方法有综合指数法和平均指数法两种,习惯上把这两种方法编制的总指数称为综合指数和平均指数;综合指数(Aggregative Index Number)是通过对两个时期不同、范围相同的多要素现象同度量综合之后,进行总体数量对比得出的总指数;综合指数的计算特点就是:先综合,后对比!然而现象总体各个个体由于使用价值不同、计量单位不同,所以其数量表现不能直接加总而对比,这种现象叫做不同度量。
统计学原理 5.1指数分析

•
例如,总产量、总产值、工资总额、利税总额等。
2020/5/31
6
2、总量指标按其反映时间状态的不同,
可分为时期指标 时点指标。
时期指标:是反映总体在某一段时期内活动过程结果的总量指标。
例:工业产品产量、人口出生数、
增加值、商品销售量等。
时点指标:是反映总体在某一时刻(瞬间)上状况的总量指标。
例:职工人数、牲畜存栏头数、
尿 素 45000 46.20 20790 2.20 99000
碳酸氢铵 16000 16.40 2624 0.7809 12495
2020/5/31
合计
168000 —
49297
— 234745
12
第二节 相 对指标
一、相对指标的意义和表现形式
(一)相对指标的含义 相对指标是质量指标的一种表现形式。它是通过两个有联系的统计 指标对比而得到的比值或比率,其具体数值表现为相对数。 例如,2015年,全年网上零售额38773亿元,是是上年的133.3%, 比上年增长33.3%。 (二)相对指标的表现形式 相对指标的数值有两种表现形式,一种是有名数,另一种是无名数。 有名数是将对比的分子指标和分母指标的计量单位结合使用,以表 明事物的密度、普遍程度和强度等。 无名数是一种抽象化的数值,一般分为系数、倍数、成数、百分数、 千分数等。
2020/5/31
1、结构相对指标 2、比例相对指标
3、比较相对指标
4、动态相对指标
5、计划完成程度 相对指标 6、强度相对指标
1、结构相对指标:是在统计分组的基础上,以总 体中的部分数值与总体数值对比求得的比重 或比率。反映总体内部的组成状况。
计算公式:结构相对数=总体部分数值/总体全部数值
统计学原理——统计指数

指数化因素 指在指数分析中被研究的指标
同度量因素
指把不同度量的现象过渡成可以同度量的媒
介因素,同时起到同度量 和权数 的作用
指数化因素
Iq
q1 p0 q0 p0
I p
p1 q1 p0 q1
同度量因素
I p
p1q p0q
拉氏公式(Laspeyres) 帕氏公式(Paasche)
2.从价格综合指数(相对数)看,三种产品的价格报告期 比基期综合上涨了3.82%;或者说由于价格上涨使总产 值增加了3.82%。
3.从绝对差额(绝对数)看,由于价格的上涨使总产值增 加了6万元。
**价格综合指数的优点
不仅说明多种产品价格综合变动的相对程度, 而且还从绝对量上说明了由于价格的变动对总 产值产生的影响。
20
60
61.2
61.2
丙 件 8 000 6 000 110 100
88
60
66
合计 — —
—
—
—
173
163.2 157.2
解题步骤
(一)三种产品的个体价格指数
甲产品的个体价格指数:
KP
P1 P0
70 50
140.00%
乙产品的个体价格指数:
KP
P1 P0
20 20
100.00%
丙产品的个体价格指数:
104.8
41.92
90.0
54.00
110.5
5.53
116.9
56.11
111.2
30.1
100.1
4.00
95.0
9.5
8
统计学:综合指数.docx

统计学:综合指数(一)综合指数的计算特点一般来说,当一个总量指标可以分解为两个或两个以上因素指标时,将其中一个或一个以上的因素指标固定下来,只观看其中一个因素指标的变动方向及程度,这样的总量指标对比形成的总指数就叫综合指数。
综合指数的计算具有如下特点。
1.先综合后对比在分析复杂社会经济现象综合变动时,不同计量单位的事物不能直接相加,但有时又需要把它们作为一个总体来研究而必需把它们加总起来,这是运用综合指数法首先要解决的问题。
如要研究不同类型商品的销售量的总变动状况,由于不同类型的商品在使用价值、计量单位上的不同而不能直接相加,但是通过引入价格这一同度量因素,使各商品的销售量指标转化为可以直接相加的价值量指标 ---- 商品销售额,对比两个销售额指标,就可以求得这些商品的销售量指数。
2.将同度量因素加以固定运用综合指数法编制总指数时,人们只关心一个因素的变动程度。
这就要求编制指数时,把新加入的媒介因素作为同度量因素加以固定,来测定人们所关心的因素的变动状况。
至于同度量因素的指标应当固定在哪个时期,要依据编制指数的详细任务以及指数的经济内容来确定。
选择不同时期的数值作为同度量因素,结果不同,其经济意义也不同。
如何固定同度量因素,将在后面的内容中具体介绍。
3.需要全面的数据资料编制综合指数时,需要运用全面的数据资料。
如计算商品销售量指数时,需要全部商品报告期和基期的销售量资料和全部商品在某一固定时期(一般是基期)的价格资料,否则将无法计算综合指数。
全面的统计资料只存在登记性误差, 不存在代表性误差。
(二)综合指数的计算计算综合指数时,一般要涉及两个因素:一个是指数所要研究的对象,叫指数化因素;另一个是将不能直接加总的现象过渡到可以直接加总的现象的因素,叫同度量因素。
所谓同度量因素,就是在编制综合指数时,将不能直接相加的因素,转化为可以直接相加的量的媒介因素,它在指数的编制中起着过渡、媒介或权数的作用。
《统计学概论》统计指数

《统计学概论》统计指数
在《统计学概论》中,统计指数是一种用于衡量和描述数据集中位置、离散程度和变异性的统计量。
下面是几个常见的统计指数:
1.平均数(Mean):平均数是一组数据的总和除以数据的数
量,用于表示数据的中心位置。
它是最常用的统计指数之
一。
2.中位数(Median):中位数是将一组数据按照大小排序后,
位于中间位置的数值。
中位数对于受极端值或异常值影响
较大的数据集更具鲁棒性。
3.众数(Mode):众数是一组数据中出现频率最高的数值。
当数据集存在明显的峰值或集中趋势时,众数是衡量数据
集的有效指标。
4.标准差(Standard Deviation):标准差是衡量数据集离散程
度的指标,表示数据偏离平均数的程度。
标准差越大,表
示数据的离散程度越大。
5.方差(Variance):方差是标准差的平方,用于度量数据集
的离散程度。
方差大致表示数据偏离平均值的平均平方差。
6.四分位数(Quartile):四分位数将有序数据集划分为四个
部分,其中第一个四分位数(Q1)是位于数据集中25%位
置的数值,第三个四分位数(Q3)位于75%位置。
7.极差(Range):极差是一组数据中最大值和最小值之间的
差值。
该指数用于描述数据集的全距。
这些统计指数在“统计学概论”中经常用于描述和分析数据集的特征。
通过计算和比较这些指数,可以更好地理解数据的分布、集中程度和变异性。
此外,还可以使用其他统计指数如偏度和峰度等,用于更详细地描述数据集的特征。
统计学 第五章 统计指数及其应用

第三节 平均数指数的编制
一、概念要点
(一) 以某一时期的总量为权数对个体指数加权平均 (二) 权数通常是两个变量的乘积 可以是价值总量,如商品销售额(销售价格与销售 量的乘积)、工业总产值(出厂价格与生产量的乘积) 可以是其他总量,如农产品总产量(单位面积产量 与收获面积的乘积) (三)因权数所属时期的不同,有不同的计算形式
选择正常时期或典型时期作为基期
报告期距基期的长短应适当
二、数量指标综合指数的编制 指数公式的形成:求和、相比、定时三个步 骤。 关于同度量因素的时期确定及其原因 三、数量指标综合指数的编制 指数公式的形成:求和、相比、定时三个步 骤。 关于同度量因素的时期确定及其原因
关于基期加权综合法(拉氏指数) 基期加权综合的指数,是把同度量因素固定在 基期水平编制指数的方法。基期加权综合指数公 式称为拉氏公式。1864年德国学者斯拉贝尔首次 提出而得名。 利用拉氏公式计算指数的特点 优点: 在于指数数列中各期权数相同,指数数值之间 可以进行互相比较,用以说明所研究现象变化的 程度及其规律性。
从理论上讲,一切综合指数都可以变成算术 指数和调和指数。 将质量指标综合指数改变为算术指数,由此 引出零售物价指数的简捷式。
第四节
指数体系及其因素分析
一、指数体系 (一)指数体系的概念
若干个指数由于数量上的联系而形成为一个 整体叫做指数体系。 指数体系因素影响的绝对值之和 等于实际发生的总差额。
(二)指数体系的作用
1、测定某一现象的总变动中,各个构成因素的 影响方向、程度和绝对量。 2、利用指数体系各指数之间的联系,可以由已 知的指数数值求出未知的指数数值。
二、因素分析法
(一)因素分析法的概念
统计指数用于分析受多因素影响的现象的总变 动中各个因素影响的方向和程度时,叫做因素分 析法。
统计学统计指数

统计学统计指数统计学是一门研究如何收集、整理、分析和解释数据的学科。
它是一门广泛应用于社交学科、自然科学、商务经济学及工程学等学科的学科。
通过合理地运用统计技术,我们能够更加客观、科学地分析和解读复杂的现象和实际问题。
在统计学中,有许多指数和统计量,它们可以有效地反映、衡量和比较实际问题的各种性质和特征,使得问题的定量分析成为可能。
今天,我们将主要简单介绍几种常见的统计指数。
一、基本指数基本指数是我们最常用、最基础的几个指标。
包括平均值、中位数、众数、最大值与最小值。
平均值:属于高频使用指数之一,是指所有数据之和除以数据的总数。
它是用于反映数据集合中心特征的一个重要指标。
平均值对于研究数据的趋势或规律,特别是用于对比两个或多个数据集时很有用。
中位数:中位数与平均数不同,是把一组数据从小到大排序后,位于中间位置上的数。
它的好处在于不会被极端值影响以及能够不失客观地反映数据的中间水平。
众数:众数与平均值和中位数不一样,是数据里出现最多的数字。
通常用于从大量数据中检测出明显的模式,帮助研究者了解整体数据的分布特征。
最大值与最小值:最大值与最小值是这组数据集合所包含的最大值和最小值。
在数据研究分析中,它们可用于参考不同数据之间的分布情况。
二、分散指数分散指数是用于衡量数据分布的不均匀程度。
其中包括方差和标准差。
方差:方差是数据集与其平均值的差的平方和除以数据总数的操作得到的指数。
方差越大,表示这组数据离散程度较大。
反之,越小则表明数据离散程度较小。
标准差:标准差是方差算术平方根的结果。
反映了数据集各数据与平均数的平均偏差值,是常用的反映数据集的离散程度的客观指标。
三、相关指数相关指数是用于度量数据的相似程度或关联程度。
其中包括相关系数和回归系数。
相关系数:相关系数是用来衡量两个数据集合之间的相关性或线性关系。
相关系数的取值范围为-1到+1之间,值越接近+1表示越正相关,值越接近-1表示越负相关。
当相关系数为0时,两个数据集之间无关联性。