第三代非能动先进压水堆AP1000与欧洲先进压水堆EPR简介

第三代非能动先进压水堆AP1000与欧洲先进压水堆EPR简介
第三代非能动先进压水堆AP1000与欧洲先进压水堆EPR简介

第三代非能动先进压水堆AP1000与欧洲先进压水堆EPR简介

1.AP1000与EPR简介

1.1 AP1000

西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。

2002年3月,核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。2004年12月获得了美国核管会授予的最终设计批准。

AP1000为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。AP1000主要的设计特点包括:

(1)主回路系统和设备设计采用成熟电站设计

AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel 4号机组、Tihange 3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器( 125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。

(2)简化的非能动设计提高安全性和经济性

AP1000主要安全系统,如余热排出系统、安注系统、安全壳冷却系统等,均采用非能动设计,系统简单,不依赖交流电源,无需能动设备即可长期保持核电站安全,非能动式冷却显著提高安全壳的可靠性。安全裕度大。针对严重事故的设计可将损坏的堆芯保持在压力容器内,避免放射性释放。

在AP1000设计中,运用PRA分析找出设计中的薄弱环节并加以改进,提高安全水平。AP1000考虑内部事件的堆芯熔化概率和放射性释放概率分别为5.1×10-7/堆年和5.9×10-8/堆年,远小于第二代的1×10-5/堆年和1×10-6/堆年的水平。

简化非能动设计大幅度减少了安全系统的设备和部件,与正在运行的电站设备相比,阀门、泵、安全级管道、电缆、抗震厂房容积分别减少了约50%,35%,80%,70%和45%。同时采用标准化设计,便于采购、运行、维护,提高经济性。西屋公司以AP600的经济分析为基础,对AP1000作的经济分析表明,AP1000的发电成本小于3.6美分/kWh,具备和天然气发电竞争的能力。AP1000隔夜价低于1200美元/千瓦(包括业主费用和厂址费用)。

(3)严重事故预防与缓解措施

AP1000设计中考虑了以下几类严重事故:

堆芯和混凝土相互反应;高压熔堆;氢气燃烧和爆炸;蒸汽爆炸;安全壳超压;安全壳旁路。

为防止堆芯熔融物熔穿压力容器和混凝土底板发生反应,AP1000采用了将堆芯熔融物保持在压力容器内设计(IVR)。在发生堆芯熔化事故后,将水注入到压力容器外璧和其保温层之间,可靠地冷却掉到压力容器下封头的堆芯熔融物。在AP600设计时已进行过IVR的试验和分析,并通过核管会的审查。对于AP1000,这些试验和分析结果仍然适用,但需作一些附加试验。由于采用了IVR技术,可以保证压力容器不被熔穿,从而避免了堆芯熔融物和混凝土底板发生反应。

针对高压熔堆事故,AP1000主回路设置了4列可控的自动卸压系统(ADS),其中3列卸压管线通向安全壳内换料水储存箱,1列卸压管线通向安全壳大气。通过冗余多样的卸压措施,能可靠地降低一回路压力,从而避免发生高压熔堆事故。

针对氢气燃烧和爆炸的危险,AP1000在设计中使氢气从反应堆冷却剂系统逸出的通道远离安全壳壁,避免氢气火焰对安全壳璧的威胁。同时在环安全壳内部布置冗余、多样的氢点火器和非能动自动催化氢复合器,消除氢气,降低氢气燃烧和爆炸对安全壳的危险。

对于蒸汽爆炸事故,由于AP1000设置冗余多样的自动卸压系统,避免了高压蒸汽爆炸发生。而在低压工况下,由于IVR技术的应用,堆芯熔融物没有和水直接接触,避免了低压蒸汽爆炸发生。

对于由于丧失安全壳热量排出引起的安全壳超压事故,AP1000非能动安全壳冷却系统的两路取水管线的排水阀在失去电源和控制时处于故障安全位置,同时设置一路管线从消防水源取水,确保冷却的可靠性。事故后长期阶段仅靠空气冷却就足以带出安全壳内的热量,有效防止安全壳超压。由于采用了IVR技术,不会发生堆芯熔融物和混凝土底板的反应,避免了产生非凝结气体引起的安全壳超压事故。

针对安全壳旁路事故,AP1000通过改进安全壳隔离系统设计、减少安全壳外LOCA发生等措施来减少事故的发生。

(4)仪控系统和主控室设计

AP1000仪控系统采用成熟的数字化技术设计,通过多样化的安全级、非安全级仪控系统和信息提供、操作避免发生共模失效。主控室采用布置紧凑的计算机工作站控制技术,人机接口设计充分考虑了运行电站的经验反馈。

(5)建造中大量采用模块化建造技术

AP1000在建造中大量采用模块化建造技术。模块建造是电站详细设计的一部分,整个电站共分4种模块类型,其中结构模块122个,管道模块154个,机械设备模块55个,电气设备模块11个。模块化建造技术使建造活动处于容易控制的环境中,在制作车间即可进行检查,经验反馈和吸取教训更加容易,保证建造质量。平行进行的各个模块建造大量减少了现场的人员和施工活动。

通过与前期工程平行开展的按模块进行混凝土施工、设备安装的建造方法,AP1000的建设周期大大缩短至60个月,其中从第一罐混凝土到装料只需36个月。

1.2欧洲先进压水堆EPR技术

1.2.1欧洲先进压水堆发展情况简介

1993年5月,法国和德国的核安全当局提出在未来压水堆设计中采用共同的安全方法,通过降低堆芯熔化和严重事故概率和提高安全壳能力来提高安全性,从放射性保护、废物处理、维修改进、减少人为失误等方面根本改善运行条件。1998年,完成了EPR基本设计。2000年3月,法国和德国的核安全当局的技术支持单位IPSN和GRS完成了EPR基本设计的评审工作,并于2000年11月颁发了一套适用于未来核电站设计建造的详细技术导则。目前EPR正在进行补充设计。

1.2.2欧洲先进压水堆EPR设计特点

EPR为单堆布置四环路机组,电功率1525MWe,设计寿命60年,双层安全壳设计,外层采用加强型的混凝土壳抵御外部灾害,内层为预应力混凝土。EPR主要的设计特点包括:(1)安全性和经济性高

EPR通过主要安全系统4列布置,分别位于安全厂房4个隔开的区域,简化系统设计,扩大主回路设备储水能力,改进人机接口,系统地考虑停堆工况,来提高纵深防御的设计安全水平。设计了严重事故的应对措施,保证安全壳短期和长期功能,将堆芯熔融物稳定在安全壳内,避免放射性释放。

EPR考虑内部事件的堆芯熔化概率6.3×10-7/堆年,在电站寿期内可用率平均达到90%,正常停堆换料和检修时间16天,运行维护成本比现在运行的电站低10%,经济性高。建造EPR的投资费用低于1300欧元/千瓦,发电成本低于3欧分/kWh。

(2)严重事故预防与缓解措施

EPR设计中考虑了以下几类严重事故:

高压熔堆;氢气燃烧和爆炸;蒸汽爆炸;堆芯熔融物;安全壳内热量排出。

为避免高压熔堆事故发生,在为对付设计基准事故设置3个安全阀(3×300t/h)的基础上,EPR专门设置了针对严重事故工况的卸压装置(900t/h),安全阀和卸压装置都通过卸压箱排到安全壳内。当堆芯温度大于650℃时,操纵员启动专设卸压装置,可以有效避免压力容器超压失效,并防止压力容器失效后堆芯熔融物的散射。

针对氢气燃烧和爆炸的危险,EPR在设计中采用大容积安全壳(80000m3)。在设备间布置了40台大型氢复合器,在反应堆厂房升降机部位也安装了4台氢复合器。通过计算分析氢气产生量、氢气分布和燃烧导致的压力载荷,结果表明采取上述措施后氢气产生的危险不会威胁安全壳的完整性。

对于蒸汽爆炸事故,EPR在RPV设计中没有设置特殊的装置。通过选择相关事故和边界条件,计算判断RPV封头允许承受的载荷能力,分析论证导致安全壳早期失效的压力容器内蒸汽爆炸已基本消除,不需要设置特殊的装置对付蒸汽爆炸事故。已做的试验显示熔融物不会像以前假设的那样爆炸(极低的概率和/或爆炸性)。进一步的试验仍在进行中。

对于堆芯熔融物,在EPR设计中,RPV失效前堆坑内保持干燥,RPV失效后堆芯熔融物暂时滞留在堆坑内,然后进入专用的展开隔室中展开。堆坑和展开隔室装有保护材料,保护熔融物中残余的锆,降低了氧化物的密度和温度,改善了展开条件。在展开区域设有氧化锆防护层,防护层底下设有冷却管线,安全壳内换料水箱的水非能动地流入并淹没熔融物,从两边对熔融物进行冷却,避免底板熔穿和安全壳失效。

对于安全壳内热量排出,EPR设计有带外部循环的安全壳喷淋系统,2个系列,可以在较短的时间内降低安全壳温度和压力。该系统可以从喷淋工作模式切换至直接冷却熔融物的工作模式,并能长时间防止蒸汽产生,长期地将熔融物和安全壳中的热量导出。

(3)仪控系统和主控室设计

EPR的仪控系统和主控室采用成熟的设计,充分吸取已运行电站数字化仪控系统、人机接口等经验反馈,吸取先进技术设备的优点。仪控采用4列布置,分别位于安全厂房的不同区域,避免发生共模失效。主控室与N4机组的高度计算机化控制室相同,专门设有用于维护和诊断工作的人机接口。

2 第二代与第三代核电站的衔接特点

2.1 SYSTEM80、M314和AP1000

从上世纪80年代中期开始,美国西屋公司致力于开发改进型压水堆——非能动先进压水堆。当时根据电力市场环境条件和电力公司的建议,选择了600MWe级的容量作设计(AP600)。西屋公司投入了巨大的人力,完成了大量的设计文件和试验研究。AP600设计经过美国核管会的技术审查,于1998年9月获得最终设计许可(Final Design Approval)。1999年12月,核管会向西屋公司颁发了最终设计认证证书(Final Design Certification)。

近年来,随着美国电力市场非管制化的发展以及天然气价格的下跌,市场竞争要求进一步降低发电成本。由于不能通过继续改进AP600设计达到新的目标,西屋公司决定提高电功率至百万千瓦级来提高非能动先进压水堆的市场竞争能力。

AP1000堆芯采用成熟的、经工程验证的西屋公司加长堆芯设计(M314型),活性段高度14英尺,首炉装料157个17×17 Performance+高性能燃料组件。

压力容器内径3.98m,环锻结构;经验证的堆芯围筒,代替通常用的径向反射层,采用全焊接结构;堆芯测量系统经上封头穿出,取消下封头贯穿件;通过材料改进等措施保证压力容器60年设计寿命;堆内构件和控制棒驱动机构均应用M314堆型成熟技术。

就反应堆冷却剂系统而言,M314与AP1000相比堆芯尺寸没有太大的变化,但环路数不同,系统设置也变化极大。System80的反应堆冷却剂系统为两环路,虽然与AP1000环路数相同,但System 80装载177个型号为Turbo的燃料组件,燃料组件与其他堆芯相差很大,完全不兼容,AP1000的主泵为全密封屏蔽泵,直接倒挂在SG出口空腔,与System80相差甚大。

M314和System80原始设计中没有考虑LBB准则,而在AP1000设计中采用了LBB技术。很多在役的M314和System80电厂为了简化系统,节约运行维护费用,提高电厂的安全性和经济性,应用LBB技术进行了改造。因此从第二代NPP过渡到采用LBB技术的第三代不存在技术上的问题。

AP1000相对于第二代NPP,采用了非能动的安全系统,大大提高了机组的安全性。

M314和System80的抗震设计输入较低,而AP1000增大到0.3g,机组抗震能力提高,可适应更广泛的厂址。从抗震设计的角度,第三代NPP的结构有所改进,另外,M314和System80的设计中考虑OBE、SSE两级地震水平,而在AP1000设计中,已将OBE从设计考虑中删去,只按SSE进行抗震设计。

M314、System 80的仪控系统主要采用的是模拟技术,其技术经过多年的发展,已非常成熟。AP1000采用更先进的数字化仪表和控制系统。

综上所述,AP1000是革新型第三代核电站,与第二代相比变化很大。从M314过渡到AP1000,在反应堆方面较容易,系统设置需做一定变动;从System 80过渡到AP1000,难度较大。

2.2 N4、M310和EPR

二十世纪七十年代,法国从美国西屋公司引进M312核电技术,先后建造了一批M312核电机组(CPY型,M310型);从1977年起,采用西屋公司M414核电技术,建造了20台四环路的P4/P’4核电机组;从1984年起开发、建造N4型四环路150万千瓦级核电机组。

九十年代末,法国法玛通公司和西门子公司联合开发新一代压水堆核电机组EPR,目标是根据欧洲用户要求(EUR)设计新一代核电机组,以替代二十一世纪退役核电站。其设计综合了法国N4核电站和德国Konvoi核电站的优点和运行经验反馈,是全面满足欧洲电力公司要求文件(EUR)的第三代改进型先进PWR核电站,已经法国和德国核安全当局审核批准,具备了作出决定开工建造第一台机组的条件,但尚未有具体建造计划。

EPR合作开发单位选择了在现有技术基础上进行改进的方式开发EPR,在设计中也对非能动系统应用进行了研究,也采用了一些特殊的非能动部件。

EPR设备和部件设计尽可能吸收了法国N4和德国Konvoi机组的技术和经验反馈。当采用新技术时,通过配套的综合研发和试验计划对其进行验证。主回路设计和布置与N4机组极其相近,可以看作经过验证。堆内构件总体布置、材料与N4相似,堆芯测量装置和控制棒导向管设计则以Konvoi设计为基础,布置在压力容器上封头,避免在压力容器底部使用贯穿件,下封头空间供处理严重事故使用。

M310为大亚湾核电站和岭澳核电站采用的堆型。采用12英尺燃料组件,三环路布置方式。

综上所述,EPR为改进型第三代核电站,基于能动设计思想。N4采用14英尺燃料组件、四环路布置方式,过渡到EPR相对较容易;M310采用12英尺燃料组件、三环路布置方式,过渡到EPR相对较难。

3 技术升级便捷程度分析比较

3.1 System80、M314和AP1000

AP1000属第三代革新型先进PWR核电站。采用成熟的技术,通过系统简化、减少设备以及采用非能动专设安全设施,显著提升了电厂安全性、经济性,满足URD有关要求。由于采用非能动技术,技术难度较大,目前尚无工程经验。

M314与AP1000反应堆基本相同,都装载157个燃料组件,堆芯尺寸没有变化,但环路数不同,系统设置变化较大;虽然System 80环路数与AP1000相同,但反应堆和主回路设置相差很大。从M314升级到AP1000比从System 80升级到AP1000稍容易一些。

3.2 N4、M310和EPR

由M310、N4发展至EPR,安全系统仍保持能动基础,通过增加安全系列,采用多样化设施,改进技术,加强严重事故对策,提高设备可靠性,来提高安全性;并采取一些措施,来降低发电

成本,满足EUR对新一代核电机组要求。EPR属第三代改进型先进PWR核电站。从N4升级到EPR 比从M310升级到EPR稍容易一些。

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

核反应堆类型简介

核反应堆类型简介 核反应堆(Nuclear Reactor),又称原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置,是一种启动、控制并维持核裂变或核聚变链式反应的装置。在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。核反应堆,是一种启动、控制并维持核裂变或核聚变链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆分类有: 按时间分可以分为四代: 第一代核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆核电站,如美国的希平港压水堆、德累斯顿沸水堆以及英国的镁诺克斯石墨气冷堆等。 第二代核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如、加拿大坎度堆、苏联的压水堆等。目前世界上的大多数核电站都属于第二代核电站。 第三代是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆、系统80+、AP600、欧洲压水堆等。 第四代是待开发的核电站,其目标是到2030年达到实用化的

程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。 按用途分:动力核反应堆;研究核反应堆;生产核反应堆(快滋生反应器)。 按反应堆慢化剂和冷却剂分: 轻水堆(压水反应堆、沸水反应堆):轻水型反应堆使用相对分子质量为18的轻水作为慢化剂和冷却剂; 重水堆:重水堆可按结构分为压力容器式和压力管式两类。两者都使用重水做慢化剂,但前者只能用重水做冷却剂,后者却可用重水、轻水、气体等物质做冷却剂; 石墨气冷堆;石墨液冷堆。 按反应堆中中子的速度分:热中子堆;快中子堆。 核反应堆有许多用途,最重要的用途是产生热能,用以代替其他燃料,产生蒸汽发电或驱动航空母舰等设施运转。 按用途分:将中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等;生产放射性同位素的核反应堆;生产核裂变物质的核反应堆,称为生产堆;提供取暖、海水淡化、化工等用的热量的核反应堆,比如多目的堆;为发电而发生热量的核反应,称为发电堆;用于推进船舶、飞机、火箭等到的核反应堆,称为推进堆。 如此多的反应堆种类,意味着很多的人才空缺,让我感觉到核电事业亟待人才的加入,我决心努力学习,将来为我国核电事业作出一番贡献。

核电站简介

核电站简介 核电站是利用核裂变或核聚变反应所释放的能量产生电能的发电厂。目前商业运转中的核能发电厂都是利用核裂变反应而发电。核电站一般分为两部分:利用原子核裂变生产蒸汽的核岛(包括反应堆装置和一回路系统)和利用蒸汽发电的常规岛(包括汽轮发电机系统),使用的燃料一般是放射性重金属:铀、钚。 1、简介: 核电站又称核电厂,它指用铀、钚等作核燃料,将它在裂变反应中产生的能量转变为电能的发电厂。核电厂主要以反应堆的种类相区别,有压水堆核电厂、沸水堆核电厂、重水堆核电厂、石墨水冷堆核电厂、石墨气冷堆核电厂、高温气冷堆核电厂和快中子增殖堆核电厂等。核电厂由核岛(主要是核蒸汽供应系统)、常规岛(主要是汽轮发电机组)和电厂配套设施三大部分组成。核燃料在反应堆内产生的裂变能,主要以热能的形式出现。它经过冷却剂的载带和转换,最终用蒸汽或气体驱动涡轮发电机组发电。核电厂所有带强放射性的关键设备都安装在反应堆安全壳厂房内,以便在失水事故或其他严重事故下限制放射性物质外溢。为了保证堆芯核燃料在任何情况下等到冷却而免于烧毁熔化,核电厂设置有多项安全系统。 火力发电站利用煤和石油发电,水力发电站利用水力发电,而核电站是利用原子核内部蕴藏的能量产生电能的新型发电站。核电站大体可分为两部分:一部分是利用核能产生蒸汽的核岛,包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。 核电站用的燃料是铀。铀是一种很重的金属。用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,就会产生电,这些电能通过电网送到四面八方。这就是最普通的压水反应堆核电站的工作原理。 2、工作原理: 核电站以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,使核能转变成热能来加热水产生蒸汽。利用蒸汽通过管路进入汽轮机,推动汽轮发电机发电,使机械能转变成电能。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。核反应堆,又称为原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置。原子由原子核与核外电子组成。原子核由

核反应堆的分类

核反应堆的分类

核电站分类 核电站按照反应堆形式分类 压水堆核电站 以压水堆为热源的核电站.它主要由核岛和常规岛组成.压水堆核电站核岛中的四大部件是蒸汽发生器、稳压器、主泵和堆芯.在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统.常规岛主要包括汽轮

机组及二回路等系统,其形式与常规火电厂类似. 沸水堆核电站(现在发生事故的日本福岛第一核电站) 以沸水堆为热源的核电站.沸水堆是以沸腾轻水为慢化剂和冷却剂、并在反应堆压力容器内直接产生饱和蒸汽的动力堆.沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点.它们都需使用低富集铀做燃料.沸水堆核电站系统有:主系统(包括反应堆);蒸汽—给水系统;反应堆辅助系统等. 重水堆核电站(如中国秦山III核电站) 以重水堆为热源的核电站.重水堆是以重水做慢化剂的反应堆,可以直接利用天然铀作为核燃料.重水堆可用轻水或重水做冷却剂,重水堆分压力容器式和压力管式两类. 重水堆核电站是发展较早的核电站,有各种类别,但已实现工业规模推广的只有加拿大发展起来的坎杜型压力管式重水堆核电站.

快堆核电站(如日本茨城县东海村常阳和福井县敦贺市文殊反应炉) 由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站.快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖. 石墨气冷堆 以气体(二氧化碳或氦气)作为冷却剂的反应堆.这种堆经历了三个发展阶段,有天然铀石墨气冷堆、改进型气冷堆和高温气冷堆三种堆型.天然铀石墨气冷堆实际上是天然铀做燃料,石墨做慢化剂,二氧化碳做冷却剂的反应堆.改进型气冷堆设计的目的是改进蒸汽条件,提高气体冷却剂的最大允许温度,石墨仍为慢化剂,二氧化碳为冷却剂.高温气冷堆是石墨作为慢化剂,氦气作为冷却剂的堆。

核能数值反应堆国内外研究现状及进展

Nuclear Science and Technology 核科学与技术, 2015, 3, 41-47 Published Online April 2015 in Hans. https://www.360docs.net/doc/a117976729.html,/journal/nst https://www.360docs.net/doc/a117976729.html,/10.12677/nst.2015.32007 Current Research Status and Progress of Nuclear Energy Virtual Reactor in China and Abroad Yuanlei He, Xiaoyan Li, Yong Wang Shanghai Nuclear Engineering Research & Design Institute, Shanghai Email: heyuanlei@https://www.360docs.net/doc/a117976729.html, Received: Mar. 30th, 2015; accepted: Apr. 18th, 2015; published: Apr. 27th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/a117976729.html,/licenses/by/4.0/ Abstract The latest progress in the field of nuclear energy advanced modeling & simulation is introduced in this paper, in which the meaning of the nuclear virtual reactor or numerical nuclear reactor is re-viewed. A detailed research and introduction about nuclear virtual reactor programs in the United State and Europe, such as CASL, NEAMS and NURESIM are addressed. Based on the research, the key technology and challenge of developing a nuclear virtual reactor are summarized, which can give the support to the further study of the nuclear virtual reactor. Keywords Nuclear Virtual Reactor, CASL, NEAMS, NURESIM, Digital Plant 核能数值反应堆国内外研究现状及进展 何元雷,李小燕,王勇 上海核工程研究设计院,上海 Email: heyuanlei@https://www.360docs.net/doc/a117976729.html, 收稿日期:2015年3月30日;录用日期:2015年4月18日;发布日期:2015年4月27日

核能简介

核能简介 发展史 核能是人类历史上的一项伟大发明,这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。19世纪末英国物理学家汤姆逊发现了电子。1895年德国物理学家伦琴发现了X射线。1896年法国物理学家贝克勒尔发现了放射性。1898年居里夫人与居里先生发现新的放射性元素钋。1902年居里夫人经过4年的艰苦努力又发现了放射性元素镭。1905年爱因斯坦提出质能转换公式。1914年英国物理学家卢瑟福通过实验,确定氢原子核是一个正电荷单元,称为质子。1935年英国物理学家查得威克发现了中子。1938年德国科学家奥托·哈恩用中子轰击铀原子核,发现了核裂变现象。1942年12月2日美国芝加哥大学成功启动了世界上第一座核反应堆。1945年8月6日和9日美国将两颗原子弹先后投在了日本的广岛和长崎。1954年苏联建成了世界上第一座核电站------奥布灵斯克核电站在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。 核资源 世界上有比较丰富的核资源,核燃料有铀、钍氘、锂、硼等等,世界上铀的储量约为417万吨。地球上可供开发的核燃料资源,可提供的能量是矿石燃料的十多万倍。核能应用作为缓和世界能源危机的一种经济有效的措施有许多的优点,其一核燃料具有许多优点,如体积小而能量大,核能比化学能大几百万倍;1000克铀释放的能量相当于2400吨标准煤释放的能量;一座100万千瓦的大型烧煤电站,每年需原煤300~400万吨,运这些煤需要2760列火车,相当于每天8列火车,还要运走4000万吨灰渣。同功率的压水堆核电站,一年仅耗铀含量为3%的低浓缩铀燃料28吨;每一磅铀的成本,约为20美元,换算成1 千瓦发电经费是0.001美元左右,这和目前的传统发电成本比较,便宜许多;而且,由于核燃料的运输量小,所以核电站就可建在最需要的工业区附近。核电站的基本建设投资一般是同等火电站的一倍半到两倍,不过它的核燃料费用却要比煤便宜得多,运行维修费用也比火电站少,如果掌握了核聚变反应技术,使用海水作燃料,则更是取之不尽,用之方便。其二是污染少。火电站不断地向大气里排放二氧化硫和氧化氮等有害物质,同时煤里的少量铀、钛和镭等放射性物质,也会随着烟尘飘落到火电站的周围,污染环境。而核电站设置了层层屏障,基本上不排放污染环境的物质,就是放射性污染也比烧煤电站少得多。据统计,核电站正常运行的时候,一年给居民带来的放射性影响,还不到一次X光透视所受的剂量。其三是安全性强。从第一座核电站建成以来,全世界投入运行的核电站达400多座,30多年来基本上是安全正常的。虽然有1979年美国三里岛压水堆核电站事故和1986年苏联切尔诺贝利石墨沸水堆核电站事故,但这两次事故都是由于人为因素造成的。随着压水堆的进一步改进,核电站有可能会变得更加安全。 核能利用 利用核反应堆中核裂变所释放出的热能可以用于发电,它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的过饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。核能发电利用铀燃料进行核分裂连锁反应所产生的热,将水加热成高温高压,利用产生的水蒸气推动蒸汽轮机并带动发电机。核反应所放出的热量较燃烧化石燃料所放出的能量

关于核能知识介绍

第一代核电站。核电站的开发与建设开始于20世纪50年代。1954年前苏联建成发电功率为5兆瓦的实验性核电站;1957年,美国建成发电功率为9万千瓦的Ship Ping Port原型核电站。这些成就证明了利用核能发电的技术可行性。国际上把上述实验性的原型核电机组成为第一代核电机组。第二代核电站。20世纪60年代后期,在实验性和原型核电机组基础上,陆续建成发电功率30万千瓦的压水堆、沸水堆、重水堆、石墨水冷堆等核电机组,他们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明。目前,世界上商业运行的400多座核电机组绝大部分是在这一时期建成的,习惯上称为第二代核电机组。第三代核电站。20世纪90年代,为了消除三里岛和切尔诺贝利核电站事故的负面影响,世纪核电业界集中力量对严重事故的预防和缓解进行了研究和攻关,美国和欧洲先后出台了《先进轻水堆用户要求文件》,即URD文件和《欧洲用户对轻水堆核电站的要求》,即EUR文件,进一步明确了预防与缓解严重事故,提高安全可靠性等方面的要求。国际上通常把满足URD文件或EUR文件的核电机组称为第三代核电机组。对第三代核电机组要求是能在2010年前进行商用建造。第四代核电站。2000年1月,在美国能源部的倡议下,美国、英国、瑞士、南非、日本、法国、加拿大、巴西、韩国和阿根廷共10个有意发展核能的国家,联合组成了“第四代国际核能论坛”,与2001年7月签署了合约,约定共同合作研究开发第四代核能技术。 核能 核能发电: 核能→水和水蒸气的内能→发电机转子的机械能→电能。 核能发电 nuclear electric power generation 利用核反应堆中核裂变所释放出的热能进行发电的方式。它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却 剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电 机。 简史核能发电的历史与动力堆的发展历史密切相关。动力堆的发展最初是出于军事需要。1954年,苏联建成世界上第一座装机容量为5兆瓦(电)的核电站。英、美等国也相继建成各种类型的核电站。到1960年,有5个国家建成20座核电站,装机容量1279兆瓦(电)。由

各种反应堆介绍

各种反应堆介绍

各种反应堆介绍 国外高温气冷堆发展情况 目前世界上的主要有核国家,都在积极发展高温气冷堆技术用于发电与制氢。美国能源部2004年开始招标建设一座热功率40万到60万千瓦的双用途高温气冷堆,项目投资约15亿美元,计划2015年建成。南非的高温气冷堆核电站设计,已经通过国际原子能机构组织的四次审评,计划在2010年前建成示范电站。法国法马通公司也在积极开展高温气冷堆技术的研究,并已参加美国爱达荷高温气冷堆项目的投标。日本已经建成了高温工程试验研究堆,用于研究高温气冷堆技术和高温制氢技术。俄罗斯正与美国共同开展利用高温气冷堆烧钚的研究。 快堆核电站 快堆核电站由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站。快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。目前,世界上已商业运行的核电站堆型,如压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型,主要利用核裂变燃料,即使再利用转换出来的钚-239等易裂变材料,它对铀资源的利用率也只有1%—2%,但在快堆中,铀-238原则上都能转换成钚-239而得以使用,但考虑到各种损耗,快堆可将铀资源的利用率提高到60%—70%。 沸水堆核电站

沸水堆核电站以沸水堆为热源的核电站。沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的动力堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。沸水堆核电站系统有:主系统(包括反应堆);蒸汽-给水系统;反应堆辅助系统等。 重水堆核电站 与压水堆核电站不同,重水堆核电站的核反应堆是利用天然铀作燃料,用重水做慢化剂和冷却剂。目前全世界正在运行的400多个核电机组中,绝大多数是压水堆,只有32个是重水堆。 重水堆核电站不用浓缩铀,而用天然铀作燃料,比压水堆的燃料成本低三分之二,但用作慢化剂和冷却剂的重水则十分昂贵。与压水堆核电站相比,重水堆核电站可以实现不停堆换燃料,一年365天都可以发电,实际发电量可以达到设计发电量的85%,设计年容量因子较高。另外,重水堆核电站的安全性较高,还可以大量生产同位素。 目前全世界拥有重水堆核电机组最多的国家是加拿大,韩国、阿根廷、印度、罗马尼亚和我国的台湾省也有少量重水堆核电机组。 目前正在运行的秦山三期属于重水堆核电站 生活中的辐射 千万年来,人类就是在天然放射性环境中发展进化,繁衍生长。在您的一生中,从头到脚时时刻刻都受到看不见的射线的照射,但仍然健康地生活着。天然环境中的放射性,主要来自天空中的宇宙射线和大地土壤、

相关文档
最新文档