九年级数学 专训3 应用三角函数解决实际问题中的四种常见类型

九年级数学 专训3 应用三角函数解决实际问题中的四种常见类型
九年级数学 专训3 应用三角函数解决实际问题中的四种常见类型

九年级数学专训3应用三角函数解决实际问题中的四种常见类型

名师点金:在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方位角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.

定位问题

1.某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m,在A处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求此时游轮与望海楼之间的距离BC(3取1.73,结果保留整数).

(第1题)

坡坝问题

2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20 m.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF 的坡角∠F=30°,求AF的长度(结果精确到1 m.参考数据:2≈1.414,3≈1.732).【导学号:83182082】

(第2题)

3.一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的距离是30 km,B,C间的距离是60 km,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,请求出交叉口P到加油站A

的距离(结果保留根号).

测高问题

4.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1 m.备用数据:3≈1.7,2≈1.4).

(第4题)

答案

1.解:根据题意可知AB =300 m .

如图,过点B 作BD ⊥AC ,交AC 的延长线于点D.在Rt △ADB 中,因为∠BAD =30°,

所以BD =12AB =12×300=150(m ).在Rt △CDB 中,因为sin ∠DCB =BD BC ,所以BC =BD sin ∠DCB =150sin 60°=3003

≈173(m ).

(第1题)

即此时游轮与望海楼之间的距离BC 约为173 m .

点拨:本题也可过C 作CD ⊥AB 于点D ,由已知得BC =AC ,AD =12AB =150 m ,所以在Rt △ACD 中,AC =AD cos 30°=1503

2

≈173(m ).所以BC =AC ≈173 m . 2.解:在Rt △ABE 中,∠BEA =90°,

∠BAE =45°,BE =20 m ,

∴AE =20 m .

在Rt △BEF 中,∠BEF =90°,∠F =30°,BE =20 m ,

∴EF =BE tan 30°=203

3

=203(m ). ∴AF =EF -AE =203-20≈20×1.732-20=14.64≈15(m ).

即AF 的长度约是15 m .

3.解:分两种情况:

情况一:如图①,在Rt △BDC 中,CD =30 km ,BC =60 km .

∴sin B =CD BC =12

.∴∠B =30°. ∵PB =PC ,∴∠BCP =∠B =30°.

在Rt △CDP 中,∠CPD =∠B +∠BCP =60°,

∴DP =CD tan ∠CPD =30tan 60°

=103(km ). 在Rt △ADC 中,∵∠A = 45°,

∴AD =DC =30 km .

∴AP =AD +DP =(30+103) km .

(第3题)

情况二:如图②,可求得DP =10 3 km ,AD =30 km .

∴AP =AD -DP =(30-103) km .

故交叉口P 到加油站A 的距离为(30±103) km .

点拨:本题运用了分类讨论思想,针对P 点的位置分两种情况讨论,即P 可能在线段AB 上,也可能在BA 的延长线上.

4.解:如图,延长PQ 交直线AB 于点E.

(1)∠BPQ =90°-60°=30°.

(2)设PE =x m .

在Rt △APE 中,∠A =45°,

则AE =PE =x m .

在Rt △BPE 中,BE =PE·tan ∠BPE =x·tan 30°=

33x(m ). ∵AB =AE -BE =6(m ),∴x -

33x =6.解得x =9+3 3. ∴PE =(9+33)m ,BE =33

x =(33+3)(m ). 在Rt △BEQ 中,QE =BE·tan ∠QBE =(33+3)·tan 30°=(3+3)(m ).

∴PQ =PE -QE =9+33-(3+3)=6+23≈9(m ).

∴该电线杆PQ 的高度约为9 m .

(第4题)

三角函数基础练习题-及答案

三角函数基础练习题 一、 选择题: 1. 下列各式中,不正确...的是 ( ) (A)cos(―α―π)=―cos α (B)sin(α―2π)=―sin α (C)tan(5π―2α)=―tan2α (D)sin(k π+α)=(―1)k sin α (k ∈Z) 3. y=sin )2 33 2(π+x x ∈R 是 ( ) (A)奇函数 (B)偶函数 (C)在[(2k ―1)π, 2k π] k ∈Z 为增函数 (D)减函数 4.函数y=3sin(2x ―3 π)的图象,可看作是把函数y=3sin2x 的图象作以下哪 个 平移得到 ( ) (A)向左平移3 π (B)向右平移3 π (C)向左平移6 π (D)向右平移6 π 5.在△ABC 中,cosAcosB >sinAsinB ,则△ABC 为 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)无法判定 6.α为第三象限角, 1 sec tan 2tan 1cos 1 2 2 -+ +ααα α化简的结果为 ( ) (A)3 (B)-3 (C)1 (D)-1 7.已知cos2θ= 3 2 ,则sin 4θ+cos 4θ的值为 ( ) (A)18 13 (B)18 11 (C)9 7 (D)-1 8. 已知sin θcos θ=8 1且4 π<θ<2 π,则cos θ-sin θ的值为 ( ) (A)- 2 3 (B)43 (C) 2 3 (D)±4 3

9. △ABC 中,∠C=90°,则函数y=sin 2A+2sinB 的值的情况 ( ) (A)有最大值,无最小值 (B)无最大值,有最小值 (C)有最大值且有最小值 (D)无最大值且无最小值 10、关于函数f(x)=4sin(2x+3 π), (x ∈R )有下列命题 (1)y=f(x)是以2π为最小正周期的周期函数 (2) y=f(x)可改写为y=4cos(2x -6 π) (3)y= f(x)的图象关于(-6 π,0)对称 (4) y= f(x)的图象关于直线x=-6 π 对称其中真命题的个数序号为 ( ) (A) (1)(4) (B) (2)(3)(4) (C) (2)(3) (D) (3) 11.设a=sin14°+cos14°,b=sin16°+cos16°,c=2 6,则a 、b 、c 大小 关系( ) (A)a <b <c (B)b <a <c (C)c <b <a (D)a <c <b 12. 若 sinx < 2 1 ,则x 的取值范围为 ( ) (A)(2k π,2k π+6 π)∪(2k π+6 5π,2k π+π) (B) (2k π+6 π,2k π+6 5π) (C) (2k π+6 5π,2k π+6 π) (D) (2k π-67π,2k π+6 π ) 以上k ∈Z 二、 填空题: 13.一个扇形的面积是1cm 2,它的周长为4cm, 则其中心角弧度数为______。 14.已知sin α+cos β=3 1,sin β-cos α=2 1,则sin(α-β)=__________。

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

三角函数能力提高训练题含答案

三角函数 能力提高训练 2017.12 选择题 1.若π04α<< 0,则( ) A.sin 2sin αα> B.cos 2cos αα< C.tan 2tan αα> D.cot 2cot αα< 答案:B 2.函数s i n ()y A a x b =+的 图象与函数cos()y A ax b =+的图像在区间π(0)m m a a ??+>???? ,( ) A.可能没有交点 B.一定有两个交点 C.至少有一个交点 D.只有一个交点 答案:C 3.在ABC △,cos 2cos 2A B <是A B >的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 答案:C 填空题 4.函数23sin cos 3cos 2y x x x =+- 的最小正周期是 . 答案:4π 5.函数sin cos sin cos y x x x x =++的最大值是 . 答案:12 +6.关于函数π()4sin 23f x x ? ?=+ ??? ()x ∈R ,有下列命题: ①由12()()0f x f x ==可得12x x -必是π的整数倍; ②()y f x =的表达式可改写为π4cos 26y x ? ?=- ??? ; ③()y f x =的图象关于点π06??- ???,对称; ④()y f x =的图像关于直线π6x =- 对称. 其中正确命题的序号是 . 答案:②③ 解答题

7.已知22sin 2sin 1αβ+=,3sin 22sin 20αβ-=,且αβ,为锐角,求证:π22 αβ+=. 解:223sin 12sin cos2αββ=-= 又3sin 22sin 2αβ= 2sin 22cos 2tan 2sin sin ααβαα ∴= = tan 2cot βα∴= 1tan tan tan 2tan tan(2)1 1tan tan 21tan tan ααβααβαβαα +++==--无意义 π02α<< ,π02 β<<,02πβ<< 3π022αβ∴<+< π22αβ∴+=. 8.已知tan α,tan β是方程2 410x x --=的两个根,求22sin ()4sin 2()6cos ()αβαβαβ+-+++的值. 解:由已知:tan tan 4αβ+=且tan tan 1αβ=- tan()2αβ∴+=. 原式2222sin ()8sin()cos()6cos ()sin ()cos () αβαβαβαβαβαβ+-++++=+++ 22tan ()8tan()6tan ()1 αβαβαβ+-++=++ 65 =- 9.在ABC △中,求222sin sin sin 222A B C ++的最小值,并指出取最小值时,ABC △的形状,并说明理由. 解:设2 22sin sin sin 222A B C y =++ 31(cos cos cos )22A B C =-++ 312cos cos cos()2222A B A B A B +-??=--+???? 2312cos cos 2cos 122222A B A B A B +-+??=--+ ???

高中三角函数综合题及答案

三角函数习题 1.在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C . (Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>u r r 且m n ?u r r 的最大值是5,求k 的值 2.在ABC ?中,已知内角A . B .C 所对的边分别为a 、b 、c ,向 量 (2sin ,m B =r ,2cos 2,2cos 12B n B ??=- ???r ,且//m n r r ? (I)求锐角B 的大小; (II)如果2b =,求ABC ?的面积ABC S ?的最大值 3.已知??? ? ??-=23,23a ,)4cos ,4(sin x x ππ=,x f ?=)(? (1)求)(x f 的单调递减区间? (2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]3 4,0[∈x 时,)(x g y =的最大值? 4.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =?+ (I)求函数()f x 的最大值与最小正周期; (II)求使不等式3()2 f x ≥成立的x 的取值集合? 5 .已知函数2π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (1)求)(x f 的最大值和最小值; (2)2)(<-m x f 在ππ42x ??∈???? ,上恒成立,求实数m 的取值范围.

6.在锐角△ABC 中,角A . B .C 的对边分别为a 、b 、c,已知.3tan )(222bc A a c b =-+ (I)求角A; (II)若a=2,求△ABC 面积S 的最大值? 7.在锐角ABC ?中,已知内角A . B .C 所对的边分别为a 、b 、c ,且(tanA -tanB)=1+tanA·tan B . (1)若a 2-ab =c 2-b 2,求A . B .C 的大小; (2)已知向量m ρ=(sinA ,cosA),n ρ=(cosB ,sinB),求|3m ρ-2n ρ|的取值范围. 三角函数习题答案 1.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ) ∵A +B +C =π,∴2sin A cos B =sinA . ∵01,∴t =1时,m n ?u r r 取最大值. 依题意得,-2+4k +1=5,∴k = 2 3. ? 2.【解析】:(1) //m n r r 2sinB(2cos 2B 2-1)=-3cos2B

【全】初中数学 三角函数知识点总结

锐角三角函数 锐角三角函数 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边, 余弦(cos)等于邻边比斜边 正切(tan)等于对边比邻边; 余切(cot)等于邻边比对边 正割(sec)等于斜边比邻边 余割(csc)等于斜边比对边 正切与余切互为倒数 互余角的三角函数间的关系。 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 同角三角函数间的关系 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ?积的关系: sinα=tanα?cosα cosα=cotα?sinα tanα=sinα?secα cotα=cosα?cscα secα=tanα?cscα cscα=secα?cotα ?倒数关系: tanα?cotα=1 sinα?cscα=1 cosα?secα=1

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. 特殊的三角函数值 0° 30° 45° 60° 90° 0 1/2 √2/2 √3/2 1 ←sinα 1 √3/ 2 √2/2 1/2 0 ←cosα 0 √3/3 1 √3 None ←tanα None √3 1 √3/3 0 ←cotα 解直角三角形 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

三角函数大题综合训练

三角函数大题综合训练 1.已知函数 ()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间,62ππ?? -???? 上的最大值和最小值. 2.设函数f (x )=cos(2x + 3 π)+sin 2 x .(1)求函数f(x)的最大值和最小正周期.(2)设A ,B ,C 为?ABC 的三个内角,若cos B =31, 1 ()24 c f =-,且C 为锐角,求sin A . 3.已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω?ω?π++>>∈的形式, 并指出()f x 的周期; (Ⅱ)求函数17()[,]12 f x π π在上的最大值和最小值 4.已知函数 ()2sin cos 442x x x f x =+. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ? ?=+ ?? ?,判断函数()g x 的奇偶性,并说明理由.

5.已知函数()cos(2)2sin()sin()3 4 4 f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在 区间[,]122 ππ-上的值域 6.设2()6cos 2f x x x =-.(Ⅰ)求()f x 的最大值及最小正周期;Ⅱ)若锐角α 满足 ()3f α=-4 tan 5 α的值. 7.已知0α βπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且m =·a b .求22cos sin 2() cos sin ααβαα ++-的值. 8.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2()π2-x 满足f ()-π3=f (0).求函数f (x )在[] π4,11π 24上的最大值和最小值.

初中数学竞赛:三角函数

初中数学竞赛:三角函数 直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这佯便定义了直角三角形中锐角的三角函数(如图3-14),常用的有: 利用比例的变形并且结合勾股定理,可以从三角函数定义中推出同角三角函数间的关系式: (1)倒数关系 tgα·ctgα=1; (2)商的关系 (3)平方关系 sin2α+cos2α=1. 这些同角三角函数关系式对任意锐角都成立,它们在求值、化简以及三角式的变形中有着重要的应用. 如图3-15所示,在直角三角形ABC中,∠A与∠B互为余角,根据三角函数定义不难得到互为余角的三角函数之间的关系:

sinB=sin(90°-A)=cosA, cosB=cos(90°-A)=sinA, tgB=tg(90°-A)=ctgA, ctgB=ctg(90°-A)=tgA. 上述四个公式可以概括为:一个锐角的余角的三角函数值,等于该锐角相应的余函数的函数值 由图3-16可以看到,在直角三角形ABC中,如果斜边长度不变,当锐角A增大时,sinA 与tgA的值也随之增大,而cosA与ctgA的值随之减小.特别地,当A=0时,sin0=0,tg0=0,cos0=1,ctg0值不存在;当A=90°时,sin90°=1,tg90°值不存在,cos90°=0,ctg90°=0. 由于一个角的正弦或余弦值等于直角边与斜边的比,而直角三角形的斜边总是大于直角边,所以,当α为锐角时,总有 0<sinα<1,0<cosα<1. 我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题. 例1 不查表,求15°的四种三角函数值. 分析 30°,45°,60°这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15°角的三角函数值,也可以利用直角三角形的性质将其推出.

三角函数高考大题练习

ABC ?的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13 A =。 (Ⅰ)求A B A C ; (Ⅱ)若1c b -=,求a 的值。 设函数()sin cos 1 , 02f x x x x x π=-++<<,求函数()f x 的单调区间与极值。 已知函数2 ()2cos 2sin f x x x =+ (Ⅰ)求()3 f π 的值; (Ⅱ)求()f x 的最大值和最小值 设函数()3sin 6f x x πω?? =+ ?? ? ,0ω>,(),x ∈-∞+∞,且以 2 π 为最小正周期. (1)求()0f ;(2)求()f x 的解析式;(3)已知9 4125f απ??+= ?? ?,求sin α的值. 已知函数2 ()sin 22sin f x x x =- (I )求函数()f x 的最小正周期。 (II) 求函数()f x 的最大值及()f x 取最大值时x 的集合。

在ABC 中,a b c 、、分别为内角A B C 、、的对边,且 2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,是判断ABC 的形状。 (17)(本小题满分12分) 已知函数2()sin()cos cos f x x x x πωωω=-+(0ω>)的最小正周期为π, (Ⅰ)求ω的值; (Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的 1 2 ,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,16π?? ???? 上的最小值. 在?ABC 中, cos cos AC B AB C = 。 (Ⅰ)证明B=C : (Ⅱ)若cos A =-13,求sin 4B 3π? ?+ ?? ?的值。 ABC 中,D 为边BC 上的一点,33BD =,5sin 13B = ,3 cos 5 ADC ∠=,求AD 。 设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且222333b c a +-=.

三角函数大题综合训练

三角函数大题综合训练 1.已知函数 ()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间,62ππ?? -???? 上的最大值和最小值. 2.设函数f (x )=cos(2x + 3 π)+sin 2 x .(1)求函数f(x)的最大值和最小正周期.(2)设A ,B ,C 为?ABC 的三个内角,若cos B =31,1()24c f =-, 且C 为锐角,求sin A . [ 3.已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω?ω?π++>>∈的形式, 并指出()f x 的周期; (Ⅱ)求函数17()[,]12 f x π π在上的最大值和最小值 ! 4.已知函数 ()2sin cos 442x x x f x =+. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ? ?=+ ??? ,判断函数()g x 的奇偶性,并说明理由.

5.已知函数()cos(2)2sin()sin()3 4 4 f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在 区间[,]122 ππ-上的值域 ; 6.设2()6cos 2f x x x =-.(Ⅰ)求()f x 的最大值及最小正周期;Ⅱ)若锐角α 满足 ()3f α=-4 tan 5 α的值. 7.已知0α βπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且m =·a b .求22cos sin 2() cos sin ααβαα ++-的值. ) ) 8.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2????π2-x 满足f ????-π3=f (0).求函数f (x )在??? ?π4,11π 24上的最大值和最小值.

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高考三角函数大题专项练习集(一)

2019 年高考三角函数大题专项练习集(一) 1. 在平面四边形ABCD 中,∠ADC =90 °,∠A=45 °,AB=2 ,BD=5. (1)求cos∠ADB ; (2)若DC = 2 2 ,求BC. 2. 在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知c=2 且ccosA+bcosC=b. (1)判断△ ABC 的形状; (2)若C= ,求△ABC 的面积. 6 3. 在△ ABC 中,角A, B,C 的对边分别为a, b, c ,且2a b cosC c cosB . (1)求角C 的大小; (2)若c 2 ,△ABC 的面积为 3 ,求该三角形的周长. 4. ABC 的内角 (1)求C ; A, B,C 的对边分别为a,b, c .已知 a b sin A csin C bsin B .(2)若ABC 的周长为 6 ,求ABC 的面积的最大值. 5. ABC 的内角A, B, C 所对的边分别为a, b, c ,已解 a b sin( A B) (1)求角A; c b sin A sin B (2)若a 3 ,c b1,求b 和c 的值 6. 已知函数 f x sin x cos x 3 cos2 x .2 2 2 (1)求 f x 的最小正周期; (2)求 f x 在区间,0 上的最大值和最小值. 7. 在△ABC 中,角A、B、C 的对边分别是a、b、c,且3a cos C2b 3c cos A . (1)求角 A 的大小; (2)若a=2,求△ ABC 面积的最大值.

2 8. 在锐角 △ABC 中,角 A, B, C 的对边分别为 a,b, c , BC 边上的中线 AD m ,且满足 a 2 2bc 4m 2 . (1) 求 BAC 的大小; (2) 若 a 2,求 ABC 的周长的取值范围 . 9. 已知a (1 cosx,2 sin x ), b 2 (1 cosx,2 cos x ) . 2 (1) 若 f ( x) 2 sin x 1 a b ,求 4 f ( x) 的表达式; (2) 若函数 f ( x) 和函数 g ( x) 的图象关于原点对称,求函数 g( x) 的解析式; (3) 若 h( x) g( x) f ( x) 1 在 , 上是增函数,求实数 的取值范围 . 2 2 10. 已知 a ( 3 sin x, m cos x) , b (cos x, m cos x) , 且 f ( x) a b (1) 求函数 f (x) 的解析式 ; (2) 当 x x 的值 . , 时, 6 3 f ( x) 的最小值是- 4 , 求此时函数 f ( x) 的最大值 , 并求出相应的 11. △ABC 的内角为 A , B ,C 的对边分别为 a ,b , c ,已知 a b c . (1) 求 sin A B sin Acos A cos A B 的最大值; cos C sin B sin B cos C (2) 若 b 2 ,当 △ABC 的面积最大时, △ ABC 的周长; 12. 如图 ,某大型景区有两条直线型观光路线 AE , AF , EAF 120 ,点 D 位于 EAF 的 平分线上,且与顶点 A 相距 1 公里 .现准备过点 D 安装一直线型隔离网 BC ( B, C 分别在 AE 和 AF 上),围出三角形区域 ABC ,且 AB 和 AC 都不超过 5 公里 .设 AB x , AC y (单位:公里 ). (1) 求 x, y 的关系式; (2) 景区需要对两个三角形区域 ABD , ACD 进行绿化 .经 测算, ABD 区城每平方公里的绿化费用是 ACD 区域的两 倍,试确定 x, y 的值 ,使得所需的总费用最少 .

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

初中数学三角函数难题(含答案)

1.已知等边△ABC内接于⊙O,点D是⊙O上任意一点,则sin∠ADB的值为() A.1 B.C. D. 2.在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,将△BCD沿着直线BD折叠,点C落在点C1处,如果AB=5,AC=4,那么sin∠ADC1的值是.3.观察下列等式 ①sin30°=cos60°= ②sin45°=cos45°= ③sin60°=cos30°= … 根据上述规律,计算sin2a+sin2(90°﹣a)= . 4.有四个命题: ①若45°<a<90°,则sina>cosa; ②已知两边及其中一边的对角能作出唯一一个三角形; ③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数; ④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个. 其中正确命题的序号是(注:把所有正确命题的序号都填上). 5.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.

6.在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= . 7.如果α是锐角,且sin2α十cos235°=1,那么α=度. 8.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣; 因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣; 猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于. 9.在△ABC中,已知sinA=,cosB=,则∠C= . 10.在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A= . 11.若α、β均为锐角,则以下有4个命题:①若sinα<sinβ,则α<β; ②若α+β=90°,则sinα=cosβ;③存在一个角α,使sinα=1.02;④tanα=.其中正确命题的序号是.(多填或错填得0分,少填的酌情给分) 12.附加题:如图,在Rt△ABC中,BC、AC、AB三边的长分别为a、b、c,则sinA=,cosA=,tanA=.我们不难发现:sin260°+cos260°=1,…试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.

三角函数高考大题练习.docx

ABC 的面积是30,内角A, B, C所对边长分别为 12 a, b, c ,cos A。 uuur uuur 13 ( Ⅰ ) 求ABgAC; ( Ⅱ ) 若c b 1,求 a 的值。 设函数 f x sin x cosx x 1 , 0 x 2,求函数 f x 的单调区间与极值。 已知函数 f ( x) 2cos 2x sin 2 x (Ⅰ)求 f () 的值; 3 (Ⅱ)求 f ( x) 的最大值和最小值 设函数 f x3sin x,>0 , x,,且以为最小正周期. 62 ( 1)求f0;(2)求f x 的解析式;(3)已知f 129 ,求 sin的值. 45 已知函数 f ( x) sin 2x2sin 2 x ( I )求函数 f (x) 的最小正周期。 (II)求函数 f ( x) 的最大值及 f (x) 取最大值时x 的集合。

在 VABC 中, a、b、c 分别为内角A、B、C 的对边,且 2a sin A (2b c)sin B (2c b)sin C (Ⅰ)求 A 的大小; (Ⅱ)若 sin B sin C 1,是判断 VABC 的形状。 (17)(本小题满分 12 分) 已知函数 f ( x) sin(x)cos x cos2x (0)的最小正周期为,(Ⅰ)求的值; (Ⅱ)将函数 y f ( x) 的图像上各点的横坐标缩短到原来的1 ,纵坐标不变,得到2 函数 y g ( x) 的图像,求函数y g( x) 在区间 0, 16 上的最小值 . 在 ABC中,AC cos B 。AB cosC (Ⅰ)证明 B=C: (Ⅱ)若 cosA =-1 ,求 sin 4B的值。 33 53 VABC 中, D 为边 BC 上的一点, BD 33 , sin B,cos ADC,求AD。 135 设△ ABC的内角 A、 B、 C 的对边长分别为a、 b、 c,且3b23c23a2 4 2bc .

(完整版)三角函数大题专项(含答案)

三角函数专项训练 1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B. (1)证明a2+b2﹣c2=ab; (2)求角C和边c. 2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值. 3.已知α,β为锐角,tanα=,cos(α+β)=﹣. (1)求cos2α的值; (2)求tan(α﹣β)的值. 4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB; (2)若DC=2,求BC. 5.已知函数f(x)=sin2x+sin x cos x. (Ⅰ)求f(x)的最小正周期; (Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值. 6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2) (Ⅰ)求cos A的值; (Ⅱ)求sin(2B﹣A)的值 7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω; (Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值. 8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=

. (Ⅰ)求b和sin A的值; (Ⅱ)求sin(2A+)的值. 9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B; (2)若a+c=6,△ABC的面积为2,求b. 11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x. (I)求f(x)的最小正周期; (II)求证:当x∈[﹣,]时,f(x)≥﹣. 12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π]. (1)若,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a. (1)求sin C的值; (2)若a=7,求△ABC的面积. 14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B; (2)若cos B=,求cos C的值. 16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.

相关文档
最新文档