金相组织结构图

合集下载

《金相分析试验培训》课件

《金相分析试验培训》课件
金相分析的局限性
金相分析主要适用于金属材料,对于非金属材料和复合材料等则不太适用。此外 ,金相分析的准确性和可靠性也受到样品制备、观察条件和分析方法等因素的影 响。
02
金相分析试验流程
试样制备
试样选取
根据试验需求,选择具 有代表性的试样。
研磨
使用不同粒度的砂纸或 研磨剂,将试样表面研
磨至平滑。
抛光
晶体取向分析
总结词
通过分析金相样品中晶体取向的分布和变化,研究材料的晶体结构和织构特性。
详细描述
晶体取向分析是利用金相样品中晶体取向的差异和分布,研究材料的晶体结构和织构特性。通过分析 晶体取向的分布和变化,可以了解材料的晶体织构、变形行为和断裂机制等,为材料设计和优化提供 依据。
相组成分析
总结词
计算等。
报告生成
根据分析结果,生成详细的金 相分析报告。
03
金相分析试验技术
定量金相分析
总结词
通过测量金相样品中的晶粒尺寸、位向差和相含量等参数, 对材料的微观结构和性能进行定量评估。
详细描述
定量金相分析是利用图像处理和计算机技术对金相样品进行 定量测量和分析的方法。通过测量晶粒尺寸、位向差和相含 量等参数,可以评估材料的微观结构和性能,进而预测材料 的力学性能、物理性能和化学性能。
案例二:不锈钢的金相分析
总结词
不锈钢是一种具有高度耐腐蚀性和良好机械性能的合金。通过金相分析,可以深入了解 不锈钢的显微组织结构,进一步优化其性能。
详细描述
不锈钢的金相分析主要关注其晶粒大小、碳化物分布以及铬元素的含量。在显微镜下, 可以看到不锈钢的晶界较为模糊,这是因为其具有较高的合金化程度。同时,不锈钢中 还含有一定量的碳化物,这些碳化物在金相分析中呈现出黑色斑点。铬元素的含量对于

压力容器用钢常见金相组织以及钢的分类

压力容器用钢常见金相组织以及钢的分类

压力容器用钢常见金相组织以及钢的分类锅炉压力容器用钢常见金相组织和性能1.奥氏体A[Feγ(C)]奥氏体是碳在γ-Fe中的固熔体,在合金钢中是碳和合金元素熔解在γ-Fe中的固溶体。

奥氏体塑性很高,硬度和屈服点较低,布氏硬度值一般为170~220HB,是钢中比容最小的组织。

奥氏体在1147℃时可溶解碳为2.11%,在727℃时可溶解碳为0.77%。

奥氏体仍然保持γ-Fe的面心立方晶格,在金相组织中呈现为规则的多边形。

2.铁素体F [Feα(C)]铁素体是碳与合金元素溶解在α-Fe中的固溶体。

铁素体性能接近钝铁,硬度低(约为80~100HB),塑性好。

固溶有合金元素的铁素体能提高钢的强度和硬度。

在727℃时,碳在铁素体中溶解为0.022%,在常温下含碳量为0.008%。

铁素体仍然保持α-Fe的体心立方晶格,在金相组织中具有典型纯金属的多面体金相特征。

3.渗碳体 [Fe3C]渗碳体是铁和碳的化合物,又称碳化铁,常温下铁碳合金中碳大部分以渗碳体存在。

根据铁—碳平衡图,渗碳体可分为:一次渗碳体,是沿CD线由液体中结晶析出,多呈柱状。

二次渗碳体是从γ-固溶体中沿ES线析出的,多以白色网状出现。

三次渗碳体是从α-固溶体中沿PQ线析出的,多以白色网状出现。

渗碳体在低温下有弱磁性,高于217℃磁性消失。

渗碳体的熔化温度约为1600℃,含碳量为6.67%,硬度很高(约为>700HB),脆性很大,塑性近乎于零。

4.珠光体P珠光体是铁素体和渗碳体的混合物,是含碳量为0.77%的碳钢共析转变的产物,由铁素体和渗碳体相间排列的片层状组织。

珠光体的片间距取决于奥氏体分解时的过冷度,过冷度越大形成的珠光体片间距越小。

按片间距的大小,又可分为珠光体、索氏体和屈氏体。

由于它们没有本质上的区别,统称为珠光体。

粗片状珠光体,是奥氏体在650~700℃高温分解的产物,硬度约为190~230HB,用一般金相显微镜(500倍以下)能分辩Fe3C片。

合金的结构和相图

合金的结构和相图
3.共析相图: 一定成分的固相,在一定温度下,同时 析出两种化学成分和晶格结构完全不同的新固相,这个 转变过程称为共析反应。
1.匀晶相图
(1)匀晶相图分析
匀晶相图分析
图中只有两条曲线,其中Al1B称为液相线,是各 种成分的合金在冷却时开始结晶或加热时熔化终 止的温度;Aα4B称为固相线,是各种成分的合金 在加热时开始熔化或冷却时结晶终止的温度。显 然,在液相线以上为液相单相区,以L表示;在固 相线以下为固相单相区,各种成分的合金均呈α固 溶体,以α表示;在液相线与固相线之间是液相与 α固溶体两相共存区,以α+L表示。A点是Cu的熔 点,B点是Ni的熔点。
共析相图
第三节 合金性能与相图的关系
合金的使用性能决定于合金的成分和组织, 而合金的结晶特点又影响了其工艺性能。由 于相图是表示合金的结晶特点及成分、温度 及组织之间的关系的,因此,相图和合金性 能之间存在着一定的联系。掌握这些规律, 对选用和配制合金是必要的。
一、合金力学性能与相图的关系
二、合金铸造性能与相图的关系
成分
SB
100%B
温 度
L + SA
共晶相图
L
L
+
Y℃ SB
SA+SB
SA+(SA+SB)
SB +(SA+SB)
100%A
X% 成分
100%B
共晶相图

LX Y℃ SA+SB

SA L
L
L
L
SA +
L
+
SA
SA
L
Y℃ SB
SA+(SA+SB)
SB +(SA+SB)

12、钢铁中常见的金相组织

12、钢铁中常见的金相组织

马氏体浮凸
晶界
S20钢 980℃水淬 低碳(板条)马氏体
晶界
板条马氏体晶粒 中的一个领域
20钢1150-1200℃热模锻 42-43HRC,平均晶粒度3.5级
B上
过热组织:板条马氏体+上贝氏体
Mo Cr Ni
Mn
经验数据:
1%C使Ms温度
降低300℃
板条 状M
混合 型M
针状 M
4. 钢中马氏体相变的主要特征
钢铁中常见的金相组织
a. 奥氏体 b. 铁素体 c. 碳化物 d. 珠光体(索氏体、托氏体,球化体) e. 马氏体(淬火马氏体、板条马氏体、针状 马氏体、回火马氏体) f. 贝氏体(上贝氏体、下贝氏体、粒状贝氏 体) g. 莱氏体(低温称为变态莱氏体) h. 魏氏组织
1. Fe-Fe3C平衡相图中有以下那几种固态相变: 铁素体→ 奥氏体 渗碳体→ 奥氏体 铁素体→ 渗碳体 奥氏体→ 高温铁素体 奥氏体→ 石墨 铁素体→ 石墨
铁素体沿晶析出形成魏氏组织
魏氏组织
GCr15钢正火过热,再经840℃淬火 基体为马氏体,在基体上长出粗长
针状分布的碳化物---过共晶魏氏组织
T8工具钢球化不良, JB/T5074-2007评为8级
试分析钢件淬不上火的原因?
(1)钢件加热温度过低,基本未能奥氏体化;
(2)冷却速度不足,低于该钢的临界冷却速度;
类别
形成温度 片层间距 硬度HRC
(℃)
(μm)
珠光体 索氏体
700~670 >0.7 670~600 ≈0.25
22~27 25~33
托氏体
600~550 ≈0.1
33~43
T12钢780℃淬水,淬火马氏体+残 留奥氏体+沿晶分布的黑色托氏体

金相小课堂之脱碳篇

金相小课堂之脱碳篇

金相小课堂之脱碳篇金相检测是通过观察材料微观结构、内部组织,进而通过组织结构或者缺陷来判断材料的性能,可以说金相是热处理的眼睛。

所以能够对金相有一定了解能够帮助我们更好的解决我们实际生产中的问题,让理论和时间更好地融合在一起,对于生产实践有着重要的指导作用。

1、脱碳层形成原因分析脱碳现象是指钢材料在进行加热时表面的碳元素含量出现降低的现象。

脱碳的实质就是钢材料中C元素在高温作用下与H元素或O元素发生反应生成CH4或CO。

在脱碳过程中包括O元素向钢材料内部的扩散以及C元素向钢材料外面的扩散,因此只有在脱碳速率大于氧化速率时才能形成脱碳层。

当钢材料的氧化速率较大时,会发生不明显的脱碳现象,脱碳层产生后将会被氧化形成氧化皮,但在氧化作用相对较弱的氛围中,能够形成较为明显的深层脱碳层。

脱碳是钢表层上碳的缺失,一般分为两种类型:①部分脱碳(更正:此配图为渗碳照片非脱碳金相组织)②完全脱碳(钢样表层碳含量水平低于碳在铁素体中最大溶解度)(注:完全脱碳层只有铁素体组织存在。

)对于绝大多数钢材料而言,脱碳现象会导致钢材料的性能变差,故将脱碳层看作钢材料的一种缺陷,尤其是对于某些特种钢(如工具钢、轴承钢、高速钢等)而言,脱碳层更是严重地影响其性能。

钢材料表层中的C元素被氧化后将会形成脱碳层,体现在化学成分上脱碳层的碳元素含量比正常组织较低,体现在金相组织上脱碳层中的渗碳体(Fe3C)的数量比正常组织中少,体现在力学性能上脱碳层的强度和硬度比正常组织低。

2、脱碳金相实例分析2.1脱碳金相图(图中箭头方向表示脱碳层)GCr15表面脱碳的金相图碳素钢表面脱碳(100X)60Si2MnA弹簧钢表面脱碳20MnTiB调质钢表面脱碳2.2脱碳层的测定测定方法的选择及其准确度取决于产品的脱碳程度、显微组织、含碳量以及部件的形状。

一般采用金相法、硬度法、化学或者光谱分析法测定碳含量的方法测定。

具体详情大家可以参照:GBT224-2008钢的脱碳层深度测定法标准。

金相分析

金相分析

金相学的作用
热处理工艺的研究
钢的热处理是以钢在加热和冷却过程中相变为依据 的,金相技术则是相变研究的重要试验手段 揭示了材料成分、组织与性能之间的内在关系
形状记忆合金的研制 控制机械产品的的质量 失效分析 事故分析
2008-10-18 21
材料各因素间的关系
从材料学的角度看,材料学是研究材料 的成分、组成结构、制备工艺与材料性 能及应用之间相互关系的科学。
2008-10-18
2
材料的五个发展阶段
使用纯天然材料的初级阶段
兽皮、甲骨、树木、泥土等
人类单纯利用火制造材料的阶段
10000年前~至今 陶、铜、铁
利用物理与化学原理合成材料的阶段
合成高分子材料构成了现代材料的三大支柱
材料的复合化阶段
金属陶瓷 、玻璃钢、抗菌材料
材料的智能化阶段
形状记忆合金、光致变色玻璃
2008-10-18 11
Osmond的贡献
Osmond 金属学或物理冶金方面的一位伟大科 学家。 在实验技术方面他不限于金相观察, 而是把它 与热分析、膨胀、热电动势、电导等物理性能 试验结合起来。 在理论分析方面他也不限于显微组织结构, 而 是把它与化学成分、温度、性能结合在一起, 注意研究它们之间的因果关系。 把金相学从单纯的显微镜观察扩大、提高成一 门新学科。从这个角度来看,Osmond的贡献是 非常卓越的。
2008-10-18 24
显微硬度的应用
显微硬度试验在整个金属研究领域中,占有很重要的 位置,它不仅为研究金属学理论提供了极为有用的数 据,而且在实际生产中也已成为一种不可缺少的试验 方法。 测定细小薄片零件和零件的特殊部位(如刀具和刀刃 具),以及氮化层、氧化层、渗碳层等表面层的硬 度。 对金相显微组织硬度的测定进行比较来研究金相组 织。 对试件的剖面沿其纵深方向按一定的间隔进行硬度测 定(硬度梯度),以判定电镀、氮化、氧化或渗碳层 等表面层的厚度。

第三章合金相的晶体结构

第三章合金相的晶体结构

相成分判定方法
单相区: 实际座标点
两相区: 液(固)相成
分在温度水平线 与液(固)相线的 交点处
液(固)相线的意义
(1) 表征了各成 分合金的结晶 起始(终止)温度
(2) 表征了各温 度下液固两相达 到平衡时液(固) 相的成分
4 相律
相律表示在平衡条件下,系统的自由度数、 组元数和相数之间的关系
二 合金的相结构
(一)固溶体
1、固溶体的分类
置换固溶体
** 按溶质原子在晶格中所占的位置分类
(1)置换固溶体— 溶质原子占据溶剂晶格结 点所形成的固溶体——又称代位固溶体
90% Cu-10%Ni合金
(2)间隙固溶体
—— 溶质原子填入溶剂晶格的 空隙位置所形成的固溶体
间隙固溶体
例: C 固溶于α-Fe中形成间隙固溶体 ┗ 铁素体
4 固溶体的性能
(1) 固溶体强硬度高于组成它的纯金属, 塑韧性低于组成它的纯金属 (2)物理性能方面,随着溶质原子量↑, 固溶体的电阻率↑,电阻温度系数↓,导热性 ↓
什么是固溶强化?
——固溶体中随着溶质原子的加入,强度、 硬度升高,塑性、韧性降低的现象 ——金属材料的主要强化手段或途径之一 例如:采用廉价的16Mn (1.2%~1.6%Mn),抗 拉强度较相同碳含量的普通碳素钢提高60%
金属 化合物
正常价化合物
电子化合物 间隙化合物
间隙相
间隙式金属 化合物
§ 2 二元合金相图的建立
给定的合金系究竟以什么状态(相)存在,包 含哪些相,这由内、外因条件决定,外因是温度 和压力,内因则是化学成分 ——用相图来表示它们之间的关系
几个概念: 相图: 表示合金系中的状态(相)与温度,成分

金相组织的原理

金相组织的原理

金相组织的原理金相组织(即金属组织学组织)是指通过显微镜观察和分析金属材料的显微组织结构来研究其性能和行为的一门学科。

金相组织学主要研究金属材料的晶体结构、晶粒尺寸、晶界、位错和相的组成等方面,通过对金属材料的金相显微观察和图像分析,以及材料中的一些性能测试,可以揭示材料的组织结构与性能之间的关系,为材料的开发、制备、应用和失效分析提供重要的依据。

金相组织的基本原理:1. 显微镜观察:金相组织学主要依靠金相显微镜作为观察工具。

显微镜可以放大金属材料的组织结构,使细微的结构特征可以被观察到。

通过调节放大倍数和焦距,可以观察到金属材料的晶界,晶粒、孪晶、清晰度、纯净度等显微结构。

2. 金相显微观察:金相显微镜主要使用光线或电子作为光源,通过光学或电子光学系统对材料进行观察。

利用不同的显微镜技术,可以观察到不同尺度上的金相组织结构,例如,光学显微镜能够观察到微米级别的晶粒,而电子显微镜则可以观察到纳米级别的结构。

3. 图像分析:通过对金相显微图像的分析和处理,可以获得一些结构参数,如晶粒尺寸、晶界角度、晶界形态等。

图像分析技术主要包括图像增强、图像分割、特征提取和图像识别等方法,通过自动化分析得到更准确、可靠的结果。

4. 试样制备:金相组织研究的第一步是制备试样。

试样的制备要求对金属材料进行切割、磨抛、腐蚀和腐解等处理,以获得平滑的试样表面和清晰的组织结构。

5. 组织鉴定:通过对金相试样的组织结构进行观察、分析和比较,可以确定金属材料的相组成、晶粒大小和分布、晶界分类、位错和孪晶等组织特征,从而确定材料的组织类型。

6. 组织性能关系研究:金相组织学通过对材料的组织结构与性能之间的关系进行研究,揭示了晶体结构、相组成、晶粒尺寸和晶界对材料性能的影响。

例如,晶粒尺寸的大小、晶界的类型和位错的密度等都会对材料的力学性能、电磁性能和耐蚀性等产生重要的影响。

7. 异相平衡相图:金相组织学还可以通过对金属材料在不同温度和成分条件下的相图进行研究,了解材料的相平衡情况,提供金属相变、相分离和相反应等方面的信息,为材料的热处理和合金设计提供理论依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档