信号的调制解调

信号的调制解调
信号的调制解调

DSB波调制与解调

一、内容摘要

所谓调制,就是在发送端将所要传送的信号附加到高频振荡上,再由天线发射出去。所谓解调,则是在接收端把载波信号取出来,得到原有信息。系统原理图如下所示,当用作调制的乘法器的双差分对处于线性工作状态时,给其输入载波信号u1和调制信号u

,经过调制后得到已调信号u2。当用于解调的乘法器也工作于线性状态时给其输入已调信号u2和载波信号u1,经过解调后得到信号u3,将u3输入低通虑波器得到基带信号u4。

二、系统原理图。

二、单元设计

1.调制单元基带信号

载波信号

调制信号

载波信号

工作原理及电路说明:

(1)集成模拟乘法器

集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现调幅功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。所以目前无线通信、广播电视等方面应用较多。本次设计采用是国产双差分对模拟乘法器XFC1596。(2)XFC1596的内部结构

R

4

的1k电阻用作负反馈电阻,以扩大调制信号的线性动态范

围;R

12的6.8k的电阻用来控制电流源电路的电流值I,R5和R

6

的3.9k

的电阻为两管的集电极负载电阻;R

3

的1k的电阻为三极管提供基极

偏置电压;R

w

为载波调零电位器,其作用是:将调制信号移去,只加

载波电压,调节R w ,使输出载波电压为双差分对的工作特性取决于载波输入电压振幅的大小。当它大于26mv 使,电路工作于开关状态;当它小于26mv 使,电路工作于线性状态。同时加入调制信号和载波信号后,输出回路电压即为载波被抑制的双边带调幅波。 (3)数学公式分析: 载波信号:

1

调制波信号:t V u m Ω=ΩΩcos

调制后的信号为:

t

t w V KV u Ku u c m cm Ω==ΩΩcos cos 01

])cos()[cos(2

1

t w t w V KV c c m cm Ω-+Ω+=Ω

仿真:

载入波形(500KHZ)

载入频谱

调制波形(50KHZ)

调制频谱

已调波波形

已调波频谱

误差分析:输入的载波为500KHZ,调制信号为50KNZ,所以理论上已调波的频谱应该有三个峰,分别是上边频450KHZ、下边频550KHZ和本振信号500KHZ。从频谱图上看,三个峰值对应

的频率基本准确,但是存在谐波较多。

2.解调单元。

工作原理及电路说明:

本模块也采用国产双差分对模拟乘法器XFC1596,此模块工作原理与调制时相同。不同之处为:当同时加入调制信号和载波信号时输出回路电压是调幅波,但是把调制信号换成调幅信号,那输出就是调制信号。

数学公式分析:

已调信号:

t

t

w

V

KV

u

c

m

cm

Ω=

Ω

cos

cos

2

加载信号与载波信号相同:=

解调后的信号:

仿真:

载波波形(100KHZ)

载波频谱

解调波形

解调频谱

误差分析:从理论上,解调后的波应该为基带信号,频谱峰值对应的频率有调制信号50KHZ,两个边频1050KHZ和950KHZ。由波形图可以看出解调后的波形有失真的现象,且本振信号500KHZ。存在分

析原因为:该系统采用同步检波。它的特点是必须外加一个频率和相位都与被抑止的载波相同的电压。载波和加载的波频率和相位都相同,但是通过电容后相位发生了滞后,两个波之间有差,所以产生了解调后波的失真。

2、低通滤波单元。

工作原理及电路说明:

(1)低通滤波器

它就是利用电容通高频阻低频,电感通低频阻高频的原理.

对于需要截止的高频,利用电容吸收电感、阻碍的方法不使它通过,对于需要的低频,利用电容高阻、电感低阻的特点使它通过。

(2)电路说明

该电路通带放大倍数与R

31和R

33

的比值有关,当C

1

=C

2

时,网

络的传递函数为))

(311()1(221SRC SRC R R A ++?+

=用jw 取代S 且取piRC

f 21

=

,得出电压放大倍数的表达式。解得通带截止频率037.0f f =

通过低通滤波器得到的基带信号为:

仿真:

基带波形

基带频谱

误差分析:理论上,滤出的应该是基带波,频率为50KHZ,由图可见波形和频谱基本准确。

三、总电路图。

四、工作原理。

在输入载波信号

u和调制信号 u时,在模拟乘法器的调制作用下

(具体工作原理在调制单元已说明)得到已调信号:

1u ])cos()[cos(2

1

t w t w V KV c c m cm Ω-+Ω+=Ω。

已调信号和与之前相同的载波0u 输入时,在模拟乘法器的解调作用下得到已解调的信号:

)])2cos[(4

1)])2cos[(41)

cos()cos (cos 2112121123???+Ω-++Ω+++Ω=ΩΩΩt w V KV t w V KV t w t w t V KV u m cm m cm m cm 。这个信号在通过低通滤波器就可以得到与调制信号一样的基波信号

t V KV u m cm Ω=ΩΩcos cos 2

12?。

五、仿真及分析,与理论上的比较。 仿真后得到的已调波如下:

仿真后得到的解调后的信号如下图所示:

与理论上3u 存在差异,3u 的表达式如下:

)])2cos[(4

1)])2cos[(41)

cos()cos (cos 211212112

3???+Ω-++Ω+++Ω=ΩΩΩt w V KV t w V KV t w t w t V KV u m cm m cm m cm 由波形图可以看出解调后的波形有失真的现象,分析原因为:该系统采用同步检波。它的特点是必须外加一个频率和相位都与被抑止的载波相同的电压。载波和加载的波频率和相位都相同,但是通过电容后相位发生了滞后,两个波之间有差,所以产生了解调后波的失真。

六、问题以及解答或分析。

1、乘法器两输入端可否互换? 答:两输入端不可以互换。

设乘法器两输入端的信号为v1、v2,则输出信号的信号为v0=k0v1+Kv1v2,假设互换,互换之后为v 0′=k0v1+Kv2v1,很显然v 0≠v0′,所以模拟乘法器不是简单的信号相乘的关系,而是有加有乘的关系,之所以叫模拟乘法器,是因为里面有乘积项Kv2v1。 2、耦合电容的作用: 答:耦合电容有两个作用。

1、耦合电容有隔直流的作用。当上级的信号中有直流分量是往往在

两极之间加上耦合电容,耦合电容的作用是将交流信号从前一级传到下一级。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,电容能传递交流信号和隔断直流,使前后级的工作点互不牵连。这样可以滤除点信号中的杂波。

2、耦合电容有一定的滤波作用,我们都知道电容器的容抗与频率成反比,对高频信号它呈现低阻抗,而对工频信号则呈高阻抗,这就是其工作的基本原理,只要容值设定的合理,就可以滤除点信号波以上的杂波,起到滤波的作用。

3、检波电路是个低通滤波器,低通滤波器的组成是由电阻与电容组成吧?那为什么还需要二极管?

答:检波电路或检波器的作用是从调幅波中取出低频信号,检波电路通常包含非线性元器件和滤波器两部分,电阻电容就是电感和电容是用来取出低频有用信号,过滤高频信号。这个部分就是滤波器部分。

除了滤波器外,检波过程也是一个频率变换过程,也要使用非线性元器件。常用的有二极管和三极管。这就是二极管的作用

七、元件清单。

三极管、定值电阻、滑动变阻器、电容、电感、二极管、.运算放大器、仿真软件Multisim 10。

八、参考文献。

张肃文“高频电子线路”(第四版)高等教育出版社2004;李哲英等“实用电子电路设计”电子工业出版社1997;

童诗白等“模拟电子技术基础”(第四版)高等教育出版社2006;

樊昌信“通信原理”(第六版)国防工业出版社2009

阎石“数字电子技术基础”(第五版)高等教育出版社2008 俞家琦“高频电子线路”(第三版)西安电子科技大学出版社

1985

曾兴雯等“高频电路原理与分析”(第三版)西安电子科技大学出版社1994

邱关源“电路”(第五版)高等教育出版社2006

九、总结心得。

通过这次高频电子设计,我进一步的掌握和了解了这一门课程的一些知识。自己动手设计并仿真了通信过程中信号的调制和解调过程,最终得到了需要的信号。对于通信电子线路以外的很多东西也有了一些了解。要设计一个系统或者是一个东西,我们必须掌握相应的知识,再通过查阅书籍和通过网络进一步细化和搞清楚要设计的东西的具体事项。一个复杂的系统要分成若干个小系统,再一个一个的解决问题。合成一个完整的系统在慢慢的分析理论和实际中的差别,改正错误,减少误差。知道了一份工作的完整时一个团队集体努力才能得到的,一损皆损,大家好了才能好。

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

调制解调器

在宽带还没有普及到千家万户之前,相信还有不少的朋友要想看到这篇文章还是要通过一只可爱的“小猫”,也就是调制解调器了。调制解调器的英文是MODEM,即MOdulator/DEModulator(调制器/解调器)的缩写,相信很多人对这只小猫还是比较了解的。下面我就把有关调制解调器的一些术语简单的给大家介绍一下,希望那些想多了解小猫一些的朋友能够通过本文得到一些帮助。 调制解调器(Modem) MOdulator/DEModulator(调制器/解调器)的缩写。它是在发送端通过调制将数字信号转换为模拟信号,而在接收端通过解调再将模拟信号转换为数字信号的一种装置。 外置式Modem 放置于机箱外,通过串行通迅口与主机连接,这种Modem最大的特点就是方便灵巧、易于安装,Modem上有状态指示灯,便于监视Modem的工作状况,但是价格相对来说要贵一些。 内置式Modem 体积较小,安装在机箱内部,直接插在扩展槽上,不需要额外的电源和电缆,节省空间和金钱,不过要对中断和COM口进设置,安装较为繁琐。 PCMCIA插卡式Modem 主要用于笔记本电脑,体积小、省电,插于笔记本电脑的PCMCIA插槽,与移动电话相互配合就可以实现移动办公。 机架式Modem 一组Modem集中于一个箱体或外壳里,共用一个电源,广泛应用于Internet/Intranrt、电信局、校园网、金融机构等网络的中心机房。 通信协议 我们也可以将通信协议称为“数据传输标准”。目前通用的56Kbps数据传输标准就是ITU指定的V.90协议,它允许调制解调器能够在标准的电话交换网上实现56Kps的数据传输率。 Modem的协议,都是装载在BIOS中的,所以通过刷新BIOS中的内容我们能实现有限的升级。 纠错/压缩协议

FM调制解调电路的设计..

FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz ,解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自

AM调制与解调电路设计

AM 调制与解调电路设计 一.设计要求:设计AM 调制和解调电路 调制信号为:()1S 3cos 272103cos164t V tV ππ=?+=???? 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=??+=???? 二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法; 调幅电路采用丙类功放电路,集电极调制; 检波电路采用改进后的二极管峰值包络检波器。 1.AM 调幅电路设计: (1).参数计算: ()6cos1640c u t tV π=载波为, ()3cos164t tV πΩ=调制信号为u 则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+ 其中调幅指数 0.5a M = 最终调幅信号为 am U 6[10.5cos164]cos1640t t ππ=+ 为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为 21 LC c ω= c 1640ωπ= L 200H,C 188F 1BB V μμ===另U (2).调幅电路如下图所示:

调幅波形如下: 可知调幅信号与包络线基本匹配 2.检波电路设计: 参数计算: 取10L R k =Ω 1.电容 C 对载频信号近似短路,故应有1 c RC ω ,取 ()510/10/0.00194c c RC ωω== 2.为避免惰性失真,有m a x /0.00336 a RC M Ω= ,取0.0022,1RC R k C F μ==Ω=,则

3.设 11212250.2,,330, 1.6566 R R R R R R R k R ====Ω=Ω则。因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min 1 c L C R Ω ,取 4.7c C F μ= 3.调制解调电路如下图所示: o am U U 与波形为: o L U U 与解调信号的波形为:

调制解调电路

第六章 频谱变换电路 ?? ?非线性:调频、限幅 频 线性:调幅、混频、倍 6.1概述 频谱变换电路:频谱搬移,使之适合于传输. 具备将输入信号频谱进行频谱变换,以获取具有所需频谱的输出信号这种功能的电路就叫做频谱变换电路。 6.2乘法器 变跨导式模拟乘法器是以恒流源式差动放大电路为基础,并采用变换跨导的原理而形成的。 变跨导式模拟乘法器(恒流源式差分放大器) 双入双出 () () EQ T EQ T b b be i be c o I U I U r r u r R u ββ β+≈++=?- ='111

() 21I U T β+= ∴I u U R u i T C o ??- ≈12 若I u i ∞2成正比,则21i i o u u u ?∞ e i e BE i e R u R u u I I 23 2≈-= = ∴21212i i e i i T C o U U R R u u U R u ??=? ?- = 跨导 222121 i e I T T T EQ m u R U U U I U I g ∞?=== ∴称为变跨导乘法器. 6.3调幅波 一、幅度调制(AM ) ()t u Ω-低频 ()t u c -高频 定义:用()t u Ω去控制()t u c 的幅度,使幅度()t u Ω∞,称为调制 称()t u Ω为调制信号,()t u c 为载波信号. 1、 调幅特性. 令()t U t u m Ω=ΩΩcos ()t w U t u c cm c cos = 则 )()t w t M U t u c a cm AM cos cos 1?Ω+= 其中cm m a U U k M Ω? =称为调制指数.(k 由电路决定的一个常数) ()t w t M U t w U t u c a cm c cm AM cos cos cos ?Ω??+?= ()()[]t w t w M U t w U c c a cm c cm Ω-+Ω+??+ ?=cos cos 2 1cos ∴调幅波有3个频率分量c w 、Ω+c w 、Ω-c w .

FM调制解调电路的设计说明

DOC 格式. FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制 解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz , 解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设 计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自振频率(中心频率)o f 上下)随调制信号的变化而变化,于是生成了调频波。

交换机、集线器(HUB)、路由器、猫(Modem 调制解调器)路由猫 作用、区别和联系

交换机、集线器(HUB)、路由器、猫(Modem 调制解调器)路由猫作用、区别和联系 最近看到很多人在询问交换机、集线器、路由器是什么,功能如何,有何区别,笔者就这些问题简单的做些解答。 首先说HUB,也就是集线器。它的作用可以简单的理解为将一些机器连接起来组成一个局域网。而交换机(又名交换式集线器)作用与集线器大体相同。但是两者在性能上有区别:集线器采用的式共享带宽的工作方式,而交换机是独享带宽。这样在机器很多或数据量很大时,两者将会有比较明显的。而路由器 与以上两者有明显区别,它的作用在于连接不同的网段并且找到网络中数据传输最合适的路径,可以说一般情况下个人用户需求不大。路由器是产生于交换机之后,就像交换机产生于集线器之后,所以路由器与交换机也有一定联系,并不是完全独立的两种设备。路由器主要克服了交换机不能路由转发数据包的不足。 总的来说,路由器与交换机的主要区别体现在以下几个方面: (1)工作层次不同 最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。 (2)数据转发所依据的对象不同

交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。 (3)传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域 由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。连接到路由器上的网段会被分配成不同的广播域,广播数据不会穿过路由器。虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。 (4)路由器提供了防火墙的服务 路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。 交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络

基于Multisim调制解调仿真电路设计

基于Multisim调制解调仿真电路设计 春芽电子科技春芽ing 摘要 通信电路系统中实现调制解调方法很多,而锁相环鉴频是利用现代锁相环技术来鉴频实现调制解调因为工作稳定、失真度小、信噪比高等优点被广泛应用。本课题分别设计2ASK、2PSK、2FSK的调制解调电路,功能是数字基带信号经过调制输出模拟信号,然后运用锁相环进行解调出数字信号,所以调制解调电路都运用Multisim软件进行仿真分析。对2ASK、2FSK、2PSK解调电路时低通滤波器输出的波形失真比较大,经过抽样判决电路整形后可以再生数字基带脉冲。整个硬件电路设计中,尽量做到电路简单实用,基本达到功能要求。 关键词:调制解调,Multisim仿真,锁相环 Abstract Communication circuit system to achieve a lot of modulation and demodulation, and the phase-locked loop frequency demodulation is the use of modern technology to achieve phase locked loop demodulation because the work is stable, low distortion, high signal noise ratio is widely used. This topic design of 2ASK, 2PSK, 2FSK modulation and demodulation circuit function is digital base band signal after the modulation output analog signal, then use the PLL to demodulate the digital signal, so modulation and demodulation circuit use Multisim software simulation analysis. The waveform distortion of the low pass filter output of 2ASK, 2FSK and 2PSK demodulation circuits is relatively large, and the digital baseband pulse can be regenerated by the sampling decision circuit. Throughout the hardware circuit design, as far as possible to achieve a simple and practical circuit, the basic requirements to achieve functional. Keywords: Modulation and Demodulation, Multisim Simulation, Phase Locked Loop

ASK调制与解调电路设计

《电力系统自动化》课程设计任务书

目录 一.背景描述…………………………二.设计内容…………………………三.工作原理…………………………四.电路设计及参数设置……………五.仿真及波形分析…………………六.设计总结…………………………七.参考文献…………………………

一.背景描述: 电力系统远动技术是为电力系统调度服务的远距离监测、控制技术。由于电能生产的特点,能源中心和负荷中心一般相距甚远,电力系统分布在很广的地域,其中发电厂、变电所、电力调度中心和用户之间的距离近则几十公里,远则几百公里甚至数千公里。要管理和监控分布甚广的众多厂、所、站和设备、元器件的运行工况,已不能用通常的机械联系或电联系来传递控制信息或反馈的数据,必须借助于一种技术手段,这就是远动技术。它将各个厂、所、站的运行工况(包括开关状态、设备的运行参数等)转换成便于传输的信号形式,加上保护措施以防止传输过程中的外界干扰,经过调制后,由专门的信息通道传送到调度所。在调度所的中心站经过反调制,还原为原来对应于厂、所、站工况的一些信号再显示出来,供给调度人员监控之用。调度人员的一些控制命令也可以通过类似过程传送到远方厂、所、站,驱动被控对象。这一过程实际上涉及遥测、遥信、遥调、遥控,所以,远动技术是四遥的结合。 二.设计内容: 1.对电力系统远动信息传输系统的主要环节进行理论分析和研究。 2. 熟悉数字调幅技术的有关原理和实现方法。 3. 设计ASK调制解调电路。 4. 熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以及 应用原理图进行仿真的基本方法。 三. 工作原理: 1. 数字调幅技术的原理和实现方法 (1)数字调制的概念 用二进制(多进制)数字信号作为调制信号,去控制载波某些参量的变化,这种把基带数字信号变换成频带数字信号的过程称为数字调制,反之,称为数字解调。 (2)数字调制的分类 在二进制时分为:振幅键控(ASK)、频移键控(FSK)、相移键控(PSK)。

AM调制解调电路的设计仿真与实现

AM调制解调电路的设计仿真与实现 1.Proteus 软件简介 Proteus软件是英国LABCENTERELECTRONICS公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus软件具有4大功能模块:智能原理图设计、完善的电路仿真功能、独特的单片机协同仿真功能、实用的PCB设计平台。由于Proteus软件界面直观、操作方便、仿真测试和分析功能强大,因此非常适合电子类课程的课堂教学和实践教学,是一种相当好的电子技术实训工具,同时也是学生和电子设计开发人员进行电路仿真分析的重要手段。 Proteus软件具有其它EDA工具软件(例:multisim)的功能。这些功能是: (1)原理布图 (2)PCB自动或人工布线 (3)SPICE电路仿真 革命性的特点 (1)互动的电路仿真 用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。 (2)仿真处理器及其外围电路 可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。 本次Proteus课程设计实现AM调制解调电路的原理图绘制以及电路的仿真。运用由三极管组成的乘法器调制出AM信号,再经非线性元件二极管与电容等组成的包络检波电路解调得到解调信号。

AM调制解调电路的设计与仿真报告_

1.Proteus软件简介 Proteus软件是英国LABCENTERELECTRONICS公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus软件具有4大功能模块:智能原理图设计、完善的电路仿真功能、独特的单片机协同仿真功能、实用的PCB设计平台。由于Proteus软件界面直观、操作方便、仿真测试和分析功能强大,因此非常适合电子类课程的课堂教学和实践教学,是一种相当好的电子技术实训工具,同时也是学生和电子设计开发人员进行电路仿真分析的重要手段。 Proteus软件具有其它EDA工具软件(例:multisim)的功能。这些功能是: (1)原理布图 (2)PCB自动或人工布线 (3)SPICE电路仿真 革命性的特点 (1)互动的电路仿真 用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。 (2)仿真处理器及其外围电路 可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。 本次Proteus课程设计实现AM调制解调电路的原理图绘制以及电路的仿真。运用由三极管组成的乘法器调制出AM信号,再经非线性元件二极管与电容等组成的包络检波电路解调得到解调信号。

信号调制解调电路仿真

高频电子线路实验报告 信号调制解调电路仿真 一、仿真目的 (1)掌握用晶体三极管进行集电极调幅、基极调幅的原理和方法。 (2)研究已调波与调制信号及载波信号的关系。 (3)掌握调幅系数测量与计算的方法。 (4)进一步了解调幅波的性质,掌握调幅波的解调方法。 (5)掌握二极管峰值包络检波的原理。 (6)掌握包络检波器的主要性能指标,检波效率及各种波形失真的现象,分析产生的原因并考虑克服的方法。 二、集电极调幅电路

1.仿真电路 集电极调幅电路及输出波形如图2所示。低频调制信号V3与丙类功率放大器的直流电源V2相串联,因此放大器的有效集电极电源电压等于两个电压之和,它随调制信号变化而变化。因为高频功率放大器在过压状态,集电极电源的基波分量Ic1m随集电极电源电压成正比变化。所以,集电极输出高频电压振幅随调制信号的波形而变化,在CE端得到调幅波输出。电容器C3是高频旁路电容,它的作用是避免高频信号通过低频信号源以及V2电源。因此它对高频呈现很低的阻抗,但必须对调制信号频率呈现很大的阻抗,以免将调制信号旁路。 100kHz 0° 图2集电极调幅仿真电路 此电路与原理图主要有两点不同:(1)在原理图中基极偏置电源电压采用了自给偏压环节来代替Eb ,优点是节省电源而且还可以改善调制特性,保持较高的效率。(2)在调幅波输出部分,原理图中选频网络采用的是电感抽头接入法,以减轻晶体管输出电阻对谐振回路的影响,调幅波通过跟随变压器输出。仿真电路中,基极偏压直接是直流电压源反接,输出采用压控电压源跟随。 观察集电极调幅电路的输出波形和调制信号的关系,加深对电路工作原理的理解。 2.输出波形 将示波器的B通道接输出点,A通道接调制信号,且设定调制信号的波形颜色属性为橙黄色,已调信号的波形颜色为红色。双击示波器的符号打开

基于Multisim10的振幅调制与解调电路设计与仿真综述

基于Multisim10的振幅调制与解调电路设计与仿真 摘要:信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且使频谱资源得到充分利用。调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致互相干扰。这也是在同一信道中实现多路复用的基础。而要还原出被调制的信号就需要解调电路。所以现在调制与解调在高频通信领域有着更为广泛的应用。 关键词:振幅调制与解调,检波失真,参数选取 一、振幅调制电路原理及工作过程 首先将语音(调制)信号叠加直流后再与载波相乘,本电路采用乘法调幅进行调制 语音信号频谱为300错误!未找到引用源。到3400错误!未找到引用源。,这里选择频率为1000错误!未找到引用源。的信号模拟语音信号。选择2M错误!未找到引用源。作为载波信号。让模拟语音信号(调制信号)与载波信号经过乘法器产生调制系数错误!未找到引用源。=0.2的普通调幅波。如图: 图1(调制电路电路图)

图2(调制信号与调幅波仿真图) 二、解调电路工作原理及说明 普通调幅波的包络反映了调制信号的变化规律,其中大信号检波电路利用了二极管的整流工作原理。 解调电路输入信号为载波为2M错误!未找到引用源。,调制信号为1000错误!未找到引用 源。,调制系数错误!未找到引用源。=0.2的普通调幅波,电路如图: 图3(解调电路图)

图4(调幅波波形) 图5:(电路输出解调端波形) 我们可以看到输出波形周期为1.002ms,输出信号频率为1000错误!未找到引用源。说明解调电路成功解调出调制信号。 三、解调(检波)电路元件参数的选取 电路元件参数主要是基于检波效率、滤波效果来选取的。其中滤波效果中的检波失真是决定解调电路元件参数的主要方面。 (一)、大信号检波器存在的两种失真对参数选取的影响

双FSK调制解调电路

课程设计 课程设计 题目2FSK调制解调电路的设计 调制解调电路的设计 学院名称电气工程学院 电气工程学院 指导老师 指导老师 班级 学号20094470312 学生姓名 学生姓名

一二年六月 二0一二年六月 目 录 目 录 (1) 摘 要 (3) 第1章 绪 论 (4) 第2章 方案设计 (5) 2.1方案比较 (5) 2.1.1键控法 (5) 2.1.2模拟调制法 (6) 2.2方案论证 (7) 第3章 硬件设计 (8) 3.1器件介绍 (8) 3.1.1NE564介绍 (8) 3.1.22CD4016介绍 (10) 3.1.3锁相环的基本工作原理 (11) 3.1.4相位模型介绍 (12) 3.1.5环路滤波器介绍 (12) 3.1.6压控振荡器介绍 (13) 3.22FSK调制电路设计 (13) 3.32FSK解调器电路设计 (15) 总 结 (17) 参考文献 (18)

摘 要 本文采用锁相环专用集成电路NE564,实现了2FSK调制电路和解调电路的设计。本设计首先对本次设计的思路进行的阐述,对数字调制解调的基本原理、集成电路NE564的内部结构及基本工作原理进行了详细的介绍,并基于NE564设计了2FSK 调制解调电路,最后详细给出了制作电路的步骤和方法以及在制作过程当中的问题,得出的结论。测试表明,该电路的中心频率f0=5MHz,在Uim≥1V,及无外部干扰,解调后误码率为0。 关键词2FSK;调制;解调;NE564;CD4016

第1章 绪 论 “锁相环技术”是近几年来迅速发展起来的一门技术,由于它的环路结构简单,性能良好。在许多新型的电子设备中,特别是在通信系统中,得到广泛的应用。随着通信技术的发展,锁相环技术在调制解调中扮演着越来越重要的角色。锁相环技术所以能得到这么广泛的应用,是由于其独特的优良性能所决定的。本设计用到的锁相环的跟踪特性,可制成高性能的调制器和解调器,它具有低门限特性,可大大改善模拟信号和数字信号的解调质量。 在数字通信系统中,由于数字信号具有丰富的低频成分,不宜进行无线传输或长距离电缆传输,因而同模拟调制一样,需要将基带信号进行高频正弦调制,即数字调制。与模拟调制相比,数字调制并无本质区别,都属于正弦波调制,但是数字调制系统也有自身的特点,其技术要求与模拟调制系统也有不同。一般来说,数字调制技术可分为两种类型:一是利用模拟方法实现数字调制,即把数字基带信号当作模拟信号的特殊情况来处理;二是利用数字信号的离散取值特点去键控载波,从而实现数字调制,这种方法通常称为键控法。常用的数字调制方式有振幅键控(2ASK)、移频键控(2FSK)、移相键控(2PSK)等。 随着科技的发展,电子产品市场运作节奏也进一步加快,涉及诸多领域的现代电子技术已迈入一个全新的阶段,如何把锁相环的强大优势发挥出来,就是目前电路研究发展的方向了。把锁相环技术应用与高频2FSK信号的接收解调中,从而使电路性能得到进一步的改善,这对数字电路来说也算是个不小的突破。

2FSK调制解调电路设计

课程设计 题目2FSK调制解调电路的设计学院名称电气工程学院 指导老师陈和 班级电子信息工程093班学号20094470312 学生姓名高圣 二0一二年六月

目录 目录 (1) 摘要 (3) 第1章绪论 (4) 第2章方案设计 (5) 2.1方案比较 (5) 2.1.1键控法 (5) 2.1.2模拟调制法 (6) 2.2方案论证 (7) 第3章硬件设计 (8) 3.1器件介绍 (8) 3.1.1NE564介绍 (8) 3.1.22CD4016介绍 (10) 3.1.3锁相环的基本工作原理 (11) 3.1.4相位模型介绍 (12) 3.1.5环路滤波器介绍 (12) 3.1.6压控振荡器介绍 (13) 3.22FSK调制电路设计 (13) 3.32FSK解调器电路设计 (15) 总结 (17) 参考文献 (18)

摘要 本文采用锁相环专用集成电路NE564,实现了2FSK调制电路和解调电路的设计。本设计首先对本次设计的思路进行的阐述,对数字调制解调的基本原理、集成电路NE564的内部结构及基本工作原理进行了详细的介绍,并基于NE564设计了2FSK 调制解调电路,最后详细给出了制作电路的步骤和方法以及在制作过程当中的问题,得出的结论。测试表明,该电路的中心频率f0=5MHz,在Uim≥1V,及无外部干扰,解调后误码率为0。 关键词2FSK;调制;解调;NE564;CD4016

第1章绪论 “锁相环技术”是近几年来迅速发展起来的一门技术,由于它的环路结构简单,性能良好。在许多新型的电子设备中,特别是在通信系统中,得到广泛的应用。随着通信技术的发展,锁相环技术在调制解调中扮演着越来越重要的角色。锁相环技术所以能得到这么广泛的应用,是由于其独特的优良性能所决定的。本设计用到的锁相环的跟踪特性,可制成高性能的调制器和解调器,它具有低门限特性,可大大改善模拟信号和数字信号的解调质量。 在数字通信系统中,由于数字信号具有丰富的低频成分,不宜进行无线传输或长距离电缆传输,因而同模拟调制一样,需要将基带信号进行高频正弦调制,即数字调制。与模拟调制相比,数字调制并无本质区别,都属于正弦波调制,但是数字调制系统也有自身的特点,其技术要求与模拟调制系统也有不同。一般来说,数字调制技术可分为两种类型:一是利用模拟方法实现数字调制,即把数字基带信号当作模拟信号的特殊情况来处理;二是利用数字信号的离散取值特点去键控载波,从而实现数字调制,这种方法通常称为键控法。常用的数字调制方式有振幅键控(2ASK)、移频键控(2FSK)、移相键控(2PSK)等。 随着科技的发展,电子产品市场运作节奏也进一步加快,涉及诸多领域的现代电子技术已迈入一个全新的阶段,如何把锁相环的强大优势发挥出来,就是目前电路研究发展的方向了。把锁相环技术应用与高频2FSK信号的接收解调中,从而使电路性能得到进一步的改善,这对数字电路来说也算是个不小的突破。

FM电路实现调制解调

F M电路实现调制解调 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

FM电路实现调制解调 调制解调,即我们常说的Modem,其实是Modulator(调制器)与Demodulator (解调器)的简称,中文称为调制解调器。也有人跟据Modem的谐音,亲昵地称之为“猫”。 调制: 将各种转换成适于传输的数字调制信号(已调信号或频带信号); 解调: 在接收端将收到的数字频带信号还原成数字基带信号 一、概述 FM调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=,载波信号的电压Vp-p≥3V; 2.FM调频信号的电压Vp-p≥6V,最大频率偏移?fm≥5KHz; 3.解调电路输出的FM调制信号的电压Vp-p≥200mV。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL)来实现调频/解调(鉴频)的。 调频电路原理图(如图1所示)

基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现数字调制信号又称为键控信号,调制过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK).根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制).多进制数字调制与二进制相比,其频谱利用率更高.其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用最广泛的一种调制方式。 1 QPSK简介 QPSK信号有00、01、10、11四种状态。所以,对输入的二进制序列,首先必须分组,每两位码元一组。然后根据组合情况,用载波的四种相位表征它们。QPSK信号实际上是两路正交双边带信号, 可由图1所示方法产生。 QPSK信号是两个正交的2PSK信号的合成,所以可仿照2PSK信号的相平解调法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成QPSK信号的解调,解调过程如图2所示。

图1 QPSK 信号调制原理图 图2 QPSK 信号解调原理图 2 QPSK 调制电路的FPGA 实现及仿真 2.1基于FPGA 的QPSK 调制电路方框图 基带信号通过串/并转换器得到2位并行信号,,四选一开关根据该数据,选择载波对应的相位进行输出,即得到调制信号,调制框图如图3所示。 基带信号clk start 串/并转换四选一开关 分 频 0°90°180°270° 调制信号 FPGA 图3 QPSK 调制电路框图 系统顶层框图如下

图中输入信号clk为调制模块时钟,start为调制模块的使能信号,x为基带信号,y是qpsk调制信号的输出端,carrier【3..0】为4种不同相位的载波,其相位非别为0、90、、270度,锁相环模块用来进行相位调节,用来模拟通信系统中发送时钟与接收时钟的不同步start1为解调模块的使能信号。y2为解调信号的输出端。 2.2调制电路VHDL程序 程序说明 信号yy 载波相位载波波形载波符号 “00”0°f3 “01”90°f2 “10”°f1 “11”270°f0

FM调制解调电路的设计精编版

F M调制解调电路的设 计 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解 调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的 调制解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz ,解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自振频率(中心频率)o f 上下)随调制信号的变化而变化,于是生成了调频波。

AM调制解调电路的设计与仿真报告

课程设计任务书 学生:媛专业班级:电信0905班 指导教师:黄晓放工作单位:信息工程学院 题目: AM调制解调电路的设计仿真与实现 初始条件: 可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc= +12V,V EE= -12V,或自选元器件。 可用仪器:示波器,万用表,直流稳压源,毫伏表等。 要求完成的主要任务: (1)设计任务 根据要求,完成对AM调制解调电路的设计、装配与调试。 (2)设计要求 ①载波信号:频率,100 Hz~1KHz;幅度,1V左右; 调制信号频率:1K~50KHz;幅度,10V以下。 ②选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、并画出总 体电路原理图,阐述基本原理。(用Proteus画电路原理图并实现仿真) ③安装调试并按规要求格式完成课程设计报告书。 时间安排: 1、 2010 年1月3日至2010年1月7日,完成仿真设计、制作与调试;撰写课程设计报 告。 2、 2010 年1月8日提交课程设计报告,进行课程设计验收和答辩。 参考文献: 1) 2) 3) 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 1.Proteus软件简介 (3) 2.AM调制解调电路基本原理 (4) 2.1 振幅调制电路 (4) 2.1.1 振幅调制 2.1.2振幅调制电路的组成模型 2.2 振幅解调电路 3.各组成部分的工作原理 3.1调制电路的工作原理 (5) 3.2 解调电路的工作原理 (6) 4.Proteus原理图绘制 4.1 准备画图 4.2放置元件及排版 4.3模拟及仿真 5 .Proteus电路的仿真 6.仿真结果与分析 7.1计算元件参数 7.2电路 7.3电路 7.设计过程中发现的问题 8.设计总结 9.心得体会 10.仪器仪表清单 11.参考文献 12.附件:本科生课程设计成绩评定表

相关文档
最新文档