杂散电流腐蚀机理及防护措施
地铁杂散电流危害及防护(二篇)

地铁杂散电流危害及防护摘要:杂散电流给地铁设备、设施的安全运行和使用寿命造成影响,甚至会威胁乘客的安全,有必要对其采取防护和治理措施,以确保地铁的安全运营。
文章对地铁杂散电流的危害及防护方面进行了分析。
在地铁系统中,牵引供电系统一般采用直流方式,会产生杂散电流。
目前,地铁的牵引供电方式一般采用直流供电方式。
在理想的状况下,牵引电流由牵引变电所的正极出发,经由接触网、电动列车和走行轨返回牵引变电所的负极。
由于走行轨与大地之间的绝缘不良或不是完全绝缘,流经走行轨的电流不能全部经由走行轨流回牵引变电所的负极,有一部分电流会泄漏进入大地,然后再流回变电所,这部分泄漏到大地中去的电流就是杂散电流,也称作迷流。
走行轨铺设在轨枕、道碴或整体道床上,由于钢轨与轨枕或整体道床之间不是完全绝缘状态,钢轨与大地间存在一定的过渡电阻,其阻值表示了轨道和大地之间的阻性耦合和电导性耦合。
有关研究表明,钢轨与大地之间的过渡电阻与通过走行轨中的电流无关,其阻值取决于轨枕和轨道紧固件的类型、轨枕下面的垫层、污染程度、气象条件。
也就是说,与走行轨流人大地的杂散电流与道床类型、轨枕和轨道紧固类型有关,并还随污染程度、气象条件的变化而变化。
一、杂散电流的危害地铁中的杂散电流是一种有害的电流,会对地铁中的电气设备、设施的正常运行造成不同程度的影响,还会对隧道、道床的结构钢和附近的金属管线造成不同程度的危害。
1.引起地铁附近建筑物结构钢筋、金属管线腐蚀地铁附近的地下金属体埋于地下,周围有电解质存在,在没有杂散电流通过时,这些金属体所承受的渗透压与溶解压通常会保持平衡状态,不会发生电化学腐蚀。
但当这些金属体中流过杂散电流时,这些金属体所承受的渗透压与溶解压的平衡状态就会被打破,就要发生电化学腐蚀。
在这些情况下,会有两种过程同时发生。
如果城轨隧道、道床或其他建筑物的结构钢筋及附近的金属管线(如电缆、金属管件等)长期受到杂散电流的腐蚀,就会严重损坏地铁附近的各种结构钢筋和地下金属管线,破坏结构钢的强度,降低其使用寿命。
油气管道的杂散电流腐蚀防护措施85

油气管道的杂散电流腐蚀防护措施摘要:随着我国社会经济的发展,油气管道铺设里程也在不断增长。
在油气管道使用过程中,会因各种原因产生不同性质的危害,而其中由杂散电流造成的油气管道腐蚀现象越来越受到的关注。
本文简要阐述了油气管道杂散电流腐蚀的机理,并对杂散电流腐蚀的基本特点深入分析,提出了杂散电流腐蚀的防腐措施,希望对油气管道的正常运转提供必要的帮助。
关键词:油气管道;杂散电流;腐蚀;防护措施进入21世纪以来,我国管道建设日益增多,管道途径大中城市的铁路、公路网等设施由于地理位置的限制,油气管道线路与电气化铁路在设计和建设过程中不可避免地出现了并行和交叉敷设的情况。
特别是近年来,随着特高压输电线路的出现以及高速铁路的建设,我国油气管道与输电线路、电气化铁路的并行交叉的里程也不断增加,电力输电线路、电气化铁路产生的杂散电流对油气管道造成严重的腐蚀。
电力传输或电气化铁路使用过程中,会在土壤中产生大量杂散电流,对地下油气管道造成严重的腐蚀现象。
据不完全统计,因杂散电流引起的管道腐蚀已成为近年来管道腐蚀的重要因素之一,并且距离铁路或高压线路越近的油气管道,其腐蚀速度越快,给油气管道运行工作带来十分严重的影响。
一、杂散电流腐蚀的机理与危害杂散电流通常指流入土壤中的非常规电路以外的电流。
由杂散电流引发的油气管道腐蚀问题,其本质上是电化学腐蚀中的电解作用。
油气管道为钢质材料,其自身具备较强的导电性,当杂散电流在管道中流动时就会产生电位差,并形成腐蚀电池。
由电气化铁路或高压输电线路流出的杂散电流进入油气管道,铁路或输电线路为阳极,发生腐蚀油气管道为阴极,不腐蚀。
当杂散电流由管道返回铁路或输电线路时,管道为阳极,发生腐蚀;铁路或输电线路为阴极,不腐蚀。
油气管道长期在杂散电流干扰的影响下,管道防腐层会析出大量氢离子,从而引发管道防腐层的破坏。
研究表明,杂散电流对油气管道具有较强的危害,杂散电流会对管道的绝缘层、绝缘法兰造成严重损坏,加速油气管道的腐蚀情况。
埋地管道直流杂散电流腐蚀机理及防护措施分析

埋地管道直流杂散电流腐蚀机理及防护措施分析作者:赵秀芳来源:《中国化工贸易·下旬刊》2017年第01期摘要:埋地金属管道受直流杂散电流的干扰会产生电流腐蚀,容易发生管道穿孔事故。
本文对埋地管道直流杂散电流腐蚀机理进行了研究,并提出了有效的防护措施。
关键词:埋地管道;直流;杂散电流;腐蚀机理;影响因素随着经济的飞速发展,各种油气管道需求日益增多,而且大多数管线普遍采用的是地下铺设。
同时,以高速铁路、地铁为代表的轨道交通有了突飞猛进的发展。
一旦大地出现绝缘漏洞问题,这些轨道交通所采用的驱动电流就会从缺陷处流入大地,对埋地金属管道进行干扰,使金属管道产生严重的电化学腐蚀,给管道带来重大损失。
所以,对于杂散电流的研究是当前防腐工作者的重要课题之一。
1 杂散电流产生的原理杂散电流一般可分为直流杂散电流和交流杂散电流两种,另外还有离子型杂散电流和静电杂散电流两种补充类型。
对管道腐蚀影响最大的是直流杂散电流。
杂散电流的腐蚀特性具有以下特点:腐蚀强度大;腐蚀集中于局部位置;腐蚀范围广,随机性强。
1.1 直流杂散电流来源电车、电气化铁路以及以接地为回路的输电系统,都会在土壤中产生杂散电流,从而在地下管道上发生电化学腐蚀。
这种腐蚀,要比一般的土壤腐蚀严重得多。
不仅如此,管道原来所采用的阴极保护系统也会受到严重影响。
1.2 直流杂散电流形成原理其中影响最大的是直流电气化铁路。
以地铁为例,埋设在土壤中的金属结构物(以管道为例)相当于一个低电阻电流通道,在地铁直流牵引供电系统中,由于钢轨无法对大地绝对绝缘,有一部分牵引电流经钢轨流向大地,从而使大地的电位产生变化,进而引起埋地管道电位变化。
1.3 直流杂散电流腐蚀原理杂散电流正电荷从土壤进入金属管道的区域,其电位较高,属于腐蚀电池的阴极区,阴极区一般不会受到影响,当阴极区电位过大时,管道会发生消耗电子的阴极还原反应,表面会析氢。
杂散电流经土壤流出管道进入变电站时,管道流出电流的区域电位相对较低,属于腐蚀电池的阳极区,发生金属原子放出电子转变成离子态的阳极氧化反应。
论述地铁杂散电流的危害与防护方法

论述地铁杂散电流的危害与防护方法我国地铁的发展是一个很平稳的过程,虽然地铁方便了我们,但它也存在着一些潜在的危险性和污染性。
它与我们平常的电源不一样,它采用的是直流牵引电源。
地铁的钢轨对地面不可能有完全的绝缘,所以在使用电时,电源本身会分散出一部分电流通过走行轨散入附近行驶过的地面,从而形成杂散电流。
杂散电流危害着地表的环境,渗入到大地的电流会腐蚀附近的建筑,加强分散电流的防腐性认识及防腐措施的研究显得尤为重要。
1 杂散电流产生原理2 地铁杂散电流危害的分析杂散电流的在地铁中的危害并不是单单的一个方面,其涉及范围比较广泛,而地铁处以金属材质居多、混凝土结构复杂,所以影响比较明显,此外对于通信方面也有很大的危害,具体如下文所述。
2.1 杂散电流会逐渐的腐蚀金属材质金属材质容易被自然界中存在的水分、灰尘等腐蚀,这是不可避免的情况,但是地铁系统中杂散电流对金属材质的腐蚀不是必然现象,可以有所限制,从而减少不必要的经济损失。
杂散电流来源于地铁系统中的漏电点,电流强度要比自然腐蚀电流高出几十甚至几百倍,破坏效果严重。
举个例子来说,1A的杂散电流在一年中可以毁坏掉15~18斤左右的钢材,再加上杂散电流的破坏模式具有集中于局部的现象,往往会使钢材穿孔,或是绝缘垫破损后的钢铁腐蚀,影响地铁钢铁的使用年限。
2.2 杂散电流会逐渐的破坏混凝土结构电流的特性可以说成是无孔不入,这也正是其可怕之处,杂散电流在经过混凝土进入到内部之后,会对钢筋支架造成腐蚀,并产生一系列的腐蚀物质,表现在我们面前的结果就是红锈、黑锈的产生等等。
在产生这些锈迹之后,会使钢筋的体积变粗、增大,甚至可加粗到原钢筋的4倍左右,这样一来,就会将水泥撑开,形成裂缝,产生安全隐患。
2.3 杂散电流对通信系统产生危害杂散电流使得通信导线和周边的地表形成电位差异,人们手中的通信设备就变为了高压电位,小的说是影响人们的通讯质量,大的说可能会对自身安全造成一定的威胁。
杂散电流腐蚀名词解释

杂散电流腐蚀名词解释:
杂散电流腐蚀是指在金属材料表面或内部,由于存在不纯物质、气体、水分或其他环境因素,导致电流在金属内部或表面产生的电化学反应而引起的腐蚀现象。
这种腐蚀通常是由于电流的不均匀分布或金属表面的不均匀性导致的。
杂散电流腐蚀通常发生在高电流密度区域,如金属表面的裂缝、孔洞、焊接点等处。
在这些区域,电流的流动路径可能会受到阻碍或改变,从而导致局部电流密度的增加和腐蚀的发生。
杂散电流腐蚀对金属材料的影响很大,会导致金属表面的腐蚀、疲劳、裂纹等问题,甚至可能导致金属材料的失效。
因此,对于需要使用金属材料的场合,如电子设备、航空航天、汽车制造等领域,需要采取相应的措施,如使用抗腐蚀材料、加强表面保护等,以减少杂散电流腐蚀的发生。
杂散电流腐蚀名词解释

杂散电流腐蚀名词解释杂散电流腐蚀名词解释1. 引言杂散电流腐蚀是一种常见的电化学腐蚀形式,对许多工业设备和结构造成严重的损害。
在本文中,我们将对杂散电流腐蚀进行详细解释,并探讨其原因、影响以及相应的防治方法。
2. 什么是杂散电流腐蚀杂散电流腐蚀(stray current corrosion)是指在电气系统中出现的不受控制的电流,通过某些金属结构或设备导致其腐蚀的现象。
这种电流在未经适当处理的情况下,可能导致严重的金属损耗,甚至引发设备破裂或系统故障。
3. 杂散电流腐蚀的原因杂散电流腐蚀通常由以下几个原因引起:3.1 非均匀电位分布:在电力供应系统或电气设备中,由于电流分布不均匀,导致某些地点的电位比其他地方高,产生电流流向较低电位的金属结构或设备,引发腐蚀。
3.2 地下设施电位差:在地下工程或管道系统中,可能存在不同的电位差,导致电流从一个区域流向另一个区域,引发腐蚀。
4. 杂散电流腐蚀的影响杂散电流腐蚀对金属结构和设备造成的影响主要有以下几个方面:4.1 金属损耗:杂散电流加速了金属的腐蚀速率,导致设备和结构的物质损耗加剧。
4.2 设备破裂风险:腐蚀导致金属断裂,可能引发设备破裂,造成重大事故和人员伤亡。
4.3 金属电位的漂移:杂散电流会改变金属结构或设备的电位,可能导致电气故障甚至系统崩溃。
5. 杂散电流腐蚀的防治方法为了有效预防和控制杂散电流腐蚀,可以采取以下几种方法:5.1 定期监测:通过安装监测设备,及时监测杂散电流的存在和变化,以便及早采取相应的措施。
5.2 电位补偿:通过电源系统的电位调整或使用电位补偿装置,可以减少或消除电位差,降低杂散电流的发生。
5.3 防护涂层:在金属结构表面涂覆保护性涂层,以防止杂散电流对金属的直接接触,减少腐蚀风险。
6. 个人观点和理解杂散电流腐蚀的概念对于电力系统和工程设备非常重要。
在我看来,了解和掌握杂散电流腐蚀的原因、影响及防治方法,对于预防设备腐蚀、保护系统运行稳定至关重要。
埋地燃气管道受杂散电流干扰腐蚀及防护研究

埋地燃气管道受杂散电流干扰腐蚀及防护研究哎呀,你知道吗?在咱们城市里,那些埋在地下的燃气管道就像是城市的“血管”,它们默默地输送着生命之源。
但是啊,有时候这些“血管”也会遭遇一些小麻烦,比如被杂散电流给“骚扰”一下。
别担心,今天就来聊聊这个让人头疼的问题——埋地燃气管道受杂散电流干扰腐蚀及防护研究。
你知道杂散电流是什么吗?简单来说,就是那些看不见摸不着的小电流,它们就像空气中的隐形杀手,悄悄溜进我们的“血管”里,让管道变得不那么健康了。
这些小电流可不是什么好东西,它们会让管道里的金属发生氧化反应,就像是被腐蚀了一样。
这样一来,燃气管道的使用寿命就缩短了,而且一旦出现故障,维修起来可就麻烦大了。
那么,我们该怎么解决这个问题呢?首先得找到这些杂散电流的来源。
你知道吗?它们可能来自地下的电缆、电力设备甚至是附近的大型电器。
这些地方都可能产生大量的电磁场,而燃气管道正好在这些电磁场的包围中。
这样一来,杂散电流就有机会“溜”进管道里捣乱了。
知道了问题所在,那我们就要想办法防止它。
一种办法就是在燃气管道周围安装一些特殊的防护装置。
这些装置就像是给管道穿上了一层“防护服”,能够有效地阻挡杂散电流的侵袭。
当然啦,这些装置也不是万能的,它们也需要定期检查和维护,确保它们的性能始终处于最佳状态。
除了安装防护装置之外,我们还可以通过一些其他的方法来减少杂散电流对燃气管道的影响。
比如说,我们可以在管道上涂上一层特殊的防腐涂料,这样就能够减缓金属氧化的速度,延长管道的使用寿命。
另外,我们还可以在管道周围种植一些能够吸收电磁辐射的植物,这样也能够降低杂散电流对管道的影响。
总的来说,解决埋地燃气管道受杂散电流干扰腐蚀及防护问题需要从多个方面入手。
既要找到杂散电流的来源,也要想办法阻止它;既要定期维护防护装置,也要采取其他措施来减少其影响。
只有这样,我们才能确保燃气管道的安全运行,为城市的繁荣发展提供坚实的基础。
杂散电流腐蚀防护措施

1) 杂散电流(“迷流”)的产生
杂散电流对金属结构的腐蚀有四个方面: 钢轨、道床结构钢筋、隧道结构钢筋、地网及地铁外部其它公共设施
堵 排 测
杂散电流腐蚀防护
采取“以堵为主,以排为辅, 防堵结合,加强监测”的设计原则:
•GB50157-2013 •CJJ49-92
Hale Waihona Puke 从源头上减少杂散电流 限制杂散电流扩散
10)应设置完善的杂散电流监测系统。
杂散电流腐蚀防护
加强金属构件腐蚀防护 杂散电流检测
1)走行钢轨和DC1500V设备采用绝缘法安装。
2)利用道床结构钢筋的可靠电气连接,形成杂散电流主收集监测网;
3)利用地下车站、明挖(或矿山法)区间隧道及U型槽、桥梁结构钢筋的可靠电气连接,形成杂散 电流辅助监测网;
4)在盾构区间采用隔离法对盾构管片结构钢筋进行防护。
5)在正线牵引变电所附近设置道床结构钢筋排流端子,以便用排流电缆将杂散电流主收集监测网 连接至牵引变电所内排流柜。
6)在正线牵引变电所内设置排流柜。排流柜应根据运营过程中对杂散电流腐蚀状况的监测结果判 断是否投入运行。 7)在车站两端、地下区间联络通道及高架区间每隔200m左右设置上、下行均流电缆;在设置牵引 变电所的车站一端不再设置均流电缆。在正线同一行的两根钢轨间每隔200m左右也设置一处均流 电缆。 8)车辆段(停车场)应根据接触网供电分段情况确定牵引回流回路,恰当的设置回流点和均流电 缆。 9)车辆段(停车场)线路与正线之间、车辆段(停车场)各电化线路的库内线路与库外线路之间 应设置绝缘轨缝并装设单向导通装置。电化股道和非电化股道之间、电化股道尽头线与车挡设备之 间应设置绝缘轨缝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杂散电流腐蚀机理及防护措施地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行轨兼作负回流线。
由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流即称迷流,又称地铁杂散电流。
地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。
如煤气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。
另外,地铁迷流同时也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。
本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流腐蚀机理及防护措施方面浅谈管见。
1 杂散电流腐蚀机理1.1 杂散电流腐蚀机理地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都是具有阳极过程和阴极过程的氧化还原反应。
即电极电位较低的金属铁失去电子被氧化而变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到电子被还原。
地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。
图中,I为牵引电流,Ix、Iy分别为走行轨回流和泄漏的迷流。
由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区);电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。
当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。
概括起来可将发生腐蚀的氧化还原反应分为两种:当金属铁周围的介质是酸性电解质,即pH<7时,发生的氧化还原反应是析氢腐蚀,以H+为去极化剂;当金属铁周围的介质是碱性电解质,即pH≥7时,发生的氧化还原反应是吸氧腐蚀,以O2为去极化剂。
1.2 杂散电流大小当钢轨为悬浮系统时(指全线钢轨采取对地绝缘,在任何地点不直接接地或通过其它装置接地),虽然钢轨对地采取了一系列措施,但钢轨对地泄漏电阻在工程实施中不可能无限大,一般在5~100Ω·km范围内。
同时随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、漏水和高地应力作用等影响,使地铁车站以及区间隧道中的轨、地绝缘性能降低或先期防护措施失效,势必增大了由走行轨泄漏到土壤介质中的杂散电流。
当列车在两牵引变电所间运行时,钢轨电位如图2所示,列车位置处为阳极区,钢轨电位为正,牵引变电所附近为阴极区,钢轨电位为负。
钢轨电位产生的原因是牵引回流在钢轨上产生了纵向电压。
研究表明,钢轨电位的大小与钢轨泄漏电阻的关系不大,当钢轨对地泄漏电阻在5~100Ω·km范围内变化时,受从牵引变电所至列车位置处的钢轨纵向电压钳制,钢轨对地电位基本不变。
杂散电流的大小,就是图2中的阴影区段从钢轨泄漏至地下电流密度的积分,即2 杂散电流防护措施从公式(1)中可得出杂散电流的总量基本上只与全线钢轨正电位及钢轨对地泄漏电阻有关,因此降低钢轨电位及增大钢轨泄漏电阻是防护杂散电流的基础;为杂散电流提供至牵引变电所负极的畅通金属通路,尽量减少杂散电流流出金属构件的电流密度,阻止杂散电流对其腐蚀,是防护杂散电流的重要措施。
防护杂散电流一般采取“以防为主,以排为辅,防排结合,加强监测”的综合防护措施,即(1)防:减少回流轨纵向电阻,降低钢轨电位和提高回流轨对地过渡电阻,确保畅通的牵引回流系统,隔离和控制所有的杂散电流泄漏途径,减少杂散电流进入地铁的主体结构、设备及相关的设施;(2)排:在回流轨的整体道床中设置杂散电流收集网,通过杂散电流的收集和排流系统,提供杂散电流返回至变电所负极的金属通路,以减少杂散电流向外泄漏。
(3)测:监视和测量杂散电流的大小,为运营维护提供依据,设计完备的杂散电流检测系统。
限于篇幅有限,本文结合“防”和“排”两方面内容综合阐述防护杂散电流措施。
2.1降低钢轨电位方案或确保畅通的牵引回流系统措施在列车运行密度和列车取流一定的情况下,钢轨电位由供电区间回流通路的电阻定。
减小回流通路电阻的主要措施是减小牵引变电所间距,保证回流通路畅通,增设辅助回流线,减小牵引回流通路电阻,运营中正线牵引网尽量采用“双边”供电等。
在满足供电负荷、供电质量及工程投资控制要求前提下,可适当调整变电所数量和设置位置,尽量使牵引变电所布置均匀。
减少以钢轨纵向电阻为主的回流系统电阻的措施包括正线钢轨采用重轨,且焊接为无缝长钢轨,若短钢轨间采用螺栓连接,则两根钢轨之间必须加焊一根铜电缆,回流电缆应与钢轨可靠焊接,回流电缆根数留有一定裕量;走行轨间设均流线,平衡上、下行钢轨电流,降低走行轨电位;道岔与辙岔的连接部位通过铜连接引线可靠焊接。
对于车辆段和停车场,根据实际工程条件,通过设置多个回流点,使牵引电流就近回流,减小回流通路电阻,控制产生杂散电流总量。
2.2 增大钢轨泄漏电阻措施钢轨泄漏电阻的大小与杂散电流成反比,可把保证钢轨有较高泄漏电阻作为轨道交通防护杂散电流根本的措施。
钢轨泄漏电阻主要由下述两方面因素确定:一是钢轨绝缘安装点的绝缘电阻,二是钢轨与道床表面的空隙距离及道床环境条件。
当然泄漏电阻也受与钢轨连接电缆绝缘情况、电化区段与非电化区段钢轨隔离效果等影响。
钢轨绝缘安装一般是通过在钢轨与道床间设绝缘垫,紧固螺栓通过绝缘套管安装在道床上等措施实现的,并且钢轨底部与道床之间间隙不得小于《地铁杂散电流防护规程》中的规定。
由于粉尘、潮湿、油污、风沙雨雪(高架和地面区段)等影响,会降低泄漏电阻,使杂散电流增加。
因此道床设计中应设计良好的排水方案,运营中应定期打扫,保持道床的清洁,以避免钢轨泄漏电阻降低。
另外与轨道专业配合,设计受外界污染影响少、绝缘水平较高的绝缘安装措施,如在安装点钢轨带绝缘靴套的绝缘安装方案,或整体带玻璃钢(或其他绝缘材料)衬套轨枕的绝缘性能好,便于运营清扫的绝缘安装措施等。
2.3 杂散电流的流通路径控制措施杂散电流对金属结构的腐蚀主要有4个方面:即钢轨、道床结构钢筋、隧道结构钢筋、地网及地铁外部其他公共设施。
杂散电流首先从钢轨泄漏至道床结构,再从道床结构向其他结构如隧道、车站结构泄漏。
利用整体道床内结构钢筋的纵向联通形成电气连续的杂散电流主收集网,为杂散电流提供第一个电气通路,杂散电流沿此通路流向牵引变电所方向,流出收集网后至钢轨,可减少杂散电流由道床向其它结构的泄漏量。
另外在工程条件许可情况下,地下区段道床与隧道(或其他结构间)设置素混凝土层,以增大道床与其他结构间泄漏电阻,减少杂散电流向其他结构泄漏量。
在回流轨下方穿越的金属管线也要进行绝缘处理,避免杂散电流经此泄漏至其他结构。
主收集网不可能收集所有的杂散电流,其它少量杂散电流继续泄漏至隧道或其他结构,利用隧道钢筋(内衬墙钢筋)纵向联通形成电气通路,则成为杂散电流遇到的第二个电气畅通通路(即辅助收集网),并沿此通路至牵引变电所方向,在牵引变电所区域(阴极区)流回至道床钢筋,并流回至钢轨,减少杂散电流向地铁以外泄漏。
由外界引入地铁内或由地铁内引出至地铁外的金属管线均应进行绝缘处理后,方可引入或引出,避免杂散电流经此向地铁外泄漏。
2.4 结构钢筋腐蚀防护措施金属构件电化学腐蚀防护是控制金属体流出至电介质的电流密度在防护范围之内。
主要措施是减少进入金属体的杂散电流量;为金属体提供至电源负极的金属通路,减少杂散电流流出金属表面的电流密度;确定合理的道床、隧道收集网(结构钢筋)表面积,控制杂散电流流出至电介质的密度。
p; 地铁杂散电流防腐蚀对结构钢筋的保护是分层次的,其重要性对地铁结构设施而言,其顺序是隧道钢筋、道床钢筋和钢轨。
钢轨是可更换设备,道床钢筋从结构上讲可重修,而隧道钢筋应避免修复。
从地铁结构层次上讲,利用腐蚀钝化原理防腐蚀的重点在道床收集网,隧道收集网是作为后备收集网而起作用。
因为尽管靠近钢轨的道床收集网的截面积相对隧道收集网要小,在所收集的杂散电流较多而其截面较小的情况下,若能控制道床钢筋处于腐蚀钝化状态,则下层隧道收集网肯定也处于腐蚀钝化状态。
即只要道床收集网达到了腐蚀防护要求,下层其他结构设施肯定也没有被杂散电流腐蚀的危险。
利用道床结构钢筋作为收集网的目的:一是减少杂散电流继续向下扩散至隧道、车站和大地等结构的数量;二是由于道床钢筋本身有一定的截面,从而使杂散电流密度较小,而使自身处于腐蚀的钝化状态。
因为道床结构钢筋是杂散电流从钢轨上泄漏后遇到的第一道电阻较小的畅通电气通路,可将杂散电流尽量限制在本系统内部,可防止杂散电流继续向本系统以外泄漏。
若将道床钢筋纵向焊接及连接形成一层纵向电气通路,并得到经计算确定的截面,使得自道床钢筋流出的电流密度控制在腐蚀钝化状态范围内时,尽管有一定数量杂散电流流出钢筋,但却不会使道床结构钢筋受到腐蚀。
同样的原理,通过对隧道结构钢筋进行焊接及连接形成纵向电气连续通路后,对于从道床钢筋中继续泄漏的杂散电流起到二次收集作用,由于隧道结构钢筋截面更宜做大,从而使其更宜达到腐蚀钝化状态。
2.5 排流柜设置方案只有当杂散电流从钢筋流出时才对钢筋产生腐蚀,而杂散电流流出的区域集中在阴极区(即在牵引变电所附近),若在牵引变电所处将结构钢筋或其他可能受到杂散电流腐蚀的金属结构与钢轨或牵引变电所负母排相连,由于杂散电流总是走电阻最小的通路,而直接流至牵引变电所,从而在阳极区范围内大大减小了杂散电流从钢筋再扩散至混凝土的可能,减少了杂散电流流出钢筋导致的电化学反应,该方法称为排流法。
排流法一般有将金属结构与钢轨直接在牵引变电所附近相连的直接排流法、加二极管的单向导通排流、加直流电源的强制排流等。
但排流法存在如下缺点:当采用排流法时钢轨系统称之为接地系统,当有电流从钢筋沿排流电缆(经二极管)流至负母排时,原来负母排的负电位变为接近零电位,因钢轨纵向电压的钳制作用使得两牵引变电所间钢轨的最高对地电位增加了一倍,两牵引变电所间几乎成为阳极区,简单看杂散电流总量增加了近4倍。
由于杂散电流的总量增加太多,除牵引变电所附近钢筋腐蚀减少外,在区间的钢轨腐蚀将上升。
所以说排流法是一把双刃剑,既有其有利的一面,也有其不利的一面。
2.6 盾构区间防护杂散电流方案盾构法区间隧道迷流设计原理是指将管片内钢筋全部电气联通,并通过铁垫圈将电气连接点良好引出。