河南省平顶山市宝丰县杨庄镇七年级数学上册 第二章 整式的加减单元练习一(无答案)(新版)新人教版
新人教版七年级上学期《第2章整式的加减》同步单元检测试题附答案

人教版七年级数学 第2章 整式的加减 同步检测试题(全卷总分100分) 姓名 得分一、选择题(每小题3分,共30分) 1.下列式子符合书写要求的是( )A .-xy 22 B .a -1÷bC .413xy D .ab×3 2.在下列表述中,不能表示“4a”意义的是( ) A .4的a 倍 B .a 的4倍C .4个a 相加D .4个a 相乘3.多项式-x 2-12x -1的各项分别是( )A .-x 2,12x ,1B .-x 2,-12x ,-1C .x 2,12x ,1D .x 2,-12x ,-1 4.若-3x m y 2与2x 3y 2是同类项,则m 等于( ) A .1 B .2 C .3 D .4 5.计算3a 2-a 2的结果是( ) A .4a 2 B .3a 2 C .2a 2 D .3 6.-[a -(b -c)]去括号正确的是( ) A .-a -b +c B .-a +b -c C .-a -b -c D .-a +b +c7.数x 、y 在数轴上对应点的位置如图所示,则化简|x +y|-|y -x|的结果是( )A .0B .2xC .2yD .2x -2y8.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 为( ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19.已知整式6x -1的值是2,y 2的值是4,则(5x 2y +5xy -7x)-(4x 2y +5xy -7x)=( )A .-12 B.12C.12或-12 D .2或-1210.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )A .22B .24C .26D .28 二、填空题(每小题3分,共18分)11.单项式7πa 3b 2的系数是 ,次数是 . 12.计算:3a 2-a 2= .13.一家体育器材商店将某种品牌的篮球按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出.已知每个篮球的成本价为a 元,则该商店卖出一个篮球可获利润 元.14.-54a 2b -43ab +1是三次三项式,其中常数项是1,最高次项是 ,二次项系数是 .15.若3a m +2b 4与-a 5b n -1的和仍是一个单项式,则m +n = . 16.观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …请猜测,第n 个算式(n 为正整数)应表示为 . 三、解答题(共52分) 17.(16分)化简:(1)(x 2-7x)-(3x 2-5-7x);(2)(4ab-b2)-2(a2+2ab-b2);(3)x-[y-2x-(x-y)];(4)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y).18.(10分)化简求值:(1)(4a2-2a-6)-2(2a2-2a-5),其中a=-1;(2)-12a-2(a-12b2)-(32a-13b2),其中a=-2,b=32.19.(7分)已知A=3x2+3y2-5xy,B=4x2-3y2+2xy,当x=-1,y=1时,计算2A -3B的值.20207分)观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④;⑤;(2)通过猜想,写出与第n个图形相对应的等式.21.(12分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于2020 不予优惠低于500元但不低于2020 九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款元;(2)若顾客在该超市一次性购物x元,当x小于500但不小于2020,他实际付款0.9x元,当x大于或等于500时,他实际付款元(用含x的式子表示);(3)如果王老师两次购物货款合计82020第一次购物的货款为a元(2020a<300),用含a 的式子表示:两次购物王老师实际付款多少元?人教版七年级数学 第2章 整式的加减 同步检测试题参考答案一、选择题(每小题3分,共30分) 1.下列式子符合书写要求的是( A )A .-xy 22 B .a -1÷bC .413xy D .ab×3 2.在下列表述中,不能表示“4a”意义的是( D ) A .4的a 倍 B .a 的4倍C .4个a 相加D .4个a 相乘3.多项式-x 2-12x -1的各项分别是( B )A .-x 2,12x ,1B .-x 2,-12x ,-1C .x 2,12x ,1D .x 2,-12x ,-1 4.若-3x m y 2与2x 3y 2是同类项,则m 等于( C ) A .1 B .2 C .3 D .4 5.计算3a 2-a 2的结果是( C ) A .4a 2 B .3a 2 C .2a 2 D .3 6.-[a -(b -c)]去括号正确的是( B ) A .-a -b +c B .-a +b -c C .-a -b -c D .-a +b +c7.数x 、y 在数轴上对应点的位置如图所示,则化简|x +y|-|y -x|的结果是( C )A .0B .2xC .2yD .2x -2y8.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 为( C ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19.已知整式6x -1的值是2,y 2的值是4,则(5x 2y +5xy -7x)-(4x 2y +5xy -7x)=( C )A .-12 B.12 C.12或-12 D .2或-1210.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( C )A .22B .24C .26D .28 二、填空题(每小题3分,共18分)11.单项式7πa 3b 2的系数是 7π ,次数是 5 . 12.计算:3a 2-a 2= 2a 2 .13.一家体育器材商店将某种品牌的篮球按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出.已知每个篮球的成本价为a 元,则该商店卖出一个篮球可获利润 0.12a 元.14.-54a 2b -43ab +1是三次三项式,其中常数项是1,最高次项是 -54a 2b ,二次项系数是 -43 .15.若3a m +2b 4与-a 5b n -1的和仍是一个单项式,则m +n = 8 . 16.观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …请猜测,第n 个算式(n 为正整数)应表示为 [10(n -1)+5]×[10(n -1)+5]=100n(n -1)+25 . 三、解答题(共52分)17.(16分)化简:(1)(x2-7x)-(3x2-5-7x);解:原式=x2-7x-3x2+5+7x=-2x2+5.(2)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=b2-2a2.(3)x-[y-2x-(x-y)];解:原式=x-y+2x+x-y=4x-2y.(4)3(x-y)-2(x+y)-5(x-y)+4(x+y)+3(x-y).解:原式=(x-y)+2(x+y)=x-y+2x+2y=3x+y.18.(10分)化简求值:(1)(4a2-2a-6)-2(2a2-2a-5),其中a=-1;解:原式=4a2-2a-6-4a2+4a+10=2a+4.当a=-1时,原式=2.(2)-12a-2(a-12b2)-(32a-13b2),其中a=-2,b=32.解:原式=-12a-2a+b2-32a+13b2=-4a+43b 2.当a=-2,b=32时,原式=11.19.(7分)已知A=3x2+3y2-5xy,B=4x2-3y2+2xy,当x=-1,y=1时,计算2A -3B的值.解:因为A=3x2+3y2-5xy,B=4x2-3y2+2xy,所以2A-3B=6x2+6y2-10xy-12x2+9y2-6xy=-6x2+15y2-16xy,当x=-1,y=1时,原式=-6+15+16=25.20207分)观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④4×3+1=4×4-3;⑤4×4+1=4×5-3;(2)通过猜想,写出与第n个图形相对应的等式.解:4(n-1)+1=4n-3.21.(12分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于2020 不予优惠低于500元但不低于2020 九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款530元;(2)若顾客在该超市一次性购物x元,当x小于500但不小于2020,他实际付款0.9x元,当x大于或等于500时,他实际付款(0.8x+50)元(用含x的式子表示);(3)如果王老师两次购物货款合计82020第一次购物的货款为a元(2020a<300),用含a 的式子表示:两次购物王老师实际付款多少元?解:0.9a+0.8(8202000-a)+450=0.9a+656-400-0.8a+450=0.1a+706(元).。
(完整)七年级上册数学第二章整式的加减-专项练习100题含答案,推荐文档

整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2 1 x)-4(x-x21-+32 +);229、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].+(-35、 - 2 ab + 3 a 2b +ab3a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 3 4 437、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、2x - {-3y + [3x - 2(3x - y )]}45、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).3a )]49、1 12 22 2 2 2xy+(- xy )-2xy -(-3y x ) 50、5a -[a -(5a -2a )-2(a -2 451、5m-7n-8p+5n-9m+8p 52、(5x2y-7xy2)-(xy2-3x2y)+5x 253、3x2y-[2x2y-3(2xy-x2y)-xy] 54、3x2-[5x-4(1x2-1)]21312 255、2a3b- a b-a2b+2a b-ab ;256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.1 167、a-( a-4b-6c)+3(-2c+2b)3 268、-5a n-a n-(-7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70 、1a2b-0.4ab2-41a2b+22ab2;71、3a-{2c-[6a-(c-b)+c+(a+8b-6)]}572、-3(xy-2x2)-[y2-(5xy-4x2)+2xy];73、化简、求值1 x2-⎡2- ( 1 x2+ y2)⎤3 2 x2+1 y2),其中x=-2,y=-2 ⎢⎣243⎥⎦-2 (-3 3=-1 ; 74、化简、求值 1 x -2(x - 1 y 2)+(- 3 x + 1 y 2),其中 x =-2,y 2=- .2 3 2 3 375、 1 x 3 - ⎛- 3x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x1 3⎝ 23⎪⎭2276、 化简,求值(4m+n )-[1-(m-4n )],m= 2 5 n=-1 1377、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2.80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.81、若 2a 2-4ab+b 2 与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求 3x 2+x -5 与 4-x +7x 2 的差.84、计算 5y+3x+5z 2 与 12y+7x-3z 2的和85、计算 8xy 2 +3x 2 y-2 与-2x 2 y+5xy 2-3 的差 86、 多项式-x 2+3xy- 1 y 与多项式 M 的差是-1 x 2 2 2-xy+y ,求多项式 M87、当 x=- 1,y=-3 时,求代数式 3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 288、化简再求值 5abc-{2a 2 b-[3abc-(4ab 2 -a 2 b )]-2ab 2},其中 a=-2,b=3,c=- 1489、已知 A=a 2 -2ab+b 2 ,B=a 2 +2ab+b 21(1)求 A+B ; (2) 求 (B-A);490、小明同学做一道题,已知两个多项式 A ,B ,计算 A+B ,他误将 A+B 看作 A- B ,求得 9x 2-2x+7,若 B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N.92、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B93、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.94、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b- 2|+c2=0.96、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设 A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3) 2 =0,且B-2A=a ,求 a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当 a 取任意有理数时, 请比较 A 与 B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a2 +6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5 、 3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 2 2b-3ab 2 )-2(a 2 b-7ab ) = -a 2 b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m2 n-5mn )-(4m 2 n-5mn )= 3m 2 n 10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 2 12、2(a-1)-(2a-3)+3.=413、-2(ab-3a2 )-[2b 2 -(5ab+a 2 )+2ab]= 7a 2 +ab-2b 2 14、(x2 -xy+y )-3(x 2 +xy-2y )= -2x 2 -4xy+7y 15、3x 2 -[7x-(4x-3)-2x 2 ]=5x 2 -3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2 -4a 20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2+7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a2 +ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2- 1 +3x )-4(x -x 2+ 1 ) = 6x2 -x- 52 2 229、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -3 30、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a2 -3ab+2b 2 )+(a 2 +2ab-2b 2 )= 4a 2 -ab32、2a 2 b+2ab 2 -[2(a 2 b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235 、36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 37、2x -(3x -2y +3)-(5y -2)=-x-3y-1ab-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、 2x - {- 3y + [3x - 2(3x - y )]} = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x3 -x 2+5x+1 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、11xy+(- 1xy )-2xy 2-(-3y 2x )= xy+xy2 24450、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy1 54 、 3x 2-[5x-4(x 2-1)]+5x 2= 10x 2 -5x-4211 31 55、2a 3b- a 3b-a 2b+ a 2b-ab 2= a 3b- a 2b-ab 2222256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2= -3a 3+4a 258 、 5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b 59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a2 -2b 2 64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+41 11 67、 a-(a-4b-6c)+3(-2c+2b)= - a+10b32668 、 -5a n-a n-(-7a n)+(-3a n)= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 22 - ab +3 a 2b +ab +(-3 a 2b )-1 = 13 4 4 3⎭71、a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)1-[y 2-(5xy-4x 2)+2xy]=3 2x 2 2-y 21 4 73、化简、求值 x 2-⎡2- ( 1 x 2+ y 2)⎤ - (- x 2+ y 2),其中 x =-2, y =- 2⎢⎣ 2 1 8原 式 =2x 2+ y 2-2 =629⎥⎦ 2 3 3 3 1 1 3 1 2 74、化简、求值 x -2(x - y 2)+(- x + y 2),其中 x =-2,y =- .23233原式=-3x+y2 =6 49 1 x 3 - ⎛- 3 x 2 - 2 x 3 ⎫ - 1 x 2 + (4x + 6) - 5x 其中 x =-11 ;75、 3⎝ 23 ⎪ 223原式=x 3 +x 2 -x+6=6 82 1 76、 化简,求值(4m+n )-[1-(m-4n )],m=n=-153原式=5m-3n-1=577、化简、求值 2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中 a =-3,b =2 原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中 x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中 x=-2. 原式=-2x2 +x-6=-16 80、若两个多项式的和是 2x 2+xy+3y 2,一个加式是 x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若 2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求 5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求 3x 2+x -5 与 4-x +7x 2 的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z2 与 12y+7x-3z 2 的和 (5y+3x+5z2 )+(12y+7x-3z 2 )=17y+10x+2z 2 85、计算 8xy 2 +3x 2 y-2 与-2x2 y+5xy 2 -3 的差 (8xy2 +3x 2 y-2)—(-2x 2 y+5xy 2 -3)=5x 2 y+3xy 2 +1 86、 多项式-x2 +3xy- 1 y 与多项式 M 的差是- 1x 2-xy+y ,求多项式 M 221 3 M=- x 2+4xy — y221 a 2b-0.4ab 2- 1 a 2b+2 ab 2 = - 1 4 2 5 4187、当x=- ,y=-3 时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.2原式=-8xy+y= —1588、化简再求值 5abc-{2a 2b-[3abc-(4ab 2-a 2b)]-2ab 2},其中 a=-2,b=3,c=-14原式=83abc-a 2b-2ab 2=3689、已知 A=a 2-2ab+b 2,B=a 2+2ab+b 21(1)求 A+B;(2)求 (B-A);4 A+B=2a 2+2b 21(B-A)=ab 490、小明同学做一道题,已知两个多项式 A,B,计算 A+B,他误将 A+B 看作 A-B,求得9x2-2x+7,若 B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5 A+B=11x2+4x+391、已知:M=3x2+2x-1,N=-x2-2+3x,求 M-2N. M-2N=5x2-4x+392、已知A = 4x2 - 4xy +y2 , B =x2 +xy - 5 y2 ,求 3A-B3A-B=11x 2-13xy+8y 293、已知 A=x2+xy+y2,B=-3xy-x2,求 2A-3B.2A-3B= 5x2+11xy+2y294、已知a - 2 +(b+1)2=0,求 5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中 a、b、c 满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知 a,b,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知 a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知 m2+3mn=5,求 5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设 A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且 B-2A=a,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a 取任意有理数时,请比较 A 与B 的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
(名师整理)数学七年级上册 第2章 《整式的加减 》单元检测测试题(含答案解析)

《整式的加减》单元检测题一、单选题1.计算3x2﹣x2的结果是()A. 2B. 2x2C. 2xD. 4x22.下列计算中,结果是a7的是()A. a3﹣a4B. a3•a4C. a3+a4D. a3÷a43.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 94.下列运算正确的是()A. a2+a3=a5B. (a2)3=a5C. a4﹣a3=aD. a4÷a3=a5.下列运算正确的是()A. 3a2﹣2a2=a2B. ﹣(2a)2=﹣2a2C. (a+b)2=a2+b2D. ﹣2(a﹣1)=﹣2a+16.下列运算正确的是()A. (﹣x2)3=﹣x5B. x2+x3=x5C. x3•x4=x7D. 2x3﹣x3=17.下列计算正确的是()A. x2+x3=x5B. x2•x3=x5C. (﹣x2)3=x8D. x6÷x2=x38.用代数式表示:a的2倍与3 的和.下列表示正确的是()A. 2a-3B. 2a+3C. 2(a-3)D. 2(a+3)9.下列计算正确的是()A. B. C. D.10.下列运算正确的是()A. (﹣x2)3=﹣x5B. x2+x3=x5C. x3•x4=x7D. 2x3﹣x3=111.下列运算正确的是( )A. B. C. D.12.如果单项式-3x4a-b y2与x3y a+b的和是单项式,那么这两个单项式的积是()A. 3x6y4B. -3x3y2C. -3x3y2D. -3x6y4二、填空题13.单项式的次数_______.14.多项式2x+6xy-3xy2的次数是____________.15.已知代数式与是同类项,则_______,________. 16.一个多项式与﹣x2﹣2x+11的和是3x﹣2,则这个多项式为________.三、解答题17.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.18.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2),发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?19..已知A= a﹣2(a﹣b2),B=﹣a+.(1)化简:2A﹣6B;(2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值.20.先化简,再求值:3x2y-[2xy-2(xy-x2y)+x2y2],其中x=3,y=.21.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.参考答案1.B【解析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.2.B【解析】根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.详解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=.故选:B.点睛:本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.3.C【解析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.4.D【解析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.详解:A、a2、a3不是同类项不能合并,故A错误;B、(a2)3=a6,故B错误;C、a4、a3不是同类项不能合并,故C错误;D、a4÷a3=a,故D正确.故选:D.点睛:本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.A【解析】利用合并同类项对A进行判断;利用积的乘方对B进行判断;利用完全平方公式对C进行判断;利用取括号法则对D进行判断.详解:A、原式=a2,所以A选项正确;B、原式=﹣4a2,所以B选项错误;C、原式=a2+2ab+b2,所以C选项错误;D、原式=﹣2a+2,所以D选项错误.故选:A.点睛:本题考查了幂的乘方与积的乘方:幂的乘方法则:底数不变,指数相乘:(a m)n=a mn(m,n是正整数);积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘:(ab)n=a n b n(n是正整数).也考查了整式的加减.6.C【解析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.详解:A、(-x2)3=-x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选:C.点睛:本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.7.B【解析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.详解:A、不是同类项,无法计算,故此选项错误;B、正确;C、故此选项错误;D、故此选项错误;故选:B.点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.8.B【解析】a的2倍与3的和也就是用a乘2再加上3,列出代数式即可.详解:“a的2倍与3 的和”是2a+3.故选:B.点睛:此题考查列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,注意字母和数字相乘的简写方法.9.C【解析】根据合并同类项法则;单项式乘以单项式;幂的乘方等计算法则,对各选项分析判断后利用排除法求解.详解:A、应为2x-x=x,故本选项错误;B、应为x(-x)=-x2,故本选项错误;C、,故本选项正确;D、与x不是同类项,故该选项错误.故选:C.点睛:本题考查了合并同类项法则,单项式乘以单项式;幂的乘方等计算法则,熟练掌握运算性质和法则是解题的关键.10.C【解析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.详解:A、(-x2)3=-x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选:C.点睛:本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.11.D【解析】根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答.详解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=a2b2,故本选项错误;C、原式=a6,故本选项错误;D、原式=2a3,故本选项正确.故选:D.点睛:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.12.D【解析】首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.详解:由同类项的定义,得,解得.所以原单项式为:-3x3y2和x3y2,其积是-3x6y4.故选:D.点睛:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则;要准确把握法则:同类项相乘系数相乘,指数相加.13.3【解析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.详解:单项式5mn2的次数是:1+2=3.故答案是:3.点睛:考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.14.3次【解析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】多项式2x+6xy-3xy2中三项的次数依次是1、2、3,所以2x+6xy-3xy2的次数是3次,故答案为:3次.【点睛】本题考查了多项式的次数,熟知多项式的次数是组成多项式的项的最高次数是解题的关键.15. 3 1【解析】根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16.x2+5x﹣13【解析】分析: 设此多项式为A,再根据多项式的加减法则进行计算即可.详解: 设此多项式为A,∵A+(-x2-2x+11)=3x-2,∴A=(3x-2)-(-x2-2x+11)=x2+5x-13.故答案为: x2+5x-13.点睛: 本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.17.5.【解析】首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入a、b的值,进而可得答案.详解:原式=a2+2ab+b2+ab-b2-4ab=a2-ab,当a=2,b=-时,原式=4+1=5.点睛:此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.18.(1)﹣2x2+6;(2)a=5.【解析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.19.(1) a+b2;(2)1.【解析】(1)把A,B分别代入2A﹣6B,再去括号,合并同类项即可; (2)由非负数性质求出a,b的值,再代入(1)即可.【详解】解:(1)∵A=a﹣2(a﹣b2),B=﹣a+b2,∴2A﹣6B=2(a﹣2a+b2)﹣6(﹣a+b2)=a﹣4a+b2+4a﹣b2=a+b2;(2)∵|a+2|+(b﹣3)2=0,∴a=﹣2,b=3,则原式=﹣2+3=1.【点睛】本题考核知识点:非负数性质,整式的化简求值. 解题关键点:利用整式乘法进行化简.20.化简为:,原式=-1【解析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.详解:原式=3x2y-2xy+2xy-3x2y-x2y2=-x2y2,当x=3,y=-时,原式=-1.点睛:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.【解析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D (m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得.【详解】(1)如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征.。
人教版七年级数学上册《第二章整式的加减》同步练习及答案

(2)通过猜想,写出与第 n 个图形相对应的等式.
参考答案: 1.D 2.C 3.A 4.A 5.B 6.C
7.-5,0;-1,2;0.6,3;- 5 ,1; 4 ,4;52,4 8.4 9.0.4a 10. 15b
7
5
a−b
11.0.012a 12.1.6+0.5(n-2) 13.5abc3,5ab2c2,5ab3c,5a2bc2,5a2b2c,5a3bc
当 2100<x≤3600 时,缴税:500×5%+(x-2 100)×10%=10%x-160(元); 当 3600≤x≤5000 时,500×5%+1500×10%+(x-3600)×15%=15%x-365(元)
第三章 整式的加减 2.2 整式的加减
第 1 课时 合并同类项
1、若 − 4xa y + x2 yb = −3x2 y ,则 a + b =
C.-5x 的系数 是 5 D.0 是单项式 2.下列单项式书写不正确的有( ).
①3 1 a2b; ②2x1y2; ③- 3 x2; ④-1a2b.
2
2
A.1 个 B.2 个
C.3 个
D.4 个
3. “比 a 的 3 大 1 的数”用式子表示是( ). 2
A. 3 a+1 2
B. 2 a+1 C. 5 a
2.如图 1,长方形的宽为 a,长为 b,则周长为_________,面积为_________.
图1
3.非典时期,同学们积极做网页歌颂白衣战士,一班同学做了 x 张,二班比一班的 2
倍少 y 张,二班做了_________张,两个班共做了_________张.
(三)、选择题
河南省七年级数学上册第二章整式的加减知识点归纳超级精简版

河南省七年级数学上册第二章整式的加减知识点归纳超级精简版单选题1、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.2、有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.2答案:B分析:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解:观察图形知道点数三和点数四相对,点数二和点数五相对且滚动四次一循环,∵2022÷4=505…2,∴滚动第2022次后与第2次相同,∴朝下的数字是4的对面3,故选:B .小提示:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.3、多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( )A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关答案:C分析:根据合并同类项法则化简,再进行判断即可.解:﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3=(﹣2x 2y +2x 2y )+(﹣9x 3+3x 3+6x 3)+(6x 3y ﹣6x 3y )=0.∴多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值与x ,y 都无关. 故选:C .小提示:题目主要考查整式的化简,熟练掌握运用合并同类项法则是解题关键.4、数学家华罗庚曾经说过:“数形结合百般好,隔裂分家万事休”.如图,将一个边长为1的正方形纸板等分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的长方形,如此继续进行下去,根据图形的规律计算:12+(12)2+(12)3+⋯+(12)10的值为( )A .(12)10B .1-(12)10C .(12)11D .1-(12)11 答案:B分析:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.解:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即为所求.最后一个小长方形的面积= (12)n故12+(12)2+(12)3+⋯+(12)n =1−(12)n即12+(12)2+(12)3+⋯+(12)10=1−(12)10故选B.小提示:本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.5、已知单项式3a m+1b与−b n−1a3可以合并同类项,则m,n分别为()A.2,2B.3,2C.2,0D.3,0答案:A分析:根据同类项的定义得出关于m,n的式子,计算求出m,n即可.解:∵单项式3a m+1b与−b n−1a3可以合并同类项,∴m+1=3,n-1=1,∴m=2,n=2,故选:A.小提示:本题考查了合并同类项及同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.6、化简a-2a的结果是()A.-a B.a C.3a D.0答案:A分析:根据整式的加减运算中合并同类项计算即可;解:a−2a=(1−2)a=−a;故选:A.小提示:本题主要考查整式加减中的合并同类项,掌握相关运算法则是解本题的关键.7、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.8、下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.x−y−1=x−(y−1)D.a−b=+(a−b)答案:D分析:根据添括号的法则即可进行解答.解:A、−b−c=−(b+c),故A不正确,不符合题意;B、−2x+6y=−2(x−3y),故B不正确,不符合题意;C、x−y−1=x−(y+1),故C不正确,不符合题意;D、a−b=+(a−b),故D正确,符合题意;故选:D.小提示:本题主要考查了添括号的法则,解题的关键是熟练掌握添加括号的法则,添加括号时,括号前是正号时,括号里面符号不改变;括号前是负号时,括号里面要变号.9、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.10、已知关于x、y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则m+n的值为()A.-5B.-1C.1D.5答案:C分析:先对多项式mx2+4xy−7x−3x2+2nxy−5y进行合并同类项,然后再根据不含二次项可求解m、n的值,进而代入求解即可.解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴m+n=3−2=1.故选:C小提示:本题主要考查整式的加减,熟练掌握整式的加减是解题的关键.11、按一定规律排列的单项式:2x,-3x2,4x3,-5x4,6x5,-7x6,…第n个单项式是()A.(n+1)x n B.−(n+1)x n C.(−1)n(n+1)x n D.(−1)n+1(n+1)x n答案:D分析:通过观察题意可得:奇数项的系数为正,偶数项的系数为负,且系数的绝对值是从2开始的连续整数,次数是连续整数,由此可解出本题.解:第1个单项式是2x=(-1)1+1(1+1)x1,第2个单项式是-3x2=(-1)2+1(1+2)x2,第3个单项式是4x3=(-1)3+1(1+3)x3,•••,第n个单项式是(-1)n+1(n+1)xn.故选:D.小提示:本题考查单项式规律题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.12、若x+y−2=0,则代数式−x−y+8的值是()A .10B .8C .6D .4答案:C分析:由题意得x +y =2,将代数式﹣x ﹣y +8变形为﹣(x +y )+8,再将x +y =2整体代入进行计算即可. 解:∵x +y ﹣2=0,∴x +y =2,∴﹣x ﹣y +8=﹣(x +y )+8=﹣2+8=6,故选:C .小提示:本题考查了运用整体思想求代数式的值的能力,关键是能通过观察、变形,运用整体思想进行代入求值.13、代数式1x , 2x +y , 13a 2b , x−y π, 5y 4x , 0.5 中整式的个数( ) A .3个B .4个C .5个D .6个答案:B分析:根据单项式和多项式统称为整式.单项式是字母和数的乘积,单个的数或单个的字母也是单项式.多项式是若干个单项式的和,再逐一判断可得答案.解:整式有2x +y , 13a 2b , x−y π,0.5共有4个;故选:B .小提示:本题考查了整式.解题的关键是掌握整式的定义:单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.14、用同样大小的黑色棋子按如图所示的规律摆放,第1个图形有6颗棋子,第2个图形有9颗棋子,第3个图形有12颗棋子,第4个图形有15颗棋子……,以此类推,第( )个图形有2022颗棋子.A .672B .673C .674D .675答案:B分析:观察图形,根据给定图形中棋子颗数的变化,找出变化规律:第n个图形有(3n+3)颗棋子,然后计算即可.解:观察图形,可知:第1个图形有6=3×2颗棋子,第2个图形有9=3×3颗棋子,第3个图形有12=3×4颗棋子,第4个图形有15=3×5颗棋子,……,∴第n个图形有3×(n+1)=(3n+3)颗棋子,当3n+3=2022时,解得:n=673,故选:B.小提示:本题考查了规律型:图形的变化类,根据给定图形中棋子颗数的变化情况,找出变化规律是解题的关键.15、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.填空题16、如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第20个图形需要___________根火柴棍.答案:41分析:分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,∴拼成第20个图形共需要2×19+2=41根火柴棍,所以答案是:41.小提示:此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.17、将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)a×a×2−b×13,应写成______;(4)143x, 应写成______.答案: 5a st 2a2−b37x3分析:(1)根据代数式书写规范将数字因数写在代数式前省略乘号即可得到结果.(2)根据代数式书写规范将除法算式写成分数形式即可得到结果.(3)根据代数式书写规范将数字因数写在代数式前省略乘号,同时将相同字母的乘积写成乘方形式即可得到结果.(4)根据代数式书写规范将数字因数的带分数化为假分数即可得到结果.解:(1)a×5=5a,故答案为∶5a;(2)S÷t=st,故答案为∶st;(3)a×a×2−b×13=2a2−b3,故答案为∶2a2−b3;(4)143x=73x故答案为∶7x3.小提示:本题考查代数式书写规范,熟知代数式的书写规范要求是解题关键.18、已知x=−5−y,xy=2,计算3x+3y−4xy的值为______.答案:−23分析:将已知式子代入代数式中求解即可.∵x=−5−y∴x+y=−5将x+y=−5,xy=2代入3x+3y−4xy中,可得原式=3(x+y)−4xy=3×(−5)−4×2=−15−8=−23所以答案是:−23.小提示:本题考查了代数式的计算问题,掌握代入法是解题的关键.19、也许你认为数字运算是数学中常见而又枯燥的内容,但实际上,它里面也蕴藏着许多不为人知的奥妙,下面就让我们来做一个数字游戏:第一步:取一个自然数n1=3,计算n12+2得a1;第二步:计算出a1的各位数字之和得n2,再计算n22+2得a2;第三步:计算出a2的各位数字之和得n3,再计算n32+2得a3;……依此类推,则a2020=_______.答案:123分析:根据游戏的规则进行运算,求出a1、a2、a3、a4、a5,再分析其规律,从而可求解.解:∵a1=n12+2=32+2=11,∴n2=1+1=2,a2=n22+2=22+2=6,n3=6,a3=n32+2=62+2=38,n4=3+8=11,a4=n42+2=112+2=123,n5=1+2+3=6,a5=n52+2=62+2=38,……∴从第3个数开始,以38,123不断循环出现,∵(2020﹣2)÷2=1009,∴a2020=a4=123.所以答案是:123.小提示:本题主要考查数字的变化规律,解答的关键是由所给的规则得到存在的规律.20、计算:3a−a=_____________.答案:2a分析:按照合并同类项法则合并即可.3a-a=2a,所以答案是:2a.小提示:本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.。
人教版七年级上册数学第二章整式的加减解答题训练(含答案)

9.一个两位数的十位上的数是 ,个位上的数是 .
(1)这个两位数是______; 用含有 , 的代数式表示
(2)把这个两位数的十位数上的数与个位上的数交换位置,所得的两位数与原两位数的和是 的倍数吗?为什么?
人教版七年级上册数学第二章整式的加减解答题训练
1.合并同类项:
(1)
(2)
(3)
2.先化简,再求值: ,其中 , .
3.先化简,再求值 , , .
4.已知a、b互为相反数,c、d互为倒数, 的值.
5.已知 在数轴上的表示如图所示,化简:
6.已知: , ,
(1)求 ;
(2)当 时,求 的值.
7.已知关于x的多项式 不含三次项和一次项,求 的值.
10.两个多项式A和B,A=▄▄▄, , ,其中A被墨水污染了.
(1)求多项式A;
(2)x取其中适合的一个数:2,﹣2,0,求 的值.
11.已知: , .
(1)计算: ;
(2)若 的值与y的取值无关,求x的值.
12.小王家买了一套新房,其结构如图所示(单位:米).他打算装修时将卧室铺上木地板,其余部分铺上地砖(墙的厚度忽略不计).
(1)第三天出售的口罩数量是多少?
(2)这三天出售口罩共得到销售额多少元?
21.已知多项式 的值与字母x的取值无关.
(1)求a,b的值;
(2)当y=1时,代数式的值3,求:当y=-1时,代数式的值.
参考答案:
1.(1) ;
(2) ;
(3)
2. ,1
3. ;
4.1
5.
6.(1)
(2)
河南省平顶山市宝丰县杨庄镇七年级数学上册 第一章 有理数单元练习二(无答案)(新版)新人教版
第一章有理数单元练习题二1.下面说法中正确的是()A.两数之和为正,则两数均为正 B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数 D.两数之和一定大于每一个加数2.下列四种运算中,结果最大的是()A. 1+(-2) B. 1-(-2) C.1×(-2) D. 1(-2)3.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105 B. 6.17×106 C.6.17×107 D.0.617×1084.若a=(﹣23)﹣2,b=(﹣2016)0,c=(﹣0.2)﹣1,则a、b、c三数的大小关系是()A. a<b<c B. a>b>c C. a>c>b D. c>a>b 5.计算(-4)+6的结果为( )A.-2 B. 2 C.-10 D. 26.下列各数中最小的是()A. 0 B.﹣3 C. D.7.若a+b<0,ab<0,则下列说法正确的是()A. a、b同号 B. a、b异号且负数的绝对值较大C. a、b异号且正数的绝对值较大 D.不能确定8.-2的相反数是()A. B. 2 C. D. -29.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A .97×98×99B .98×99×100C .99×100×101D .100×101×10210.《九章算术》中注有:“今两算得失相反,要令正负以名之.”意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为A . 零上3℃B . 零下3℃C . 零上7℃D . 零下7℃11.比较大小:____; _____.(填>、<、或=)12.若火箭发射点火前5秒记作-5秒,则火箭发射点火后10秒应记作________。
河南省平顶山市宝丰县杨庄镇七年级数学上册 第二章 整式的加减单元练习六(无答案)(新版)新人教版
第二章整式的加减单元练习题六1.如图①,边长为a 的大正方形中有四个边长均为b 的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( )A .a 2﹣4b 2B .(a+b )(a ﹣b )C .(a+2b )(a ﹣b )D .(a+b )(a ﹣2b )2.在代数式22352,1,32,,,33ab x x a b cd x π--+-中,单项式有( ) A .3个 B .4个 C .5个 D .6个3.计算)(y x y x +--的结果是( )A .0B .x 2C .y 2-D .y x 22-4.与-2x 2y 合并同类项后得到5x 2y 的是A .-3x 2yB .3x 2yC .7yx 2D .7xy 25.下列各式的计算中不正确的个数是( ).①100÷10-1=10 ②94)32)(32(2-=---a a a ③(a -b)2=a 2-b 2 ④b a ab b a 222253-=-A .4B .3C .2D .16.下列计算正确的是( )A .2a ﹣a=1B .2x 2y ﹣3xy 2=﹣xy 2C .4a 2+5a 2=9a 4D .3ax ﹣2xa=ax7.已知a-2b=3,则9-a+2b 的值是( )A .12B .3C .6D .98.下列定义一种关于n 的运算:①当n 是奇数时,结果为3n+5 ②n 为偶数时结果是(其中k 是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是( )A .1B .2C .7D .89.若单项式的系数为m ,次数为n ,则m+n=( )A .﹣B .C .D .410.下列代数式中,单项式共有( )个.3ab,0, ,x 2 ,1-y ,3xy , x 2-xy+y 2 ,2m-A .3B .4C .5D .611.已知当x=1时,2a x 2+bx 的值为3,则当x=2时,ax 2+bx 的值为 .12.如果单项式32m x y +-与3x y 的差仍然是一个单项式,则m = .13.若a 2n+1b 2与5a 3n ﹣2b 2是同类项,则n= .14.已知﹣2x m ﹣1y 3和x n y m+n 是同类项,则(n ﹣m )2012= .15.观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.16.单项式﹣9πx 3y 2z 3的系数是 ,次数是 .17.单项式5)2(32y x -的系数是_____,次数是______.18.23y x m -与n y x 35是同类项,则m = ,n = .19.下列数据是按一定规律排列的,则七行的第一个数为 .第一行:1第二行:2 3第三行:4 5 6第四行:7 8 9 10…20.若52423+--+x qx x x p 是关于x 五次五项式,则p -= .21.化简:(1)4(3)a a b -- (2)2222()4(3)a a a a a +---22.先化简(1-1x -1)÷x 2-4x +4x 2-1,并求当x 满x 2-6=5x 时该代数式的值.23.先化简,再求值:2227(43)2x x x x ⎡⎤---+⎣⎦,其中x = -12。
2023-2024学年七年级数学上册《第二章 整式的加减》同步练习题有答案(人教版)
2023-2024学年七年级数学上册《第二章整式的加减》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题)1.下列式子为同类项的是( )A.abc与ab B.3x与3x2C.3xy2与4x2y D.x2y与−yx22.下列运算正确的是( )A.x+y=xy B.5x2y−4x2y=x2yC.x2+3x3=4x5D.5x3−2x3=33.下列单项式中,与−5x2y是同类项的是( )A.−5xy B.3x2y C.−5xy2D.−54.下列去(添)括号正确的是( )A.x−(y−z)=x−y−zB.−(x−y+z)=−x−y−zC.x+2y−2z=x−2(y−z)D.−a+c+d+b=−(a−b)+(c+d)5.已知一个多项式与3x2+9x的和等于5x2+4x−1,则这个多项式是( )A.2x2−5x−1B.−2x2+5x+1C.8x2−5x+1D.8x2+13x−16.若有理数a,b,c在数轴上的对应点A,B,C位置如图,化简∣c∣−∣c−b∣+∣a+b∣=( )A.a B.2b+a C.2c+a D.−a7.多项式4n−2n2+2+6n3减去3(n2+2n3−1+3n)(n为自然数)的差一定是( )A.奇数B.偶数C.5的倍数D.以上答案都不对8.如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a,b(a>b)则(a−b)等于( )A.8B.7C.6D.5二、填空题(共5题)x a−2y3是同类项,那么(a−b)2015=.9.如果单项式−xy b+1与12x2y n与−2x m y3的和仍为单项式,则−m n的值为.10.若单项式2311.已知2a−3b2=5,则10−2a+3b2的值是.12.若代数式2x2+3x+7的值是5,则代数式4x2+6x+15的值是.13.已知多项式3x2+my−8与多项式−nx2+2y+7的差中,不含有x,y,则n m+mn=.三、解答题(共6题)14.先化简,后求值:3a2b+2(−ab2+2a2b)−(a2b−3ab2),其中a,b满足a=−1,b=2.15.已知代数式A=−6x2y+4xy2−2x−5,B=−3x2y+2xy2−x+2y−3.(1) 先化简A−B,再计算当x=1,y=−2时A−B的值;(2) 请问A−2B的值与x,y的取值是否有关系?试说明理由.16.已知∣x−3m+2n+1∣+(y−3mn)2=0.(1) 用含字母m,n的式子表示x,y;(2) 若2x+y的值与m取值无关,求出2x+y的值;(3) 若x+y=4,求5m+8mn+2与−m+2mn+4n的差的值.17.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3因为x=y,所以1423是“和平数”.(1) 直接写出最小的“和平数”是,最大的“和平数”是;(2) 如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是12,请求出所有的这种“和平数”.18.在计算代数式(2x3+ax−5y+b)−(2bx3−3x+5y−1)的值时,甲同学把“x=−23,y=35”误写为“x=23,y=35”,其计算结果也是正确的.请你通过计算写出一组满足题意的a,b的值.19.已知含字母x,y的多项式是:3[x2+2(y2+xy−2)]−3(x2+2y2)−4(xy−x−1).(1) 化简此多项式;(2) 小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?(3) 聪明的小刚从化简的多项式中发现,只要字母y取一个固定的数,无论字母x取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y的值.参考答案1. D2. B3. B4. D5. A6. D7. C8. B9. 110. −811. 512. 1113. 314. 原式=3a 2b −2ab 2+4a 2b −a 2b +3ab 2=6a 2b +ab 2.当 a =−1,b =2 时原式=6×1×2−1×4=8.15. (1) A −B=(−6x 2y +4xy 2−2x −5)−(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+3x 2y −2xy 2+x −2y +3=(−6+3)x 2y +(4−2)xy 2+(−2+1)x −2y −5+3=−3x 2y +2xy 2−x −2y −2.当 x =1,y =−2 时A −B=−3×12×(−2)+2×1×(−2)2−1−2×(−2)−2=6+8−1+4−2=15.(2) A −2B=(−6x 2y +4xy 2−2x −5)−2(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+6x 2y −4xy 2+2x −4y +6=(−6+6)x 2y +(4−4)xy 2+(−2+2)x −4y −5+6=−4y +1.由化简结果可知,A −2B 的值与 x 的取值没有关系,与 y 的取值有关系.16. (1) 由题意得:x −3m +2n +1=0,y −3mn =0所以x=3m−2n−1,y=3mn.(2)2x+y=2(3m−2n−1)+3mn =6m−4n−2+3mn=(6+3n)m−4n−2,因为2x+y的值与m取值无关所以6+3n=0所以n=−2所以2x+y=−4×(−2)−2=8−2=6.(3) 因为x+y=3m−2n−1+3mn=4所以3mn+3m−2n=5所以5m+8mn+2−(−m+2mn+4n)=5m+8mn+2+m−2mn−4n=6mn+6m−4n+2=2(3mn+3m−2n)+2=2×5+2=12.17. (1) 1001;9999(2) 设这个“和平数”为abcd则d=2a,a+b=c+d,b+c=12k∴2c+a=12k即a=2,4,6,8,d=4,8,12(舍去),16(舍去)①当a=2,d=4时2(c+1)=12k可知c+1=6k且a+b=c+d∴c=5,则b=7②当a=4,d=8时2(c+2)=12k可知c+2=6k且a+b=c+d∴c=4,则b=8.综上所述,这个数为2754和4848.18. (2x 3+ax −5y +b )−(2bx 3−3x +5y −1)=2x 3+ax −5y +b −2bx 3+3x −5y +1=(2−2b )x 3+(a +3)x −10y +(1+b ).由题意知计算结果也是正确的∴ 计算结果与 x 无关∴2−2b =0,a +3=0.∴a =−3,b =1(不唯一).19. (1) 原式=3x 2+6y 2+6xy −12−3x 2−6y 2−4xy +4x +4=2xy +4x −8.(2) ∵x ,y 互为倒数∴xy =1∴2+4x −8=0解得:x =1.5,y =23.(3) 由(1)得:原式=2xy +4x −8=(2y +4)x −8,由结果与 x 的值无关,得到 2y +4=0解得:y =−2.。
河南省平顶山市宝丰县杨庄镇七年级数学上册第二章整式的加减单元练习六新版新人教版【word版】.doc
【推荐】河南省平顶山市宝丰县杨庄镇七年级数学上册第二章整式的加减单元练习六新版新人教版1.如图①,边长为a 的大正方形中有四个边长均为b 的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( )A .a 2﹣4b 2B .(a+b )(a ﹣b )C .(a+2b )(a ﹣b )D .(a+b )(a ﹣2b )2.在代数式22352,1,32,,,33ab x x a b cd x π--+-中,单项式有( ) A .3个 B .4个 C .5个 D .6个3.计算)(y x y x +--的结果是( )A .0B .x 2C .y 2-D .y x 22-4.与-2x 2y 合并同类项后得到5x 2y 的是A .-3x 2yB .3x 2yC .7yx 2D .7xy 25.下列各式的计算中不正确的个数是( ).①100÷10-1=10 ②94)32)(32(2-=---a a a ③(a -b)2=a 2-b 2 ④b a ab b a 222253-=-A .4B .3C .2D .16.下列计算正确的是( )A .2a ﹣a=1B .2x 2y ﹣3xy 2=﹣xy 2C .4a 2+5a 2=9a 4D .3ax ﹣2xa=ax7.已知a-2b=3,则9-a+2b 的值是( )A .12B .3C .6D .98.下列定义一种关于n 的运算:①当n 是奇数时,结果为3n+5 ②n 为偶数时结果是(其中k 是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是( )A .1B .2C .7D .89.若单项式的系数为m ,次数为n ,则m+n=( )A .﹣B .C .D .4 10.下列代数式中,单项式共有( )个. 3ab ,0, ,x 2 ,1-y ,3xy , x 2-xy+y 2 ,2m - A .3 B .4 C .5 D .611.已知当x=1时,2a x 2+bx 的值为3,则当x=2时,ax 2+bx 的值为 . 12.如果单项式32m x y +-与3x y 的差仍然是一个单项式,则m = .13.若a 2n+1b 2与5a 3n ﹣2b 2是同类项,则n= .14.已知﹣2x m ﹣1y 3和x n y m+n 是同类项,则(n ﹣m )2012= .15.观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.16.单项式﹣9πx 3y 2z 3的系数是 ,次数是 .17.单项式5)2(32y x -的系数是_____,次数是______. 18.23y x m -与n y x 35是同类项,则m = ,n = .19.下列数据是按一定规律排列的,则七行的第一个数为 .第一行:1第二行:2 3第三行:4 5 6第四行:7 8 9 10…20.若52423+--+x qx x x p 是关于x 五次五项式,则p -= .21.化简:(1)4(3)a a b -- (2)2222()4(3)a a a a a +---22.先化简(1-1x -1)÷x 2-4x +4x 2-1,并求当x 满x 2-6=5x 时该代数式的值.23.先化简,再求值:2227(43)2x x x x ⎡⎤---+⎣⎦,其中x = -12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章整式的加减单元练习题一
1.下列各组中,不是同类项的是( )
A . ﹣ab 与ba
B . 52与25
C . 0.2a 2b 与﹣15
a 2
b D . a 2b 3与﹣a 3b 2 2.已知苹果每千克m 元,则2千克苹果共多少元?( )
A . m ﹣2
B . m+2
C .
D . 2m
3.下列运算正确的是( )
A . 3-(x-1)=2-x
B . 3-(x-1)=2+x
C . 3-(x-1)=4-x
D . 3-(x-1)=4+x
4.下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点,第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,……,按此规律排列下去,第⑥个图形中的黑色圆点的个数为( )
A . 45
B . 61
C . 66
D . 91
5.下列运算正确的有( )
A .3=±
B . 222(a-b)=a -b
C . 5ab-b=4
D . 236()a a =
6.下列运算结果为的是
A .
B .
C .
D .
7.李虎同学在下面计算题中,只做对了一道题,请你检查一下,他做对了哪题( )
A .
B .
C .
D .
8.下列计算正确的是( )
A . 3a 2b 5ab
B . 4m 2n 2mn 2 2mn
C . 5y 2 3y 2 2
D . -12x 7x 5x
9.下列去括号正确的是( )
A . a ﹣2(﹣b+c )=a ﹣2b ﹣2c
B . a ﹣2(﹣b +c )=a+2b ﹣2c
C . a+2(b ﹣c )=a+2b ﹣c
D . a+2(b ﹣c )=a+2b+2c
10.下列计算正确的是
A .
B .
C .
D .
11.请写出一个单项式,同时满足下列条件:①含有字母x 、y ;②系数是负整数;③次数是4,你写的单项式为______.
12.多项式2a 2
﹣3a+4是a 的 次 项式.
13.观察1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52…,则猜想:1+3+5+…+(2n +1)=______.(n 为正整数)
14.观察下列运算过程:
,
运用上面计算方法计算: ___________.
15.单项式﹣3
7
ab 的系数是_____.多项式1+2xy –3xy 2是______次_________项式. 16.多项式2x 2
y ﹣+1的次数是__________.
17.将2341x x +-减去21x x -+,结果是___________.
18.观察图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…则第2017个图形中有_____个三角形,第n 个图形中有_____个三角形.
19.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:虚线上第一行0,第二行6,第三行21…,第4行的数是_____,第n 行的数是_____(用n 表示).
20.如下图,已知a、b、c在数轴上的位置,则|b+c|-|a-b|-|c-b|=________________;
21.计算题
(1).+16÷( ) (2).(-24)×() +
(3). (4)
22.计算设
1132
4
2323
A x x y x y
⎛⎫⎛⎫
=---+-+
⎪ ⎪
⎝⎭⎝⎭
.当x=-
1
3
,y=1时,求A的值;
23.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)
(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)
24.已知(x+2)2+|y ﹣|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值.
25.已知x 、y 满足(x+1)2+│y -2│=0. 试求代数式:-2xy·5x 2y+(x 2y 2-3y)·2x+6xy 的值.
26.(1)把左右两边计算结果相等的式子用线连接起来:
(2)观察上面计算结果相等的各式之间的关系,可归纳得出:
21
1=n -____________________________________________________ (3)利用上述规律计算下式的值:
22222111111111123499100⎛⎫
⎛⎫
⎛⎫
⎛⎫
⎛⎫
-⨯-⨯-⨯⋯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
27.观察下列算式:
①2132341⨯-=-=-;
②2243891⨯-=-=-
③235415161⨯-=-=- ……
(1)请你按照三个算式的规律写出第④个算式: ,第⑤个算式: ;
(2)试写出第n 个算式,并证明之.。