用动态规划的思想实现动态投资问题 实验报告
动态基础设计实验报告(3篇)

第1篇一、实验目的1. 理解动态规划的基本思想和方法。
2. 掌握动态规划在解决实际问题中的应用。
3. 提高编程能力和算法设计能力。
二、实验内容本次实验主要涉及以下四个问题:1. 斐波那契数列2. 最长公共子序列3. 最长递增子序列4. 零钱找零问题三、实验原理动态规划是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划的基本思想是将一个复杂问题分解成若干个相互重叠的子问题,然后按照子问题的顺序逐个求解,最后将这些子问题的解合并成原问题的解。
四、实验步骤及代码实现1. 斐波那契数列斐波那契数列是指这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, ...,其中每个数都是前两个数的和。
```cppinclude <iostream>using namespace std;int Fibonacci(int n) {if (n <= 1) {return 1;}int fib[n+1];fib[0] = 1;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i-1] + fib[i-2];}return fib[n];}int main() {int n;cout << "请输入斐波那契数列的项数:" << endl;cin >> n;cout << "斐波那契数列的第 " << n << " 项为:" << Fibonacci(n) << endl;return 0;}```2. 最长公共子序列给定两个序列A和B,找出它们的公共子序列中长度最长的序列。
```cppinclude <iostream>using namespace std;int LCSLength(string X, string Y) {int m = X.length();int n = Y.length();int L[m+1][n+1];for (int i = 0; i <= m; i++) {for (int j = 0; j <= n; j++) {if (i == 0 || j == 0)L[i][j] = 0;else if (X[i-1] == Y[j-1])L[i][j] = L[i-1][j-1] + 1;elseL[i][j] = max(L[i-1][j], L[i][j-1]);}}return L[m][n];}int main() {string X = "AGGTAB";string Y = "GXTXAYB";cout << "最长公共子序列长度为:" << LCSLength(X, Y) << endl; return 0;}```3. 最长递增子序列给定一个序列,找出它的最长递增子序列。
动态规划实验报告

动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。
本实验旨在通过实际案例,探究动态规划算法的原理和应用。
二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。
它通常适用于具有重叠子问题和最优子结构性质的问题。
三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。
四、实验过程本实验选择了经典的背包问题作为案例进行分析。
背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。
1. 确定状态在动态规划算法中,状态是问题的关键。
对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。
2. 确定状态转移方程状态转移方程是动态规划算法的核心。
对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。
则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。
对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。
4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。
具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。
五、实验结果与分析通过实验,我们得到了背包问题的最优解。
同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。
这为我们提供了在实际问题中应用动态规划算法的思路。
六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。
投资决策的实验报告

投资决策的实验报告投资决策的实验报告导语:投资决策是一个复杂而关键的过程。
在这个实验报告中,我将分享我进行的一项投资决策实验,并对实验结果进行分析和总结,以期能够对投资决策有更深入的理解。
实验背景:在这个实验中,我被要求模拟一个投资者,通过分析市场和公司的数据,做出投资决策。
我将面临不同的投资选择,包括股票、债券和房地产等。
实验的目的是帮助我了解投资决策的风险和回报,并学会如何在不同的情况下做出明智的选择。
实验过程:在实验开始时,我收到了一份包含各种投资选项的投资组合。
我首先进行了市场和公司的研究,查看了历史数据和趋势分析。
然后,我分析了每个投资选项的风险和回报,并制定了一个投资策略。
在实验的过程中,我发现了一些有趣的现象。
首先,股票市场的波动性较大,但潜在的回报也更高。
然而,债券市场的回报相对稳定,但风险较低。
房地产市场则是一种相对稳定且回报较高的投资选择。
此外,我还发现了市场和公司之间的相互影响关系,以及市场预期对投资决策的影响。
实验结果:在实验结束时,我根据我的投资策略进行了投资,并获得了一定的回报。
然而,我也遇到了一些挑战和错误决策。
例如,我在某些时候没有及时调整我的投资组合,导致了一些损失。
此外,我还发现了一些投资选择的不确定性,这使得决策变得更加困难。
实验总结:通过这个实验,我学到了许多关于投资决策的重要教训。
首先,市场和公司的数据分析是做出明智投资决策的关键。
其次,投资者应该密切关注市场的波动和趋势,并及时调整投资组合。
此外,风险管理和分散投资也是投资决策中不可忽视的因素。
此外,我还意识到投资决策是一个动态的过程。
市场和公司的情况随时都可能发生变化,因此投资者需要时刻保持警觉,并做出相应的调整。
同时,投资者还需要具备一定的耐心和决断力,不被短期波动所影响,而要着眼于长期回报。
结语:通过这个实验,我对投资决策有了更深入的理解。
我意识到投资决策是一个综合性的过程,需要考虑多个因素并做出明智的选择。
动态规划实验报告心得

一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。
本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。
二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。
动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。
2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。
通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。
3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。
在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。
4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。
在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。
三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。
动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。
这种思维方式有助于我们更好地理解和解决实际问题。
2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。
它描述了子问题之间的关系,是求解问题的关键。
通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。
动态规划问题实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生理解动态规划算法的基本概念,掌握动态规划解决问题的基本思想和步骤,并能运用动态规划算法解决实际问题。
通过实验,学生应能够:1. 理解动态规划算法的概念及其应用领域。
2. 掌握动态规划的基本思想和解决问题的基本步骤。
3. 学习动态规划算法设计策略,并能够运用到实际问题中。
4. 通过实际编程,提高编程能力和问题解决能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发环境:PyCharm三、实验内容本次实验选择了三个典型的动态规划问题进行实践:1. 最长公共子序列问题2. 矩阵连乘问题3. 剪绳子问题四、实验步骤1. 最长公共子序列问题(1)问题描述:给定两个序列X和Y,找出X和Y的最长公共子序列。
(2)算法设计:- 使用二维数组dp[i][j]表示X的前i个字符和Y的前j个字符的最长公共子序列的长度。
- 初始化dp[0][j] = 0和dp[i][0] = 0。
- 对于i > 0和j > 0,如果X[i-1] == Y[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。
(3)代码实现:```pythondef longest_common_subsequence(X, Y):m, n = len(X), len(Y)dp = [[0] (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):for j in range(1, n + 1):if X[i - 1] == Y[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[m][n]```2. 矩阵连乘问题(1)问题描述:给定n个矩阵A1, A2, ..., An,其中Ai与Ai-1是可乘的,i = 1, 2, ..., n-1。
动态规划实验报告摘要(3篇)

第1篇本实验报告针对动态规划算法进行深入研究和实践,旨在通过一系列实验,加深对动态规划思想、基本原理及实际应用的理解。
实验内容涵盖了动态规划算法的多个经典问题,包括找零钱问题、独立任务最优调度问题、最长公共子序列问题、矩阵连乘问题、剪绳子问题以及0-1背包问题等。
一、实验目的1. 理解动态规划算法的概念,掌握动态规划的基本思想和解决问题的基本步骤。
2. 学习动态规划算法设计策略,提高算法设计能力。
3. 通过实际案例,体会动态规划算法在解决实际问题中的应用价值。
二、实验内容与步骤1. 找零钱问题实验要求设计一个动态规划算法,对给定面值的硬币组合,计算出所有可能找零方式的硬币个数。
通过实验,掌握了动态规划算法的基本原理,并熟悉了动态规划在解决组合优化问题中的应用。
2. 独立任务最优调度问题实验要求设计一个动态规划算法,使得两台处理机处理完n个作业的时间最短。
通过实验,了解了动态规划在解决调度问题中的应用,并掌握了多阶段决策问题的求解方法。
3. 最长公共子序列问题实验要求找出两个序列的最长公共子序列。
通过实验,学习了动态规划在解决序列匹配问题中的应用,并掌握了如何通过动态规划算法优化问题求解过程。
4. 矩阵连乘问题实验要求确定计算矩阵连乘积的计算次序,使得所需数乘次数最少。
通过实验,了解了动态规划在解决矩阵连乘问题中的应用,并掌握了如何通过动态规划算法优化计算过程。
5. 剪绳子问题实验要求将一根绳子剪成m段,使得各段乘积最大。
通过实验,掌握了动态规划在解决资源分配问题中的应用,并学会了如何通过动态规划算法找到最优解。
6. 0-1背包问题实验要求用动态规划算法解决0-1背包问题。
通过实验,了解了动态规划在解决背包问题中的应用,并掌握了如何通过动态规划算法优化问题求解过程。
三、实验结果与分析通过对以上问题的动态规划算法实现,实验结果表明:1. 动态规划算法能够有效地解决组合优化问题、调度问题、序列匹配问题、矩阵连乘问题、资源分配问题以及背包问题等。
实验三动态规划算法实验
实验三动态规划算法的应用一、实验目的1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。
2.熟练掌握分阶段的和递推的最优子结构分析方法。
3.学会利用动态规划算法解决实际问题。
二、实验内容1.问题描述:题目一:数塔问题给定一个数塔,其存储形式为如下所示的下三角矩阵。
在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。
请找出一条路径,使路径上的数值和最大。
输入样例(数塔):912 1510 6 82 18 9 519 7 10 4 16输出样例(最大路径和):59题目二:最长单调递增子序列问题设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。
题目三:Common SubsequenceA subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.输入样例abcfbc abfcabprogramming contestabcd mnp输出样例42题目四 0-1背包问题给定n种物品和一个背包。
动态规划实验报告
动态规划实验报告《动态规划实验报告》动态规划是一种重要的算法设计技术,它在解决许多实际问题中具有广泛的应用。
本实验报告将介绍动态规划算法的基本原理,并通过一个实际问题的求解过程来展示其应用效果。
首先,我们来了解一下动态规划的基本原理。
动态规划是一种将原问题分解为子问题来求解的方法,它通常用于求解最优化问题。
动态规划算法的核心思想是将原问题分解为若干个子问题,然后通过求解子问题的最优解来得到原问题的最优解。
为了避免重复计算子问题,动态规划算法通常采用记忆化搜索或者自底向上的方式来进行计算。
接下来,我们将通过一个实际问题来展示动态规划算法的应用效果。
假设我们有一组数字,我们希望找到其中的一个子序列,使得这个子序列的和最大。
这个问题可以通过动态规划算法来求解,具体的求解过程如下:1. 定义状态:我们定义一个状态数组dp,其中dp[i]表示以第i个数字结尾的子序列的最大和。
2. 状态转移方程:我们可以通过以下状态转移方程来求解dp数组:dp[i] = max(dp[i-1] + nums[i], nums[i]),其中nums[i]表示第i个数字。
3. 初始状态:我们将dp数组的初始状态设为dp[0] = nums[0]。
4. 求解最优解:最终的最优解即为dp数组中的最大值。
通过以上求解过程,我们可以得到原问题的最优解,即最大子序列的和。
这个实例展示了动态规划算法在实际问题中的应用效果,通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的最优化问题。
综上所述,动态规划算法是一种重要的算法设计技术,它在解决最优化问题中具有广泛的应用。
通过合理的状态定义和状态转移方程,我们可以高效地求解复杂的实际问题。
希望本实验报告能够帮助读者更好地理解动态规划算法的基本原理和应用方法。
动态规划实验报告
动态规划实验报告⼀、问题描述7-3 最低通⾏费 (25 分)⼀个商⼈穿过⼀个N×N的正⽅形的⽹格,去参加⼀个⾮常重要的商务活动。
他要从⽹格的左上⾓进,右下⾓出。
每穿越中间1个⼩⽅格,都要花费1个单位时间。
商⼈必须在(2N-1)个单位时间穿越出去。
⽽在经过中间的每个⼩⽅格时,都需要缴纳⼀定的费⽤。
这个商⼈期望在规定时间内⽤最少费⽤穿越出去。
请问⾄少需要多少费⽤?注意:不能对⾓穿越各个⼩⽅格(即,只能向上下左右四个⽅向移动且不能离开⽹格)。
输⼊格式:第⼀⾏是⼀个整数,表⽰正⽅形的宽度N (1≤N<100);后⾯N⾏,每⾏N个不⼤于100的整数,为⽹格上每个⼩⽅格的费⽤。
输出格式:⾄少需要的费⽤。
输⼊样例:51 4 6 8 102 5 7 15 176 8 9 18 2010 11 12 19 2120 23 25 29 33输出样例:109样例中,最⼩值为109=1+2+5+7+9+12+19+21+33。
⼆、算法描述仔细分析商⼈的⾛法,商⼈在每⼀格时,其实只有两种选择,要么向右⾛,要么向下⾛;他不可能向上⾛或者向左⾛,因为那只会离位于右下⾓的⽬的地越来越远,⽽且还⽩⽩花费更多的钱。
假设商⼈站在 [i][j] 格上,他只有两种可能的来路,要么从左边 [i][j-1] ⾛过来,要么从上⾯ [i-1][j] ⾛过来。
第⼀种情况,假设商⼈是从左边 [i] [j-1] ⾛过来的,那么他的上⼀步只能是:要么从左边的 [i][j-2] 格⼦过来,要么从上⾯的 [i-1][j-1] 格⼦过来。
第⼆种情况,假设假设商⼈是从上⾯ [i-1][j] ⾛过来的,那么他的上⼀步只能是:要么从左边的 [i-1][j-1] 格⼦过来,要么从 [i-2][j] 过来。
综上,我们可以总结出,商⼈站在任意⼀个格⼦时,只能有两种情况,从左边或者从上⾯来,⽽到底是从哪⾥来的,就取决于这两种来路哪个的累积价格更少。
所谓累积价格,就是从左上⾓的⼊⼝⾛到当前格⼦所花费的总费⽤。
利用动态规划进行投资组合分析
利用动态规划进行投资组合分析动态规划是一种解决问题的数学方法,可以在给定一组决策时找到最优解。
在投资组合分析中,动态规划可以用来确定最佳的资产配置策略,以最大化投资组合的收益或最小化风险。
投资组合分析是为了在多种资产之间分配投资资金,以达到在给定风险水平下最大化收益的目标。
在动态规划中,我们将问题分解为一系列子问题,并根据每个子问题的最优解来找到整个问题的最优解。
首先,我们需要定义问题的状态。
在投资组合分析中,状态可以被定义为投资组合中每个资产的权重。
例如,如果有3个资产,那么一个状态可以表示为(0.5, 0.3, 0.2),意味着第一个资产的权重为50%,第二个资产的权重为30%,第三个资产的权重为20%。
接下来,我们定义问题的目标函数。
在投资组合分析中,目标函数可以是投资组合的期望收益率或风险。
通常,我们希望最大化收益并最小化风险,因此可以使用期望收益率-风险的权衡作为目标函数。
然后,我们需要确定问题的转移方程。
转移方程描述了如何从一个状态转移到另一个状态,并给出相应的收益或风险。
在投资组合分析中,转移方程可以基于资产的历史收益率和协方差矩阵来计算投资组合的预期收益率和风险。
基于以上定义,我们可以使用动态规划算法来解决投资组合分析问题。
首先,我们初始化一个价值表,用于存储每个状态的最优解。
然后,我们按照从小到大的顺序计算每个状态的最优解,并使用转移方程更新价值表。
最后,我们可以通过查找价值表中的最优解来确定最佳的资产配置策略。
动态规划在投资组合分析中的应用有很多。
例如,我们可以使用动态规划来确定在给定预算的情况下,如何分配资金以最大化整个投资组合的收益。
我们还可以使用动态规划来优化资产配置策略,以便在给定风险水平下最大化预期收益率。
另一个应用是动态调整投资组合。
通过定期重新计算最优解,我们可以根据市场条件和投资目标动态调整资产配置策略。
这可以帮助我们在不同的市场环境中实现最佳的投资组合。
此外,动态规划还可以用于优化投资组合的回测和风险管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的:用动态规划的思想实现动态投资问题。
二、实验要求:掌握动态规划算法设计的基本策略。
三、实验内容:m元钱,n项投资,fi(x)将x元投入第i项项目的效益,
目标函数max {f1(x1) + f2(x2) + … +fn(xn)}
约束条件x1 + x2 + … + xn = m,xi∈N
五:附录:程序代码及结果
#include<stdio.h>
void main()
{
void jie(int,int,int d[][9]);
void Invest(int m,int n,int f[][9],int g[][9],int d[][9]);
int m=8,n=3,f[4][9],d[4][9];
jie(m,n,d);
}
void Invest(int m,int n,int f[][9],int g[][9],int d[][9])
{
int i,j,k,s;
for(j=0;j<=m;j++)
{
f[1][j]=g[1][j];d[1][j]=j; }
for(i=2;i<=n;i++)
for(j=0;j<=m;j++)
for(i=n-1;i>0;i--)
{
s = s-k[i=1;i<=3;i++)
printf("%5d",k[i]);
printf("\n");
}
四、实验心得:在调试过程中出现了好多小问题,一开始结果不对,我通过单步调试一步步的看待填的二维表中的数据。发现大部分V[i][j]对了,但是有极小数的不对。故而我的结果出现了问题。通过本次实验加深了我对动态规划算法的理解。而且对动态规范编写代码解决一个实际问题有了进一步的认识。即当算法考虑的原问题的每一个子问题,算法都需要计算一个最优解。换句话说,所有算法生成的表项表示算法考虑的子问题的最优解。这时候用动态规范把每一个最优解求出来(利用递归公式),就能够保证最后求得的一定是最优解。而且动态规划有个特点,即它是由底向上,它实现起来就是利用循环,有时用到一层循环即可,有时要用到两层for循环即可以求解出问题。
{
f[i][j]=0;
for(k=0;k<=j;k++)
{
s=f[i-1][j-k]+g[i][k];
if(s>f[i][j])
{
f[i][j]=s;
d[i][j]=k;
}
}
}
}
void jie(int m,int n,int d[][9]){
int s=m;
int k[4];
int i;
k[n]=d[n][m];
设Fk(x)表示x元钱投给前k个项目的最大效益
算法实现:投资第k个项目p元钱的效益可表示为Project[k][p],其中0<=k<=n,0<=p<=m;设投资给前k个项目p元钱的最终总效益为用Benefit[k][p],其中0<=k<=n,0<=p<=m。设allot[k][p]表示在总投资为p元钱时候,最终分配给第k个项目的钱数解。
intg[4][9]={{0},{0,5,15,40,80,90,95,98,100},{0,5,15,40,60,70,73,74,75},{0,4,26,40,45,50,51,53,53}};
Invest(m,n,f,g,d);
printf("可获得的最大收益为:%d\n",f[3][8]);