热式质量流量计
气体热式质量流量计安全操作及保养规程

气体热式质量流量计安全操作及保养规程1. 引言气体热式质量流量计是一种常用于测量气体流量的设备。
为保障设备的准确性和工作效果,必须正确地进行操作和定期进行保养。
本文档旨在介绍气体热式质量流量计的安全操作规程和保养要点,以确保设备的正常运行和工作效果。
2. 安全操作规程2.1. 设备准备在操作气体热式质量流量计之前,应确保以下设备和物品的准备:•气体热式质量流量计设备•安全阀和附件(如压力表等)•防护手套、安全眼镜和口罩2.2. 操作步骤按照以下步骤进行气体热式质量流量计的安全操作:1.打开气体热式质量流量计的电源开关,并确保设备正常启动。
2.根据需要设置流量计的测量范围和单位。
3.将待测气体连接到流量计的进气口,并确保连接的稳固性。
4.慢慢打开气体流量控制阀,逐渐增加气体流量,避免突然改变气体流速。
5.在测量过程中,保持设备稳定,避免碰撞和震动。
2.3. 操作注意事项在操作气体热式质量流量计时,需要注意以下事项:•操作人员应熟悉设备的使用说明书和安全注意事项。
•注意装置工作环境的通风状况,避免产生可燃、有害等气体积累。
•在操作过程中,严禁使用尖锐物、硬物等碰撞或触摸流量计的敏感部分。
•在停止使用气体热式质量流量计后,应关闭电源开关,断开气源,并存放在干燥、通风的地方。
3. 保养规程3.1. 定期检查为确保气体热式质量流量计的准确性和工作效果,建议定期进行以下检查:•检查传感器是否有污秽或堵塞的情况,如果有,使用干净的布轻柔地擦拭或用气体吹尘器进行清洁。
•检查连接管道的密封情况,确保没有气体泄漏。
•检查电源线和数据线是否损坏,如有损坏应及时更换。
3.2. 清洁保养保持气体热式质量流量计的清洁是确保其正常工作的重要环节。
清洁保养时需要注意以下事项:•使用干净的布蘸取少量酒精轻柔擦拭设备表面。
•避免使用水和化学溶剂进行清洁,以免对设备造成损害。
3.3. 定期校准校准是保证气体热式质量流量计准确性的关键。
热式气体质量流量计-360百科

热式气体质量流量计-360百科热式气体质量流量计是利用热扩散和热分布的原理,利用气体带走热量的多少来计算流量。
其测量结果受温度、压力变化影响较小,量程比可达到30∶1,安装方式为插入式,基本没有压力损失,适用于测量介质组分比较稳定的干燥气体的流量。
1、工作原理:大流量:热扩散原理,利用气体带走多少热量决定流量;小流量:热分布原理;2、系统组成:简单无活动部件、常温一体化、高温分体式;3、适用测量介质:干燥气体,介质组分稳定;4、系统误差:±1% 质量流量精度;5、系统智能化:多项参数修改,智能化;6、检定:工厂标定数据储存在仪表里,可以现场检定仪表性能,结果可溯源;7、量程比:大量程比,保证精度的前提下30∶1;8、流量结果:质量流量,温度、压力变化影响小;9、温压补偿:不需要;10、安装:小口径:管道式;大口径:插入式;安装简单快捷:不需要保温\导压管路,前后;直管段:3D/5D;安装成本低:在管道360范围内任何角度都可以安装;11、维护:属于免维护型,如需维护,可以实现在线不停产插拔维护;12、工厂标定:密闭环路模拟实际工况标定每一台都要实际标定;13、响应时间:1s;14、压力损失:插入式基本没有压力损失;15、系统重复性:重复性较好;16、温度对测量系统精度的影响:在±25℃范围内,±0.04 %FS;在±25~50℃范围内,±0.06 %FS;17、压力对测量系统精度的影响:压力变化0.006895MPa,精度影响0.02% FS;18、系统造价:性价比非常高,小口径相对价格高,大口径比孔板产品还便宜。
e+h热式气体质量流量计说明书

e+h热式气体质量流量计说明书E+H热式气体质量流量计说明书一、产品概述E+H热式气体质量流量计是一种先进的仪器设备,用于测量气体的质量流量。
它采用了热敏电阻元件和微处理器技术,具有高精度、快速响应和稳定可靠的特点。
本说明书将为用户提供关于E+H热式气体质量流量计的详细信息、技术参数和使用指导。
二、产品特点1. 高精度:E+H热式气体质量流量计具有极高的测量精度,可满足各类工业应用的要求。
2. 快速响应:该流量计采用了先进的传感器技术,能够实时、准确地反映气体流量的变化。
3. 稳定可靠:产品采用优质材料和结构设计,具有良好的耐用性和长期稳定性。
4. 易于安装和维护:流量计设计紧凑,安装方便,维护简单,可以提高工作效率。
三、技术参数1. 测量范围:- 气体种类:适用于多种气体,包括但不限于空气、氮气、氧气等。
- 流量范围:0.1~1000 L/min。
2. 精度:- 测量精度:±0.5% FS。
- 温度精度:±1℃。
3. 输出方式:- 信号输出:4~20mA模拟信号、RS485数字信号。
- 通信协议:Modbus、HART等。
4. 工作温度:- 气体温度:-20℃~60℃。
- 环境温度:-40℃~85℃。
5. 工作电源:- 直流供电:24VDC。
- 消耗功率:≤2.5W。
四、使用注意事项1. 安装位置:应选择在通风良好、无腐蚀性气体和辐射源的环境中安装。
2. 电气连接:正确接线,确保电源、信号和地线连接牢固可靠,避免因接触不良或短路等问题导致测量不准确。
3. 清洁维护:定期清洁流量计表面,防止灰尘和污垢积累影响测量精度。
注意保护传感器,避免碰撞和损坏。
4. 校准和维修:根据需要进行定期校准,检查仪器的正常运行状态。
如有故障或异常,应联系售后服务中心进行维修或更换部件。
五、应用领域E+H热式气体质量流量计广泛应用于化工、石油、制药、电力、环保等领域,用于气体供应系统、燃气计量、工艺控制等方面。
热式气体质量流量计-百度百科

热式气体质量流量计-百度百科一、概述嘉可仪表JK系列热式气体质量流量计是利用热传导原理测流量的仪表。
热式气体质量流量计采用恒温差法对气体质量流量进行准确测量。
具有体积小、数字化程度高、安装方便,测量准确等优点。
二、工作原理热式质量流量计由传感器和信号分析、处理与控制单元两部分构成。
传感器一部分测量温度,而另一部分用于加热。
前者监控实际过程温度值;后者维持一恒定温度值,使其总是高于实际过程温度且与该过程温度保持恒定的温度差。
气体的质量流量越大,冷却效应就越大,维持差分温度所需的能量也就越大。
因此,通过测量加热器的能量便可得出被测气体的质量流量。
三、热式气体质量流量计产品特点:1、真正的质量流量计,对气体流量测量无需温度和压力补偿,测量方便、准确。
可得到气体的质量流量或者标准体积流量。
2、宽量程比,可测量流速高至100Nm/s底至0.5Nm/s的气体,可以用于气体检漏。
3、抗震性能好使用寿命长。
传感器无活动部件和压力传感部件,不受震动对测量精度的影响。
4、安装维修简便。
在现场条件允许的情况下,可以实现不停产安装和维护。
(请参见安全注意事项)5、数字化设计。
整体数字化电路测量,测量准确、维修方便。
6、采用RS-485通讯,或HART通讯,可以实现工厂自动化、集成化。
四、适用范围1、压缩空气2、锅炉房或干燥机中的天然气3、酿酒厂中的二氧化碳气体4、污水处理厂中的沼气和曝气5、生成气体(如氩气、氮气、二氧化碳、氦气、氧气)6、气体泄露检测嘉可仪表生产的热式气体质量流量计可以测量氧气、氮气、二氧化碳、天然气、压缩空气、煤气、沼气等各种气体(乙炔除外),嘉可仪表JK系列热式气体质量流量计种类齐全,有管道式热式气体质量流量计、插入式热式气体质量流量计、高温型热式气体质量流量计、高压型热式气体质量流量计、一体式热式气体质量流量计、分体式热式气体质量流量计等。
热式气体质量流量计的工作原理

热式气体质量流量计的工作原理热式气体质量流量计的工作原理热式气体质量流量计是一种通过测量气体传热能力来确定气体流量的仪器。
其工作原理基于热传导定律和恒温热源原理。
一、基本原理1. 热传导定律热传导定律是指在温度差的作用下,物质内部由高温区向低温区传递热量的规律。
根据此定律,可以通过测量物质中两点之间的温度差来确定物质中的能量传递速率。
2. 恒温热源原理恒温热源原理是指一个恒定温度的物体可以作为一个恒定的热源,从而使得在其周围流动的气体保持恒定的温度。
二、结构和工作过程1. 结构热式气体质量流量计主要由加热丝、测温丝、外壳和电路板等组成。
其中加热丝和测温丝分别被安装在管道内部,用于测量管道内部气体的传导能力。
2. 工作过程当气体通过管道时,加热丝不断地将热量传递给气体,使得气体的温度升高。
测温丝则用于测量管道内部气体的温度。
由于加热丝和测温丝之间存在一定的距离,因此在气体流过后,测温丝所测得的温度会有一个延迟。
根据恒温热源原理,当气体流量增加时,管道内部的气体流动速度也会增加。
由于气体流动速度的增加会导致测温丝所测得的温度变化更加迅速,因此可以通过比较不同时间点所测得的温度差来确定气体流量。
三、工作特点1. 精确性高热式气体质量流量计具有精确性高、响应速度快等特点。
其精确性主要取决于加热丝和测温丝之间的距离、电路板设计等因素。
2. 适用范围广热式气体质量流量计适用于多种气体介质,并可在较宽范围内进行流量检测。
同时,其结构紧凑、安装方便,可广泛应用于工业自动化、环境监测等领域。
3. 不易受环境影响热式气体质量流量计不受气体密度变化、湿度变化等环境因素的影响,因此具有较高的稳定性和可靠性。
四、应用领域热式气体质量流量计广泛应用于石油化工、食品医药、环保监测等领域。
例如,在石油化工生产过程中,热式气体质量流量计可用于测量管道内部液态或气态介质的流量,从而实现对生产过程的控制和优化。
在环保监测中,热式气体质量流量计可用于监测废气排放情况,从而确保环境保护的有效实施。
热式质量流量计 VS 涡街流量计

No response to the flow less than 4 m/s.
Can measures the flow small to 0 m/s.
Measuring Ranges
4 – 75 m/s
0 – 224 m/s
Accuracy
±1%of measured value
涡街流量计与热式质量流量计的比较
涡街流量计
热式质量流量计
外观
安装方式
法兰式
插入式(可带压安装)
测量原理
通过测量管路中障碍物下游的漩涡频率来反映流速,从而测量出气体的实际容积流量
通过测量管路中气体带走热量来反映流速,从而测量出气体的质量流量
温度和压力补偿
为得到标准流量,需要温度和压Байду номын сангаас补偿(也就是说需要额外测量温度和压力参数)
InstallationType
Flange Type
Insertion Type(Installation underpressure)
Principle of Measurement
Through measuring frequency of turbulences behind an obstacle to reflect the velocity of the gas, so measures the actual volume flow of the gas.
±3%of measured value.
The main factors affecting the measuring accuracy
vibrate(a slight shaking can affect the measuring accuracy a lot)
热式气体质量流量计原理和标定过程
热式气体质量流量计原理和标定过程热式气体质量流量计是一种常用的流体测量仪器,广泛应用于工业和实验室等领域。
它通过测量气体在流动过程中的热传导和冷却效应来确定气体的流速和质量流量。
本文将详细介绍热式气体质量流量计的原理和标定过程。
一、热式气体质量流量计的原理热式气体质量流量计的原理基于绝热条件下气体的热传导效应。
当气体流经热敏元件时,由于传热系数不同,导致热敏元件的温度产生变化。
根据流动气体的传热方程,可以得到流过热敏元件的气体流量和质量流量。
热式气体质量流量计的核心部件是热敏元件,通常采用铂丝或薄膜材料制成。
当气体流经热敏元件时,热敏元件受热后温度升高,然后通过传感器测量温度的变化,再根据气体的传热原理计算出流量和质量流量。
二、热式气体质量流量计的标定过程1.准备工作:首先需要准备标定装置,包括标定管道、标定阀门、标定仪表等设备。
接着对流量计进行吹扫清洗,确保测量精度。
2.标定装置安装:将标定装置连接到被测气体管道,确保连接紧密,避免漏气。
3.参数设置:将标定仪表的参数设置为被测气体的类型和流量范围,同时确定标定温度和压力。
4.标定过程:打开标定阀门,调节流量,使其逐渐增大,同时读取标定仪表的数据,记录下流量计的输出信号和被测气体的实际流量。
5.数据处理:根据标定数据,进行曲线拟合和数据处理,得到流量计的输出标定曲线和误差范围。
6.标定结果验证:通过再次调节流量并比对实际测量值和标定曲线的输出值,确认标定结果的准确性。
热式气体质量流量计的标定是保证其准确测量的重要环节。
只有经过严格的标定过程,才能确保流量计的测量结果准确可靠。
三、热式气体质量流量计的应用热式气体质量流量计主要应用于工业生产中的气体流量测量和控制,广泛用于化工、冶金、石油、天然气等领域。
它具有测量精度高、稳定性好、响应速度快等优点,是流体测量领域中的重要仪器之一。
在实验室领域,热式气体质量流量计也被广泛应用于科研领域的气体流量测量和控制。
SAGE热式质量流量计
快速响应
热传导速度较快,响应 时间短,能够快速跟踪
流体的变化。
局限性
对流场要求高
要求流场稳定,不能有涡流、湍流等现象, 否则会影响测量精度。
对流体物性敏感
对流体的物性较为敏感,如密度、比热容等, 需要针对不同流体进行校准和补偿。
受环境温度影响
环境温度的变化会影响热传导的速度和效率, 从而影响测量精度。
应用拓展
工业自动化
将热式质量流量计应用于更多的工业领域,如石 油、化工、制药等,提高生产效率。
环境监测
拓展流量计在环境监测领域的应用,如气体排放 监测、空气质量监测等。
智能家居
将热式质量流量计应用于智能家居领域,如智能 热水器、智能空调等,提高生活品质。
市场前景
市场需求增长
01
随着工业自动化和智能化的发展,热式质量流量计的市场需求Fra bibliotek生物工程
在生物工程实验中,热式质量流量 计可用于监测培养液或气体的流量, 控制细胞培养和发酵过程。
环境监测
在环境监测领域,热式质量流量计 可用于监测气体排放和大气污染物 的浓度,为环境保护和治理提供数 据支持。
环境监测
大气污染
监测大气中各种污染物的浓度, 如二氧化硫、氮氧化物等,评估 环境质量和空气质量指数。
水质监测
在水质监测中,热式质量流量计 可用于监测水体中各种污染物的 排放量,确保水质安全和符合标 准。
04
优势与局限性
优势
高精度测量
采用先进的热传导原理, 对流体的质量流量进行 高精度测量,测量精度
高。
宽测量范围
可测量多种流体,如气 体、液体和蒸汽,测量
范围广泛。
非接触式测量
热式气体质量流量计安装要求
热式气体质量流量计安装要求
热式气体质量流量计安装要求
1、热式气体质量流量计的安装需要电阻不能大于10 ,不能与其它电器设备的接地线共用。
如果不能保证变送器外壳与金属管道良好接触,应用金属导线将它们连接起来。
再可靠接地。
2、热式气体质量流量计是利用流体流过外热源加热的管道时产生的温度场变化来测量流体质量流量,或利用加热流体时流体温度上升某一值所需的能量与流体质量之间的关系来测量流体质量流量的一种流量仪表。
3、通过测量气体流经流量计内加热元件时的冷却效应来计量气体流量的。
气体通过的测量段内有两个热阻元件,其中一个作为温度检测,另一个作为加热器。
温度传感元件用于检测气体温度,加热器则通过改变电流来保持其温度与被测气体的温度之间有一个恒定的温度差。
当气体流速增加,冷却效应越大,使须保持热电阻间恒温的电流也越大。
此热传递正比于气体质量流量,即供给电流与气体质量流量有一对应的函数关系来反映气体的流量。
4、理想的底座焊接位罝和焊接工艺;
5、安装球阀;
6、打孔;
7、禁止在爆炸环境里进行焊接操作;对焊接有特殊要求的环境。
热式气体质量流量计使用说明书
流量积算仪出厂已设定,不许用户设置任何改动。改动请与厂家联系 。
1、 显示窗口,上窗口八位累计下四位瞬时流量 2、 测量状态下按键 5 秒进入设置菜单(在设置状态下按键 5 秒进
入下一组参数或返回)在设置状态下移动修改位 3、 在测量状态下按键 5 秒累计值清零,在设置状态下增加参数值
或改变设置类型/翻页功能 4、 在设置状态下,减小参数值或改变设置类型 5、 在设置状态下,启动修改状态或存入修改参数值 密码 1111 对应菜单参数 标定点 1-8 点为,非线性 标定点 9-16 点为,非线性 通讯地址出厂设为 1 通讯速率:19200、9600、4800、2400,出厂设为 9600 模拟输出:4-20MA、0-10MA、0-20MA,出厂设为 4-20MA 输出下限:0-9999,一般为 0 输出上限:0-9999,可对应量程的任何一段 小数点位:个 十 百 千位
101.33KPA)
工作原理:
流量计探头由一个测速传感器、一个测温传感器组成。通电后测温传感器测 得流体温度 Ta,测速传感器被加热到高于 Ta 的一定温度 Ts,电路保持△T= Ts-Ta 恒定。当流体流过探头时,从测速传感器上带走一部分热量,使 Ts 下降。电路 为保持△T 恒定,需增加对测速传感器的加热功率。设该加热功率为 P,根据 L.V.KING 定理,即流体流过测速传感器带走的热量与对测速传感器的加热功率 相对应的原理,得 P=△T×(A +B×ρv1/2)。式中 A、B 为流体的物理常数。因此, 可以通过测量加热功率 P 来测量带走这部分热量的流体的质量流量。由于带走这 部分热量的是流体的分子,所以测速传感器直接测量的是流体的质量流速ρV, 只须再乘以管道截面积就可以得到流体的质量流量。因此对于大管径的流量测 量,只需在标准管径标定装置上测定相应的质量流速,就可以测量大管径中的气 体质量流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热式质量流量计 前言: 热式质量流量计(以下简称TME)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。 20世纪90年代初期,世界范围TMF销售金额约占流量仪表的8%,约4.5万台。国内90年代中期销售量估计每年1000台左右。过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。
第一节 原理和结构 热式流量仪表用得最多有两类,即1)利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计(thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)效应的金氏定律(King s Iaw)TMF。又由于结构上检测元件伸入测量管内,也称浸入型(immersion type )或侵入型(intrusion type)。有些在使用时从管外插入工艺管内的仪表称作插入式(insertion type)。
1.1热分布式TMF 热分布式TMF的工作原理如图1所示,薄壁测量管3外壁绕着两组兼作加热器和检测元件的绕组2,组成惠斯登电桥,由恒流电源5供给恒定热量,通过线圈绝缘层、管壁、流体边界层传导热量给管内流体。边界层内热的传递可以看作热传导方式实现的。在流量为零时,测量管上的温度分布如图下部虚线所示,相对于测量管中心的上下游是对称的,由线圈和电阻组成的电桥处于平衡状态;当流体流动时,流体将上游的部分热量带给下游,导致温度分布变化如实线所示,由电桥测出两组线圈电阻值的变化,求得两组线圈平均温度差ΔT。便可按下式导出质量流量qm,即:
(1) 式中 cp -------被测气体的定压比热容;A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数; K -------仪表常数。 在总的热传导系数A中,因测量管壁很薄且具有相对较高热导率,仪表制成后其值不变,因此A的变化可简化认为主要是流体边界层热导率的变化。当使用于某一特定范围的流体时,则A、cp均视为常量,则质量流量仅与绕组平均温度差成正比,如图2 Oa 段所示。 Oa段为仪表正常测量范围,仪表出口处流体不带走热量,或者说带走热量极微;超过a点流量增大到有部分热量被带走而呈现非线性,流量超过b点则大量热量被带走。 测量管加热方式大部分产品采用两绕组或三绕组线绕电阻;除管外电阻丝绕组加热方式外还有利用管材本身电阻加热方式,如表1所示。测量管形状有直管形,还有∏字形结构,三绕组中一组在中间加热,两组分绕两臂测量温度。
方式 感应加热热电偶 两绕组电阻丝 三绕组电阻丝 检测元件 热电偶 热电阻丝 热电阻丝 加热方式 测量管焦耳热 自己加热 中间绕组加热
为了获得良好的线形输出,必须保持层流流动,测量管内径D设计得很小而长度L很长,即有很大L/D比值,流速低,流量小。为扩大仪表流量,还可采用在管道内装管束等层流阻流件;扩大更大流量和口径还常采用分流方式,在主管道内装层流阻流件(见图3)以恒定比值分流部分流体到流量传感部件。有些型号仪表也有用文丘里喷嘴等代替层流阻流件。 市场上热分布式TMF按测量管内径分为细管型(也有称毛细管型)和小型两大类,结构上有较大区别。小型测量管仪表只有直管型,内径为4mm;细管型测量管内径仅0.2~0.5mm。稍大者为0.8~1mm,极容易堵塞,只适用于净化无尘气体。细管型仪表还有一种带有调节单元和控制阀等组成一体的热式质量流量控制器,结构如图4所示。 1.2基于金氏定律的浸入型TMF 金氏定律的热丝热散失率表述各参量间关系,如式2所示。
(2) 式中 H/L -------单位长度热散失率,J/m•h;ΔT--------热丝高于自由流束的平均升高温度,K; λ --------流体的热导率,J/h•m•K;cV---------定容比热容,J/kg•k;ρ---------密度,kg/m3; U---------流体的流速,m/h;d--------热丝直径,m.
如图5所示,两温度传感器(热电阻)分别置于气流中两金属细管内,一热电阻测得气流温度T;另一细管经功率恒定的电热加热,其温度Tv高于气流温度,气体静止时Tv最高,随着质量流速ρU增加,气流带走更多热量,温度下降,测得温度差ΔT=Tv-T.这种方法称作“温度差测量法”或“温度测量法”。 消耗功率P和温度差ΔT如式3所示比列关系,式中B, C, K均为常数,K在?~?之间。从式2便可算出质量流速,乘上点流速于管道平均流速间系数和流通面积的质量流量qm,再将式3变换成式4。
(3) (4) 式4中E是与所测气体物性如热导率、比热容、粘度等有关的系数,如果气体成分和物性恒定则视为常数。D则是与实际流动有关的常数。 若保持ΔT恒定,控制加热功率随着流量增加而增加功率,这种方法称作“功率消耗测量法”。
第二节 优点 热分布式TMF可测量低流速(气体0.02~2m/s)微小流量;浸入式TMF可测量低~中偏高流速(气体2~60m/s),插入式TMF更适合于大管径。 TMF无活动部件,无分流管的热分布式仪表无阻流件,压力损失很小;带分流管的热分布式仪表和浸入性仪表,虽在测量管道中置有阻流件,但压力损失也不大。 TMF使用性能相对可靠。与推导式质量流量仪表相比,不需温度传感器,压力传感器和计算单元等,仅有流量传感器,组成简单,出现故障概率小。 热分布式仪表用于H2 、N2 、O2、CO 、NO等接近理想气体的双原子气体,不必用这些气体专门标定,直接就用空气标定的仪表,实验证明差别仅2%左右;用于Ar、He等单原子气体则乘系数1.4即可;用于其他气体可用比热容换算,但偏差可能稍大些。 气体的比热容会随着压力温度而变,但在所使用的温度压力附近不大的变化可视为常数。
第三节 缺点 热式质量流量计响应慢。 被测量气体组分变化较大的场所,因cp值和热导率变化,测量值会有较大变化而产生误差。 对小流量而言,仪表会给被测气体带来相当热量。 对于热分布式TMF,被测气体若在管壁沉积垢层影响测量值,必须定期清洗;对细管型仪表更有易堵塞的缺点,一般情况下不能使用。 对脉动流在使用上将受到限制。 液体用TMF对于粘性液体在使用上亦受到限制。
第四节 分类 按流体对检测元件热源的热量作用可分为热量传递转移效应和热量消散效应或冷却效应。
按检测变量可分为温度测量法和功率消耗测量法。 按流量传感器结构可分为(有测量管的)接入管道式和插入式。 按测量流体可分为气体和液体用。 气体是当前TMF主要应用的流体,从微小流量到大管径大流量都可使用。 液体用TMF 在20世纪90年代初中期开始发展并在工业生产中应用,但当前主要为微小流量仪表。有消耗功率测量法的热分布式TMF和利用珀尔帖( PeItier)致冷元件在检测部位致冷(即附加热)的TMF。后者的测量原理如图6所示,流量传感器由测量毛细管、电子冷却装置(珀尔帖元件)和3各温度检出件组成。测量管和致冷元件接触,无液体流动时冷却到某一温度时,两者温度相等;液体流动时致冷元件附近测量毛细管温度上升,如虚线所示分布,测量温度检测点的两者温度差以求的流量。 第五节 选用考虑要点 5.1 应用概况 TMF目前绝大部分用于测量气体,只有少量用于测量微小液体流量。 热分布式仪表使用口径和流量均较小,较多应用于半导工业外延扩散、石油化工微型反应装置、镀膜工艺、光导纤维制造、热处理淬火炉等各种场所的氢、氧、氨、燃气等气体流量控制,以及固体致冷中固体氩蒸发等累积量和阀门制造中泄漏量的测量等。在气体色谱仪和气体分析仪等分析仪器上,用于监控取样气体量。分流型热分布式仪表应用于30~50mm以上管径时,通常在主流管道上装孔板等节流装置或均速管,分流部分气体到流量传感器进行测量。
冷却效应的插入式TMF国外近10年在环境保护和流程工业中应用发展迅速,例如;水泥工业竖式磨粉机排放热气流量控制,煤粉燃烧过程粉/气配比控制,污水处理发生的气体流量测量,燃料电池工厂各种气体流量测量等等。大管道用还有径向分段排列多组检测元件组成的插入检测杆,应用于锅炉进风量控制以及烟囱烟道排气监测SO2和NOX排放总量。
液体微小流量TMF应用于化学、石油化工、食品等流程工业实验性装置,如液化气流量测量,注入过程中控制流量;高压泵流量控制的反馈量;药液配比系统定流量配比控制;直接液化气液态计量后气化,供给工业流程或商业销售。还有在色谱分析等仪器上用作定量液取样控制以及用于动物实验麻醉液流量测量。还未见到液体微小流量TMF国内定型产品。
5.2流体种类和物性 TMF只能用于测量清洁单相流体------气体或液体,用气体的型号不能用于液体,反之亦然。对于热分布式气体还必须是干燥气体,不能含有湿气。流体可能产生的沉积、结垢以及凝结物均将影响仪表性能。对于热分布式TMF制造厂还应给出接受的不清洁程度,例如大部分给出允许微粒粒度,用户可按此决定是在仪表前装过滤器。浸入式TMF对清洁度要求低些,则可用于测量烟道气,但必须装有阀等插入机构,能再不停流条件下去取出检测头。
(1) 流体的比热容和热导率 从式1和式2可知,TMF工作时流体的比热容和热导率保持恒定才能测量准确。被测介质工况温度、压力变化范围不大,仅在工作点附近波动,比热容变化不大,可视作常数。若工作点压力温度远离校准时压力温度,则必须在该工作点压力温度下调整。表2列出几种气体在不同压力温度下的定压比热容,可看到其变化程度。
表2 几种气体定压比热容 cal/(g•K) 种类 温度/K 压 力 / MPa 0.001 0.1 1 10
空气 300 400 500 0.240 0.242 0.246 0.241 0.242 0.246 0.244 0.244 0.247 0.278 0.260 0.257
氩气Ar 300 400 500 0.124 0.124 0.124 0.125 0.125 0.125 0.127 0.125 0.125 0.155 0.139 0.133
二氧化碳 CO2
300 400 500 0.202 0.224 0.242 0.204 0.225 0.243 0.220 0.231 0.246 ----
0.314 0.272 一氧化碳 CO 300 400 500 0.249 0.250 0.254 0.249 0.250 0.254 0.253 0.253 0.256 0.285 0.272 0.267
甲烷CH4 300 400 500 ---- ---- ---- 0.54 0.60 0.69 0.55 0.61 0.69 0.65 0.64 0.71