八年级数学竞赛例题专题讲解13:三角形的基本知识 含答案

八年级数学竞赛例题专题讲解13:三角形的基本知识 含答案
八年级数学竞赛例题专题讲解13:三角形的基本知识 含答案

专题13 三角形的基本知识

阅读与思考

三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.

解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.

应熟悉以下基本图形:

图4

图3图2图1

C

D B A D

C B

A D C

B A D

C O B A

例题与求解 【例1】 在△ABC 中,∠A =50°,高BE ,CF 交于O ,则∠BOC =________.

(“东方航空杯”——上海市竞赛试题)

解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.

【例2】 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三

角形底边的长为( )

A .17cm

B .5cm

C .5cm 或17cm

D .无法确定

(北京市竞赛试题)

解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.

【例3】 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.

(“希望杯”邀请赛试题)

解题思路:运用凹四边形的性质计算.

G

C D B E

F

A

【例4】 在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.

(北京市竞赛试题)

解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.

【例5】 (1)周长为30,各边长互不相等且都是整数的三角形共有多少个?

(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.

(江苏省竞赛试题)

解题思路:对于(1),不妨设三角形三边为a ,b ,

c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数

c 的值.

对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.

【例6】 在三角形纸片内有2 008个点,连同三角形纸片的3个顶点,共有2 011个点,在这些点中,没有三点在一条直线上.问:以这2 011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?

(天津市竞赛试题)

解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.

能力训练

A 级

1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.

2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.

3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.

4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________. (“缙云杯“试题)

E D

C B A H

D

C M

G

B A E

C B A

(第4题) (第5题) (第6题)

5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.

T

E D G H C

B A

F 21A

C E D

B

(第7题) (第9题)

6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于( )

A .)90(21A ∠-?

B .A ∠+?2

190 C .

)180(21A ∠-? D .A ∠-?21180 7.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:

①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =2

1(∠BAC -∠C );④∠BGH =∠ABE +∠C .

其中正确的是( )

A .①②③

B .①③④

C .①②③

D .①②③④

8.已知三角形的每条边长的数值都是2 001的质因数,那么这样的不同的三角形共有( )

A .6个

B .7个

C .8个

D .9个

9.如图,将纸片△ABC 沿着DE 折叠压平,则( )

A .∠A =∠1+∠2

B .∠A =2

1(∠1+∠2) C .∠A =31(∠1+∠2) D .∠A =4

1(∠1+∠2)

(北京市竞赛试题)

10.一个三角形的周长是偶数,其中的两条边分别是4和1 997,则满足上述条件的三角形的个数是( )

A .1个

B .3个

C .5个

D .7个

(北京市竞赛试题)

11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.

(河南省竞赛试题)

3

2

1

E G F

D C B A

12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°.

(1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.

(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .

C

D M B

A E N

D C

B A

图1 图2

13.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.

(1)证明:AB +AE >DB +DE ;

(2)证明:AB +AC >DB +DC ;

(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论;

(4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.

(加拿大埃蒙德顿市竞赛试题)

E D

C B

A

B 级

1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的 个数有_______个.

(“祖冲之杯”邀请赛试题)

2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.

3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是 m ,最小值是

n ,则=+n m ___________.

(上海市竞赛试题)

4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.

(山东省竞赛试题) α

G

F E

D C B A

D A 2

A 1C

B A (第4题) (第5题)

5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是( )

A .3°

B .5°

C .8°

D .19.2°

6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是( )

①∠EPF =100°; ②∠ADC +∠ABC =160°; ③∠PEB +∠PFC +∠EPF =136°; ④∠PEB +∠PFC =136°.

A .①②③

B .②③④

C .①③④

D .①②③④

F

E

D

P

C

B A

7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是( )

A . 4536≤≤β

B . 6045≤≤β

C . 9060≤≤β

D .

3245≤≤β

(重庆市竞赛试题)

8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有( )

A .4个

B .5个

C .6个

D .7个

(山东省竞赛试题)

9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.

(第三十二届美国邀请赛试题)

10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?

11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.

(汉城国际数学邀请赛试题)

12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2).

(1)求△BCD 的面积;

(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .

求证:∠CPQ =∠CQP ;

(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF

∥AC 交y 轴于F ,FM 平分∠DFC 交DE 于M ,E

DMF BCF ∠∠-∠2的值是否发生变化?证明

你的结论.

y x A C D B O

x y

Q

C

P D O B

A

图1 图2 x

y

O B

F C

D M A E

图3

13.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m .

O B A x y C A

P F

B E O x

y

图1 图2

(1)求A ,B 的坐标;

(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问

是否存在点C ,使∠D =4

1∠COB .若存在,求C 点坐标; (3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,

∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中

F

ECO ABO ∠∠+∠ 的值是否发生变化?若不

变求其值;若变化,求其范围.

高一地理关于地方时与区时的计算专题总结

关于地方时与区时的计算 一.地方时计算的一般步骤:某地地方时=已知地方时±4分钟×两地经度差 1.找两地的经度差: (1)若两地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)若两地不同是东经或西经,则: 经度数相加 a)若和小于180°时,则经度差=两经度和 b)若和大于180°时,则经度差=180°—两经度和 2.把经度差转化为地方时差,(1°=4分钟;15°=1小时) 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系, 东加西减——所求地在已知地的东边用加号,在已知地的西边用减号。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。 即:度数大的在东。 (2)是西经,度数越大越靠西。 即:度数大的在西。 (3)一个东经一个西经, 如果和小180°,东经在东西经在西; 如果和大于180°,则经度差=(360°—和),东经在西,西经在东 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B 点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方,所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方 8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形知识点讲解经典例题含答案

全等三角形 一、目标认知 学习目标: 1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素; 2.探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式。 重点: 1. 使学生理解证明的基本过程,掌握用综合法证明的格式; 2 .三角形全等的性质和条件。 难点: 1.掌握用综合法证明的格式; 2 .选用合适的条件证明两个三角形全等 经典例题透析 类型一:全等三角形性质的应用 1、如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角. 思路点拨:AB=AC,AB和AC是对应边,∠A是公共角,∠A和∠A是对应角,按对应边所对的角是对应角,对应角所对的边是对应边可求解. 解析:AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠AEC和∠ADB是对应角. 总结升华:已知两对对应顶点,那么以这两对对应顶点为顶点的角是对应角,第三对角是对应角;再由对应角所对的边是对应边,可找到对应边. 已知两对对应边,第三对边是对应边,对应边所对的角是对应角.

举一反三: 【变式1】如图,△ABC≌△DBE.问线段AE和CD相等吗?为什么? 【答案】证明:由△ABC≌△DBE,得AB=DB,BC=BE, 则AB-BE=DB-BC,即AE=CD。 【变式2】如右图,,。 求证:AE∥CF 【答案】 ∴AE∥CF 2、如图,已知ΔABC≌ΔDEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC的长。 思路点拨:由全等三角形性质可知:∠DFE=∠ACB,EC+CF=BF+FC,所以只需求∠ACB的度数与BF的长即可。 解析:在ΔABC中, ∠ACB=180°-∠A-∠B, 又∠A=30°,∠B=50°, 所以∠ACB=100°. 又因为ΔABC≌ΔDEF, 所以∠ACB=∠DFE, BC=EF(全等三角形对应角相等,对应 边相等)。 所以∠DFE=100° EC=EF-FC=BC-FC=FB=2。 总结升华:全等三角形的对应角相等,对应边相等。 举一反三: 【变式1】如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,

(完整版)初三数学相似三角形典型例题(附含答案解析)

2 初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 a b c (a : bc :d )中, a 、 d 叫外项, d b 、 c 叫内项, a 、c 叫前项, b 、 d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。 把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。 2. 比例性质: ①基本性质: a c b d ②合比性质: a c b d ad bc a b c d b d ③等比性质: a c ? b d m (b d ? n n ≠ 0) a c ? m a b d ? n b 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图: l 1∥ l 2∥ l 3 。 AB 则 BC DE , AB EF AC DE , BC DF AC EF ,? DF

地方时区时和时区计算专题练习

地方时、区时和时区计算练习 一.选择题(共14小题) () .下列有关北京时间的说法,不正确的是1 中国标准时间东八区区时地方时D.A.北京的地方时B.() 时,北京的地方时为:002.当北京时间1256 ::::00 16 3.右图中的两条虚线,一条是晨昏线,另一条两侧大部分地区日期不同;()? 8日,则甲地为此时地球公转速度较慢。若图中的时间为7日和时8日4时.7日8 D.日7A.日4时 B.88时C135°5ˊE),最西端位于新疆帕中国幅员辽阔,最东端位于黑龙江与乌苏里江主航道汇合处(约题。4~6米尔高原(约73°40ˊE)。据此回答() 日,中国最东端日出时,北京时间约为月214.300 :00 :00 ::() 21日,中国最东端日出时,最西端帕米尔高原的地方时约为5.3月55 ::00 ::55 () 6.当中国最西端到达正午时,北京时间约为05 :::55 :00 题。~10读下图(阴影部分表示黑夜),据此回答7() .此时太阳直射点的地理坐标是7 B.(30°E,30°W)A.(0°,60°E) (0°,30°E)(0°,120°E)C. D.() 是.此时有两条经线两侧日期不同,这两条经线8 (0°,150°W)B.A.(0°,180°)(180°,150°E)D.(150°W,180°)C. () .此时,北京时间为9. :00 ::00 :00 10.当昏线与本初子午线重合时,北京时间可能为() 月24日2时月22日2时月21日10时月23日10时 2007年10月24日北京时间(东八区)18时05分,举世瞩目的“嫦娥一号”卫星在中国西昌卫星发射中心成功发射。据此回答11~12题: 11.“嫦娥一号”观测的目标天体是()A.太阳 B.月球C.金星D.火星 12.此时,美国纽约(西五区)的区时是() 日5时05分日13时05分日10时05分日11时05分

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

初中数学相似三角形例题解析

相似三角形例题解析 编辑:启慧 为了帮助同学们复习,天之骄学习研究部的老师参考多种学习资料精心选编了这套相似三角形总结专题,供同学们查漏补缺。若有疑问,请速与我们联系。 相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。 一、如何证明三角形相似 例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽△EGC ∽△EAB 。 分析:关键在找“角相等”,除已知条件中已 明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以 △AGD ∽△EGC 。再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。 评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。 例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD 分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。借助于计 A B C D E F G 12 3 4A D

算也是一种常用的方法。 证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72° 又BD平分∠ABC,则∠DBC=36° 在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36° ∴△ABC∽△BCD 例3:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD 求证:△DBE∽△ABC 分析:由已知条件∠ABD=∠CBE,∠DBC公用。所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。从已知条件中可看到△CBE∽△ABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决。 证明:在△CBE和△ABD中, ∠CBE=∠ABD, ∠BCE=∠BAD ∴△CBE∽△ABD

时区和区时的计算专题试卷一

图1 时区和区时的计算专题试卷一 6月22日,当太阳同时位于北半球甲、乙两地上中天(在天空中的位置最高)时,测得甲地太阳高度角为60°,乙地太阳高度角为36°;甲、乙两地在某地图上的距离是44.4厘米(不考虑地形因素)。据此回答1-2题。 1.关于甲、乙两地的说法,正确的是 A .甲、乙两地任何一天均不可能同时看到日出 B .甲地正午太阳高度总是大于乙地 C .甲、乙两地昼夜长短总是相同 D .甲、乙两地均可能出现极昼现象 2.该地图的比例尺为 A .1:24 000 000 B .图上1厘米代表实际距离30千米 C .六十万分之一 D .1:6000 000 3.当我国某城市(30.5°N ,115°E)市中心的标志性建筑物正午阴影面积达一年中最大时,下列四幅昼夜 分布局部图(图1)与之相符的是(阴影表示夜半球) 由图为某群岛示意图,此季节该群岛北侧附近的洋流流向是自西向东,M 线为晨昏线。据此回答4-6题: 4.此时北京时间为 A .21时 B .9时 C .13时 D .23时 5.当图中夹角a 为20?时,下列叙述正确的是 A .南极圈上出现极夜现象 B .此时北京寒冷干燥 C .北半球各地昼长正逐渐加大 D .该地区正午时的物体影子朝南 6.危及到该群岛国家经济发展和生存的主要环境问题是: A .火山、地震 B .全球性气候变暖 C .泥石流、滑坡 D .海洋环境污染 北京时间2005年7月4日13点57分,由美国发起,中、俄、德、法、加等多国科学家参与的“深度撞击号”航天器,经过半年太空遨游,成功地对太阳系中“坦普尔一号”彗星实施了撞击。据此回答7—8题。 7.下列光照图中,与深度撞击号”撞击彗星的时刻最接近的是 8.撞击彗星的瞬间,美国加州大部分地区(西八区)正值日落后3小时左右,天空完全暗 下来,许多天文爱好者目睹了“太空焰火”奇观。此日该地昼长大约为 A .10小时 B .12小时 C .14小时 D . 16小时 9.在某地24时看到北极星的仰角是40o,这时格林尼治时间是当日 18时,那么,这个地点的地理坐标是 A .90oE ,40oN B100oE ,50oN C .90oW ,50oN D .100oW ,40oN

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

地方时与区时经典练习题

专题训练——地方时区时的计算 一、有关地方时的计算 1.已知A 、B 两地经度和A 地的地方时,求B 地的地方时: B 地地方时=A 地地方时±分钟经度差41 0? 如果B 地在A 地的东面用“+”;如果B 地在A 地的西面用“-”。 例1:当东经115°的地方时为9时30分时,东经125°的地方时为多少? 解析:因为东经125°位于东经115°的东面,所以: 东经125°地方时=9时30分+4)1 115125(00 0?-分钟=9时30分+40分=10时10分, 也就是说,当东经115°为9时30分的时候,东经125°的地方时为10时10分。 例2:A 地为东经120°当时的时间为10:20,B 地为东经90°,求B 地的地方时。 解析:因为B 在A 的西面,所以: B 地地方时=10:20-41901200 0?-分钟 =10:20-120分钟 =8:20 2.已知两地的地方时和其中一地的经度,求另一地经度 所求经度=已知经度±014?分钟 地方时差 例1.当伦敦为正午时,区时为20:00的城市是…………………………………( ) A 、悉尼(150°E ) B 、上海(120°E ) C 、洛杉矶(120°W ) D 、阿克拉(0°经线附近) 解析:伦敦正午时为12:00,经度为0°;而区时为20:00的地方应该在伦敦的东部,则: 所求经度=已知经度±014?分钟地方时差=0°+014 1220?-=120°E 二、时区和区时的计算

1.已知A、B两地的时区和A地的区时,求B地的区时: B地区时=A地区时±时区差 如果B地在A地的东面用“+”;如果B地在A地的西面用“-”。 计算结果小于24时,那么日期不变,时间取计算结果; 计算结果大于24时,那么日期增加1日,时间取计算结果减24; 计算结果是负数,那么日期减1日,时间取计算结果加24; 从东向西每过一个时区减1小时;过日界线(180经线°),日期加1天; 从西向东每过一个时区加1小时;过日界线(180经线°),日期减1天。 2行程时间的计算: 由出发时间求到达时间,须加上行程时间; 由到达时间求出发时间,须减去行程时间。 例1.圣诞节(12月25日)前夜当地时间19:00时,英格兰足球超级联赛的一场比赛将在伦敦开赛。香港李先生要去伦敦观看这场比赛。自香港至伦敦,飞机飞行时间约为17小时。试回答下列问题。 (1) 开赛的时候,我国北京时间应为。 解析:A地伦敦(中时区)时间12月24日19:00,B地北京(东八区),时区差=8,B位于A 的东面,所以向东计算时: B地区时=A地区时+时区差=19:00+8:00=27:00 则:日期为12月24日+1日(12月25日),时间为27:00-24:00=3:00 即:开赛时对应的北京时间为12月25日凌晨3:00 (2)在下列香港——伦敦的航班起飞时间中,李先生选择较为合适。 A.23日15:00时B.23日18:00时C.24日7:00时D.24日10:00时 解析:这是由达到时间求出发时间,用以上计算结果再减去行程时间得: 出发时间=A地区时+时差-行程时间=19:00+8:00-17:00=10:00 即李先生本应在12月24日上午10:00出发,但不可能一下飞机就能观看比赛,还需要

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

《全等三角形》典型例题课件.doc

全等三角形知识梳理一、知识网络 性质对应角相等对应边相等 边边边SSS 全等形全等三角形边角边SAS 应用 判定角边角ASA 角角边AAS 斜边、直角边HL 角平分线 作图 性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因 此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 1

3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 全等三角形的判定训练 1.已知AD 是⊿ABC 的中线,BE⊥AD,CF⊥AD,问BE= C F 吗?说明理由。 A F B C D E 2.已知AC= B D,AE =CF,BE=DF ,问AE∥CF 吗? E F A C B D 3.已知AB= C D,BE =DF,AE =CF ,问AB∥CD 吗? A B E F C D 4.已知AC=AB,AE= A D,∠1=∠2,问∠3=∠4 吗? A 1 2 E D 3 4 B C 5. 如图, 已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC请, 说明∠A=∠C. 2

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形中题型归纳讲解

全等三角形中题型归纳 一、含有公共边(线段) 例1已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。求证:AF=CE 。 二、含有公共角(夹角) 例2已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 三、直角三角形 例3已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与 CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。(1) BF =AC (2) CE = BF (3)CE 与BC 的大小关系如何。 四、角平分线 例4.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线. 五、中线(点) 例5如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由 1 2 F E A C D B A E D C B

六、二次全等 例6已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 七、线段和差倍分 例7如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 八、常见辅助线归纳总结 例8如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。 例9在△ABC 中,,AB=AC , 在AB 边上取点D ,在AC 延长线上了取点E ,使CE=BD , 连接DE 交BC 于点F ,求证DF=EF . 九、全等与等腰三角形 例10已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE 求证:OA =OD . P E D C B A A D B E F C B A E D

相似形与相似三角形专题复习(精编题目)精编版

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB = ====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=bc 。如果ad=bc (a ,b ,c ,d 都不等于0),那么d c b a =。 ②合比性质:如果d c b a =,那么d d c b b a ±=±。 ③等比性质:如果d c b a ==???=n m (b+d+???+n ≠0),那么 b a n d b m c a =+???+++???++ ④b 是线段a 、d 的比例中项,则b 2=ad.

区时计算专题例题讲解电子教案

区时计算专题例题讲 解

区时专题例题讲解 区时在地方时(使用不方便)的基础上,人为制定了理论区时,实行分区(24个时区)计时(相邻两时区相差1小时)的办法。区时是以各时区的中央经线的地方时为计时标准,这样使用起来就有了一个统一的标准。 ①特别的计时方法不少国家根据本国的具体情况,在理论区时的基础上,采用了一些变通的办法计时,如我国采用北京时间即是一例。 ②时区的划分注意要点: A由于地球不停地自西向东自转,不同经度的地方,便产生了不同的时刻。这种因经度不同而造成的不同时刻,叫地方时。 B.经度相差1°,地方时相差4分钟。东边地点的时刻总是早于西边。 C.为了统一时间,国际上采用每隔经度15°,划分一个时区的方法,全球共分为24个时区。 D.每个时区都以本区中央经线上的地方时,作为全区共同使用的时间,即区时。 E.北京时间就是北京所在东八区的中央经线120°E上的地方时。 ◆区时的计算 ●方法 (1)公式法: 所求区时=已知区时±时区差 正负号选取原则:东加西减。(所求区时的时区位于已知区时时区的东侧,取“+”;若位于西侧,则取“—”)。 (2)数轴法:

画一个简单的示意图是进行区时计算的好方法。计算时遵循东加西减、一区一时的计算法则,注意日期的变化。 ●区时的性质: ①严格按照各时区中央经线(地方时)与太阳光照的关系来确定某时区的时刻,同一时区不会因经度的变化而改变区时。 ②严格按照“东早西晚,东加西减,区区计较,整时换算”进行区时计算。 ③由于区时是对时区(跨经度15°)而言的,有平面二维空间(区域),具有相对统一性、一致性和稳定性(同区同时),使用方便,克服了时间在钟点上的混乱。实际上,每个国家或地区,为了采用统一的时间,一般都不严格沿经线划分时区,而是按自己的行政边界和自然边界来确定时区。 ●区时的计算方法: ①用已知经度推算时区:

相关文档
最新文档