基于FPGA的数据采集系统的设计

合集下载

基于C8051F360和FPGA的高速数据采集系统设计

基于C8051F360和FPGA的高速数据采集系统设计
中 图分 类 号 : N 7 T 72 文 献标 识码 : A 文 章 编 号 :0 8— 1 9 2 1 0 0 7 一o 10 7 0 ( 0 0) 3— 0 2 4
随着 雷达 、 信 、 测 遥感 、 学成 像等 技术应用 领 域 的不 断 扩展 , 瞬态 信 号 采集 、 通 遥 医 在 图像 信 号处 理 等 一些高 速 、 精度 的测量 中 , 高 都需 要进 行高 速数据 采集 , 人们 对数 据采 集 系统 的精 度 、 速率 和存储量 等
单 片机或数 字信 号处 理器 具 有处 理灵 活 , 设计 方便 , 成本 低廉 等 突 出的优 点 , 常适 合 于数字 音频 、 非 数 字视频 等信 息的数 字化 信息 的处 理 。另 一方 面 , 采用 单 片 机或 数 字 信 号 处理 器 ( S ) 制 A DP控 D转 换
器 实现数 据采集 时 , 由于 采用 程序 控制 , 到指令执 行 速度 的 限制 , 较 低 的 采样 速 率 难 以实 现 对高 频 受 其
广泛 的应用 。本 文提 出 的高速数 据 采集 系 统应 用 目标 是便 携式 医用 B超 设 备 内超 声 回波 信 号 的量化
采集 。
1系统 设 计
高速数 据采 集 系统采 用单 片 机和 F G P A相结 合 的设 计方 案 。系统 框 图如 图 l 示 。模 拟信 号 经过 所 调理 后送 高速 A D转换 器 , F G 内部 的控制 逻辑 实 现对 高速 A D转 换 器 的控 制 和数 据 存储 , 片 / 由 PA / 单 机通 过系统 总线 实现 与 F G P A的接 口 , 通过该 接 口获取原 始数 据 , 然后通 过 算法 完成 对 数据 的处 理及 应
模 拟 信 号

基于FPGA的高速数据采集器

基于FPGA的高速数据采集器

内 尚 不 具 备 该 类 型 的 高 速 采 集 器 。 文 设 本
计 了一 种 基 于F GA的 高速 数 据 采 集 器 , P 由
当f m较大 时 , 往 对采 样 速 率f要 求 较 往 s
) 以准 确 地恢 复原 信 号 ( , 个过 可 f 这 )
, ‘ ,
高, 即需 要 A/ 转 换 器 采 样 速率 较 高 , D 这样 程 即 称 为 带 通 采 样 定理 。 如 果 用信 号 的 中 心 频 率 f = o 示 式 ()得 到 : 1,
1高速 数据采集理论及技术
括 采样 速 率 、 辨 率 、 储 量 和 实 时性 等 技 分 存
采样定理 和带通采样定理 。 术指标。 数 据 采 集 系统 发 展 的 趋 势 是 往 高速 高 1 1低通 采样 定 理 . 分 辨 率 方 向发 展 , 是 受 到 器 件 和 工 艺 的 但 指标 的限制 , 现高 速高分辨率 的采样 系 实 统 依然具有一 定的难 度。 目前 国 外 高 速 采 集 器的 采 样 速 率 可 以 达 到 几 十 G P 但 国 S S,
复。
限 制 , 别是 采 样 速 率 和 分 辨 率 这 一 矛 盾 理 , 特 假设 有 一 模 拟 信 号 x t , 带 宽 限 制 在 () 其
: 2 1 m
() 1 、
其 中 m 取 能 保 证 条件 ≥ ( 一 ) 2 的 最 大 正 整 数 , 得 到 的 采 样 离 散 序 列 则
信 号
A 4 03 T8 AS 0 作为采 样器 件 , 该芯 片是采 样速 率可 达到 l S S 分辨率 为l bt 采样后 的数 G P , Oi 。
据送  ̄F G ] I P A中 , 由于 采样 后数 据率 较 高 , 在

一种基于DSP和FPGA的多通道数据采集系统的设计

一种基于DSP和FPGA的多通道数据采集系统的设计

计 中还 采用 ADC 8 9模 数 转换 器。该 系统 采集信 号 频率 范围 宽、 数据 传送 量 大、数据 00 传 输速度 高 , 并具 有较 强 的扩 展 能 力,并且 具有 电路 结构 简单 、功耗低 、数据 传输 方便 等优 点 , 用于 电压 、 电流 、温度 、压 力等参量 的采集 系统 中。 可
变 为高 电平 ,指 示 A / D转 换结 束 ,结 果 数据 已 存 入锁 存器 ,这个 信号 可用作 中断 申请 。 当 OE输
入 高 电平 时 ,输 出三 态 门打开 ,转换 结 果 的数字 量 输 出到数 据总 线上 ,采用 串行接 口方 式 。F GA P
门阵列 ( P A E 1 6 20 8 F G ) P C Q 4 C 作为系统的控制部 系 统 选 择 Cy ln co e系 列 的 E 1 6 2 0 8芯 片 , PC Q 4C P采 用 T 公 司 生 产 T 3 0 5 1 芯 片 I MS 2 VC 4 6 ’ 分 , 过FG 通 P A逻辑 控制 AD 采集 电路 进行模 拟通 DS /
现代仪器 ( w. d r isr.r .n ww mo enn t ogc ) s

种基于 D P和 F G S P A的多通道数据采集系统的设计
吴永鹏 王章瑞 。 赵煜 滢 向前 勇
(. 1西南石油大学 电子信息工程学院 成都分公 司川西 北气矿 甲醇厂 江 油 6 10 ) 2 9 7
率 高 ,内部 时 延小 ,全 部 控 制逻 辑 由硬件 完 成 , 速 度 快 、效率 高 ,适 于大 数据 量 的高 速传 输控 制 , 可
业生 产和 科学 技术研究 的各 行业 中 , 常常 需要对 各
种数 据进行 采集 , 如液位 、温度 、压力 、频 率等信

基于FPGA+DSP的多通道数据采集系统设计

基于FPGA+DSP的多通道数据采集系统设计

Q a u 8 0a dC S2po eta ted s no ess m i fai e ur s I . n C rv t h ei f yt s l. t I h g h t e se b
Ke r s: d t c u sto y tm ;F y wo d aa a q iiin s se PGA;DS P;FI FO
( .兰州交通大学 电子信息与工程学院 , 1 兰州 7 07 ;2 30 0 .兰州 交通大学 电工 电子实验中心 , 兰州 7 07 ) 3 0

要 :介 绍 了一 种基 于 F G P A+D P的 多路数 据采 集 系统 的设 计方 案 ,描 述 了系统 的硬 件 设计 S
方 案和硬ห้องสมุดไป่ตู้件 电路 ,介 绍 了信 息采 集过程 以及 外 围通讯接 口及 软件 设计 。 过 Q at 8 02.C 2 通 ur s I.  ̄ S uI C

时钟域高 , 内部延时小 , 速度快 , 全部逻辑由硬件完 成 等优点 , 因此 在 高速 数 据 采集 方 面 F G P A相 对有
着 巨大优 势 , 但也 存在难 于实 现复杂 的算法 的缺点 , 而 D P适合 于高 速算法 的处 理 , S 因此 为 了 弥补 系统
的不足 , 系统 采 用 F G 本 P A+D P的方 案 。本 系统 S
方面 对多路 模拟开 关进行 选通 让选通 信号通过 信
号 调理 电路实 现 电平 调 整 并 进 行 A D转 换 的时 序 / 控 制 , 一方 面 把 转 换 好 的数 据 进 行 数 据 缓 存 , 另 当 FF IO满 时并 产生 D P能识 别 的外 部 中断信 号 及标 S 识信 号 , 知 D P取数 据 , 后 D P对 采 集 到 的数 通 S 最 S 据进 行滤波 处理 、 变换 、 分析 。 谱

基于FPGA的实时数据采集与处理系统

基于FPGA的实时数据采集与处理系统

中 国新技术新产品
一3 3—
[ 吴德 鸣 , 3 ] 陆达. 通信 中基 于 F G 高速 P A的 P I C 总线接 1研 究与设 计 , 3 ' 计算机 应 用。20 .. 0 57 『 4 ]周俊容 .高速 数据 采 集 系统 ,电子工 程师
2 0 .. o 5 5
k _a3: 一 魁d dt 1 ) ( O
关 键词 :P F GA; C ; P I 实时数 据 采集 处理
1引 言
伴 随着 科技 的发 展 和数 据采 集 系统 的应 用, 对数据 采集与信 号采集 系统 的各项 指标提 出 了越来越 多 的要 求 ,它 广泛应 用于 雷达 、 通 信、 遥测遥 感等领 域。传统 方法通 常采 用单 片 机 或者 D P 为核 心芯片, S作 由于单 片机 的时钟 频 率相对较 低 , 运行 软件 的时间 占采用 时间很 大的 比例 ,很难 适 应高 速采 集 暴 统的要 求 。 DP S 运行速 度虽然 快 , 但是 不能 够完成 外 围的 硬件 逻辑 控制 。F G P A时钟频 率 相对 比较 高 , 延时小 ,P A采用 I 内核技 术 ,可 以集成 外 FG P 围控制 和接 口电路。 系统 主要应用 于基 于激 该 发荧 光和激 光 多普 勒技 术 的浮游 植 物粒 径分 布现场 在线监测 系统 中的数据 采集部 分 , 有 具 较强信 号处理 能力和较 大数据 吞 吐量 ,在信 号捕获 , 测量 , 分析 系统 中具有广 泛实用性 。 2系统硬 件结 构
p l k dt raJ a ̄e a d
参 考 文 献
P l8 嘴 一 s l ~ t de 』s l L y 柳 j p Lr s s U 臻鹂y 1 _ 一
d J t— a el p / esl1 c d ve 一 _ 一 i m j j P』蜒 颤 pis p 1 g t 一 o p  ̄ d— — d y i—

一种基于DSP+FPGA的高速数据采集系统设计

一种基于DSP+FPGA的高速数据采集系统设计

对采集到的数据进行滤波及 FT变换等处理。 PA F FG 作为外设, 主要对 AD芯片、S 芯片等进行控制。该 / UB 系统电路结构简单、 功耗低、 数据传输速度快, 可用于电压 、 电流等模拟量的采集及数字信号的采集。
关键 词 : 数据 采 集; 浮点 DP FG ;S S ;PA UB
D T =( tes >Z ) A A< o r = ; h
wh n s2 e t 2=>
c nv n< 1;s n o =… c <=… wrt n =’ ’ 1; i e < 1;
— —
ra n e d <=’’ac <=’’ 1; th l 0;

AD

D T = ( tes >Z) A A< ohr = ;
到上位机 。
系统 的 I / O需求和 门数要求 。高速 AD芯片采用 /
A I 司的 AD 9 8该 芯片可 以 同时采样 8路模拟 D公 73 , 量信 号 , 有两个 转 换核 , 行 输 出数据 , 具 并 实现 了高 速数据 的采集 与传 输 。为 了更 方便 的与 P C机通讯 ,
wh n s2 => e t
co n y

n … c n <= 1;s <=’’ it n … 1; wr e <= 1;
— _ _
ra n e d <=’’a c <=’。 1; th l 0; AD

RW 信号及 P G 1 / A E 信号的组合逻辑对 F G P A进行
读/ 写操作 。
2 系统 组 成
高速数据 采集 系统结 构框 图如 图 1 所示 。该 系
设计 选用 了 P L S公 司生 产 的 IP 5 1 HIP S 18 ,完 全符

基于FPGA的高速高精度数据采集系统的研究

基于
冯萍
F P GA
的 离速 离精 度
12 5 1 0 5
数 据 采集系 统 的研 究
李秀 华
辽 宁 工 程 技 术 大 学 电 子 与 信 息工 程 学 院
地 位 … 它 不 需 要 昂贵 的 E D A 设 计 工 具 大 大 降 低 了 设 计 门槛 F P G A 不 仅 可 以 解 决 电 子 系 统 小 型 化 低 功 耗 高 可 靠性 等 问 题 而 且 其 开 发 周 期 短 开 发 软 件投 入 少 芯 片 价格 不 断 降 低 对 于 小 批 量 多 品 种 的


1 系 统 方案 本 系 统 要 用 三 片 A D C 芯 片拼 接 构成 高速 高 精 度 的 数 据 采 集 系统 要 对 通 道 失 配 误差 进 行 测 量 选 取 合 适 的 正 弦 信 号 做 自测 分 别 计 算 出 系 统 的 误 差 由 F P G A 控 制 系统完 成 时钟芯 片的 配 置 数 据的缓 冲 N i o s II 软 核 的误 差计 算 以 及 后 端 的 校 正 4 2 器 件选 择
, ,































F ig l

1
并 行 时 间 交 替采样 系 统结构
o
The
s
truc ture
f
pa
ra
l le l t im
e

i n t e r le

基于FPGA的高速数据采集系统的设计

基于FPGA的高速数据采集系统的设计作者:蒋洪明来源:《电子世界》2013年第12期【摘要】本设计采用了以FPGA作为主控逻辑模块,从而实现了数据的硬件采集。

设计中采用了自顶向下的方法,并将FPGA依据功能划分为几个模块,详细介绍了各个模块的设计方法和功能。

FPGA模块设计采用VHDL语言,在QuartusⅡ中实现了软件的设计和仿真。

整个系统可以实现6路最大工作频率是40kHz的模拟信号的采集和6路内部通信信号以实现自检的功能。

【关键词】FPGA;VHDL;QuartusⅡ;数据采集1.引言传统的数据采集系统,通常采用MCU或DSP作为控制模块,来控制A/D,存储器和其他一些外围电路。

这种方法编程简单,控制灵活,但缺点是控制周期长,速度慢。

特别是当A/D 本身的采样速度比较快时,MCU的慢速极大地限制了A/D高速性能的使用。

MCU的时钟频率较低并且用软件实现数据的采集,软件运行时间在整个采样时间中占的比例很大,使得采样速率较低。

---------随着数据采集对速度性能的要求越来越来高,传统的采集系统的弊端越来越明显[2-3]。

本设计采用FPGA,各模块设计使用VHDL语言,其各进程间是并行的关系。

它有MCU无法比拟的优点。

FPGA的时钟频率高,全部控制逻辑由硬件完成,实现了硬件采样,速度快。

2.系统的总体设计本数据采集系统,采用FPGA+MCU的结构,主控逻辑模块用FPGA来实现,在系统中对A/D器件进行采样控制,起到连接采样电路和MCU的桥梁作用,数据处理、远程通信及液晶显示控制等由MCU来完成。

FPGA把传统的纯粹以单片机软件操作形式的数据采集变成硬件采集[7-8]。

首先用VHDL语言来设计状态机,用MCU来启动状态机,使其控制A/D器件,实现数据采集。

并将采集到的数据存储到FPGA内部的数据缓存区FIFO中。

当FIFO存储已满时,状态机控制FIFO停止数据写入,并通知单片机取走采集数据进行下一步处理。

基于USB+FPGA的四通道数据采集系统设计

工 程 技 术
SIO &T H00Y CNE E NLG E C
匿圆
基于 U + GA的四通道数据采集 系统设计 B F S P
郑 文超 宋为真 ( 襄樊 市机 电工 程学校 湖北 襄樊 4 1 2 ) 4 1 0
~ 一 信■信二信二信一 号■号■口 理一 调-调一调二调一 理_理-理 l 一 ? 口 了
摘 要: 设计 并实现 了一 种基于F G 的四通道数据 采 集 系统 , 出了系统 设计方 案并对各部 分硬件 电路 进行 了详细介 绍 。 PA 给 对基 于F G 的 PA 数据 采集 系统 的各 主要功 能模块 设计做 了简要介 绍。 在硬件平 台不变的情 况下 , 通过改 变软件程序 即实现不 同功能并应 用于不 同的系统 ,
具有较 高的通 用性和 实 用价 值 。 关键 词 : P F GA 数据采 集 U B S 中图 分 类号 : P T3 文 献 标 识 码 : A
文章 编 号 : 6 2 3 9 ( 0 o o () 0 6 一0 1 7 — 7 1 2 1 ) 2 a一 0 l 1
外 围 电 路 以 及 US 接 口 电路 。 系 统 原 理 MI 的 L D 输 出 , V S B 其 i z V S L D 时钟 输 出可选 为 高 框 图如 图 l 示 。 所 达2 0 H 的两 通 道C 0M z MO 输 出 。 D9 l 可 S A 56 设 置 3 工 作 模 式 , 括 外 部 VC 外 部 种 包 O、 1 1 时钟 电路 设计 . A 5 6 一款 集 低 相位 噪 声 时 钟发 生 CLK以及 内部 VCO。 D9 1 是 和 低 抖 动 1 通 道 时 钟 分 配 功 能 于 一 体 的 时 1 2 A 4 . D采样 电路 钟 分 配 器 。 内部 集 成 1 整 数 N分 频 的 频 其 个 AD9 3 是 ADI 司 推 出的 一 种 1 位 、 20 公 2 率 合 成 器 、 个 参 考 输 入 端 、 个 压 控 振 荡 器 2 0 S S 高 速 、 功 耗 A/ 2 1 M P 的 5 低 D转 换 器 。 ( O)可 调 延 迟 线 和 1 个 时 钟 驱 动 器 , VC 、 4 还 AD9 3 具 有 片 内基 准 电压 和 跟 踪 和保 持 , 20 1 系统组成 设计 基 于 US + P A的 四 通道 数 据 采 集 系 B F G 包 括L P L、 VD ; C V EC L S ̄ MO 输 出 。 4 " I S 1 4 输 两 个 并 行 LVDS输 出 模 式 , 便 更 好 和 以 P A接 口 , 双 数 据 速 率( D 模 式 能 减 而 D R) 统 主要 包 括 了AD 5 6 统 时 钟 产 生 电 路 、 出 通道 分 别 为 6 (对 ) 钟 可 高达 16 Hz F G 9 1系 路 3 时 .G 信 号 调理 电路 、 D 换 电路 、 P A及其 的 L E 输 出  ̄1路 (对 ) 钟 高 达 8 0 半 所 需 并 行 输 出 数 。 A/ 转 F G VP CL : 1 4 2 时 O 13 F G . P A电路设计 该 设 计 中FP GA采 用 的 是 AITERA公 图 1 基 于 U B P A的 四通 道数据 采集 系统 S +F G 本设 计为 了实现 四通 道数据 采集 , 采 用 了 两 片 ADI 司 生 产 的 模 数 转 换 器 公 AD9 3  ̄ - 片AL RA公 司生 产 的FP 201 TE GA 器 件E 1 6 。 样后 数 据 通过 C p e s 司 P¥ 0采 y rs 公 的 U B . 的 集成 微控 制器 c C 8 1 完 成 S 20 Y7 6 0 3 数 据 与 P 机 之 间的 传 输 。 C

基于FPGA的FTIR光谱仪采集系统的设计

㊀2021年㊀第2期仪表技术与传感器Instrument㊀Technique㊀and㊀Sensor2021㊀No.2㊀基金项目:国家自然科学基金项目(61865002);贵州省科技支撑计划项目(SY[2017]2881);贵州大学引进人才项目(201602);中央引导地方科技发展专项项目([2017]4004)收稿日期:2020-09-26基于FPGA的FTIR光谱仪采集系统的设计贾明俊1,陆安江1,赵㊀麒2,白忠臣1,卢学敏1,袁钱图1(1贵州大学大数据与信息工程学院,贵州贵阳㊀550025;2贵州民族大学机械电子工程学院,贵州贵阳㊀550025)㊀㊀摘要:为了满足人们对于食品药品安全检测快速便携的需要,团队设计一种高速便携,延时低㊁精度高的新型FTIR光谱仪㊂光谱采集系统分为上位机和下位机2部分,系统的上位机软件设计是采用跨平台的C++图形用户界面应用程序,该框架(QTCreator)是由编程实现的,下位机的光电部分采用了MEMS微镜使仪器小型化,而下位机采集部分控制主板使用了ZYBO㊂使用了DAC驱动动镜移动以及ADC用于参考光和样本光数据的同步采集,进而利用多个串口实现了与上位机的完成指令控制以及采集数据传输㊂低波特率串口用于接收上位机控制指令㊂2个高波特率串口发送FIFO缓存的光谱数据㊂经试验验证采集系统的ADC㊁DAC及UART的时序控制满足了高速高效的需求㊂但是在便携上可进一步提高,下一步考虑通过利用Linux将上位机部分移植ZYBO内㊂采集控制设计完全使用了verilog代码进行了仿真与实测,发挥了FPGA的灵活特性,利用例化法提高了采集速率㊂关键词:FTIR;光谱仪;采集;FPGA;ADC;DAC;UART;MEMS;ZYBO中图分类号:TH744㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1002-1841(2021)02-0047-05DesignofFTIRSpectrumAcquisitionSystemBasedonFPGAJIAMing⁃jun1,LUAn⁃jiang1,ZHAOQi2,BAIZhong⁃chen1,LUXue⁃min1,YUANQian⁃tu1(1.CollegeofBigDataandInformationEngineering,GuizhouUniversity,Guiyang550025,China;2.CollegeofMechanicalandElectronicEngineering,GuizhouMinzuUniversity,Guiyang550025,China)Abstract:Inordertomeettheneedsofpeopleforfoodanddrugsafetydetectioninfastandportableway,anewFTIRspec⁃trometerwithhighspeedandportable,lowdelayandhighprecisionwasdesignedbytheteam.Spectralacquisitionsystemwasdi⁃videdintouppercomputerandlowercomputer.Forthesoftwaredesignoftheuppermonitorofthesystem,itwasrealizedbyusingthecross⁃platformC++graphicaluserinterfaceapplicationframework(QTCreator)tomakeprogramming.Forthephotoelectricpartoflowerunit,itusedMEMSmicroscopestominiaturizetheinstrument,andapartofthelowermonitoracquisitioncontrolboardtookadvantageoftheZYBOofXilinx.DACdrovemotionmirrormovingandADCwereusedtorefertothesynchronousac⁃quisitionofreferenceandsamplelightdata,sothatmultipleserialportswereusedtocompleteinstructioncontrolanddataacqui⁃sitionwiththeuppermonitor.Lowbaudrateserialportwasusedtoreceivecontrolinstructionsofuppermonitor.TwohighbaudratesmetthedemandofhighspeedandhighefficiencybytestingandverifyingtheADC.ThetimingcontrolofDACandUARTmettherequirementofhighspeedandefficiency.However,itsportablefunctionneedstobeimproved.Forthenextstep,it scon⁃sideredthattheuppercomputerpartistransplantedintotheZYBObyusingtheLinux.Acquisitionofcontroldesignmadefulluseofverilogcodeforsimulationandmeasurement,whichexertstheflexiblecharacteristicsoftheFPGA,andtheacquisitionratewasimprovedbytheexamplemethod.Keywords:FTIR;spectrometer;acquisition;FPGA;ADC;DAC;UART;MEMS;ZYBO0㊀引言因为不同物质对于红外光谱的吸收与反射情况不同,近红外光谱分析便成了分析物质的重要方法㊂FTIR光谱仪就是其中重要使用工具之一[1-3],此类光谱仪广泛用于化工㊁军事㊁农牧业㊁林业㊁环保㊁制药工艺等领域㊂由于传统的光谱仪体积庞大㊁延时高㊁便携性差等缺点[4-8],无法满足实时在线测试的需求㊂本文研究了一种实时在线的FTIR光谱仪[9-10],国内很多光谱仪都是CCD光谱采集系统,本文利用FPGA高速㊁高效㊁灵活性强的优势设计了一种硬件描述语言的采集系统[11-15]㊂通过使用AD7903将采集的光PD信号转换为数字量,利用DAC8568将存入ROM的㊀㊀㊀㊀㊀48㊀InstrumentTechniqueandSensorFeb.2021㊀预制电压数字量转换为模拟量从而驱动MEMS微镜,最终实现的快速FTIR光谱仪最高分辨率达到了0.06cm-1,具有16位的采样精度与1MSPS的转换速度㊂经验证,基本满足了现场在线测试需求㊂1㊀原理分析如图1所示,本次设计的干涉仪基于迈克尔逊干涉仪原理,采用分波阵面法产生干涉信号,图中虚线表示动镜移动时的位置,整个系统由动镜㊁定镜㊁窄带光源㊁分束器以及探测器构成㊂动镜与定镜相互垂直且到分束器初始距离相同,且分束器与动镜和定镜分别构成45ʎ夹角㊂整个工作过程由光源发出入射光,入射光经过分束器,一半的入射光反射到定镜上再经过定镜全反射回分束器经透射到达光电探测器,于此同时,另一半的入射光经过透射到达MEMS动镜,由于动镜的移动而产生光程差,这样就会导致经过动镜全反射的光再经过分束器反射后汇聚在探测器时产生干涉,探测器将干涉信号采集下来㊂动镜的移动距离决定着干涉仪的性能㊂理想情况下,动镜的移动距离是匀速变化的,但是MEMS电热式微镜在不同电压情况下其弯曲度不是理想的线性,因此会导致附加谱线㊂因此本次设计的光谱仪通过增加同步采集参考光,经过CPU利用Bault方法最终提高采样精度㊂图1㊀干涉仪框图2㊀模块设计如图2所示,整个系统由2部分组成,分别是上位机跨平台的C++图形用户界面应用程序,该框架(QTCreator)通过编程形成,主要功能是对下位机输送操作指令㊁对于发回的光谱数字数据进行分析并绘制光谱图㊂下位机部分有3个细分模块,第一部分是光电生成部分,系统有2路光源,分别是参考光源和样本光源,它们通过迈克尔逊干涉原理的干涉仪产生等光程差的相干干涉;由此产生的不同光强同步转换为数字量㊂第二部分由硬件底层采集电路组成,主要完成I/V转换㊁放大㊁滤波得到稳定的数据信号㊂第三部分是FPGA控制处理部分,用于实现对ADC㊁DAC㊁RS232的时序控制,设计出符合器件技术手册要求的verilog时序代码,最后要将每个模块整合在一个top文件下,所有时序都按要求的方式运行㊂最终通过引脚绑定至EMIO引出㊂最后整个系统密切配合完成光谱绘制㊂图2㊀光谱仪系统3㊀模块设计3.1㊀DAC光谱仪分辨率可以表示一个仪器的分辨能力,对于波长为a1和a2的2个单色光,定义Δa=a1-a2为分辨率㊂在最大光程差l处,a1,a2分别有n和n+1个余弦波,定义动镜最远位移为l,则有:2l=n/a1=(n+1)/a2(1)Δa=a1-a2(2)Δa=12l(3)不难得出,动镜的移动距离决定着光谱仪的分辨率,设置多分辨率的光谱仪,就需要不同最大光程差移动距离,本系统的光程差有0.033㊁0.015㊁0.024cm,所以驱动MEMS微镜就需要给出不同的电压㊂分别对应8㊁4㊁6V,这是由MEMS微镜移动与电压关系决定的,而且由于驱动速度不同直接影响着光谱仪动镜加速度,所以驱动频率应在建议频率之下㊂为此设置了1-2-5Hz的频率以验证最好效果㊂为了满足多通道㊁高精度㊁低延时的要求㊂选用了DAC8568器件,DAC8568具有8个通道㊁16位精度㊂满足了本采集系统驱动设计需求㊂设计MEMS四通道等距移动即可㊂DAC控制时序相对复杂㊂对于参考电压外接口,如果不使用就需要接电容后再接地滤波㊂DAC8568的使用需要一些指令的输入,首先是将器件复位,设计选用所有通道复位到0㊂接着把lDAC加载引脚设置为无效㊂因为使用同步加载模式不需要加载控制㊂接下来就是poweron步骤了,这里有2点须注意,一个就是选择FlexibleMode,因为StaticMode会不断关闭内㊀㊀㊀㊀㊀第2期贾明俊等:基于FPGA的FTIR光谱仪采集系统的设计49㊀㊀部参考,还有一个就是使用稳定的内部参考,故此选择090A操作语句㊂在这种语句控制下,器件一直使用内部参考电压并且无需反复重启㊂最后一个语句是所有寄存器写0,输入所有指令后DAC8568与普通DAC工作方式相同,控制命令如图3定位流程㊂再通过技术手册得知主要问题在于同步脚SYNC何时拉高拉低和32个sclk给入㊂Clr直接拉高即可㊂图3㊀指令图3.2㊀ADCADC采集数据的频率需要根据所采信号的最大频率设定,根据奈奎斯特采样定理,采样频率应该为被采频率的2倍以上,而我们一般习惯使用过采样㊂所以需要计算被采信号的最高频率fmax㊂根据本次设计的光谱探测范围为900 2600nm,则相应的波数υ为:1/2600 1/900nm-1㊂根据最大移动距离L值为0.033cm,完成一次扫描的时间(T)在最快驱动频率5Hz情况下为0.2s㊂设速度为v,根据式(4):fmax=2υv=2υLT(4)得到最大信号频率为3.6kHz,据此综合考虑选择了DAC8568型号的ADC器件㊂该器件具有16位的高精度双通道模拟输入㊁吞吐速率为1MSPS㊁支持轨到轨的转换㊂查看技术手册,选用了符合要求的四线同步采样模式(CS模式),根据设计要求,主机通过一个片选CONVERT和同一个时钟SCLK同时控制2个从机工作实现同步采集㊂通常所有的ADC时序设计都是围绕技术手册进行的,第一步看sclk,查看得知sclk最小周期为11.5 16ns,但是一般选用典型时钟速率,故而选用50MHz时钟作为串行时钟㊂接着看CNV,设计主要关注何时拉低拉高,同时要明确这是一个先转换后采集的过程,另外要关注保持建立时间㊂最后,AD7903也和大部分器件一样,下降沿数据逐渐输入,所以上升沿串行取出㊂最终利用vivado编写的主体代码如图4所示㊂3.3㊀UART及数据缓存设计选用了CP2101串口并设置460800的最大图4㊀代码图波特率传输机制㊂数据采集和数据控制字宽度不一样,所以对于UART做了不同的处理,对于下位机接收UART采用普通的UART机制,10bit数据,包括1个起始㊁1个结束和8bit数据㊂UART_rx时刻保持等待状态,等着上位机指令㊂只要上位机有指令发出,则立刻分析㊂对于采集的数据,下位机UART_tx采用了16位发送方式并且例化了2个发送tx,这样做有助于提高传输速率,ADC的数据是16位的,所以设计16位发送更有利于理解㊂这样做也发挥了FPGA灵活多变的特点㊂在数据缓冲时,利用了比较常用的FIFO,FIFO深度很大,达到10000bit,之所以这样做是因为串口相对于采集的吞吐率过大,所以1s内数据也需要大的缓存空间,在FIFO设计中最重要的是关注读写使能的设置,FIFO的写使能选用A/D采集的dataready,保障了写入数据的可靠,读使能选用tx_busy,保证了发送的有序㊂FIFO的空empty也作为tx的数据有效标识,保证了tx不传输空数据和无效数据㊂4㊀系统仿真对于整个系统的设计,遵循着自顶向下的设计方式,即首先给出设计方案整体架构,然后依据需求将系统各部分模块化,每个接口放在顶层,每个模块单独设计好,设计出满足需要的模块小单元㊂正是基于这样的原因,必须在仿真时先对模块测试是否符合需求,然后再对整体仿真,对每个用例都要测试㊂保证系统的可靠性㊂㊀㊀㊀㊀㊀50㊀InstrumentTechniqueandSensorFeb.2021㊀4.1㊀ADC仿真对于ADC测试代码,需要给出的激励有时钟ad_sclk和输入的数字数据ad_sdo1(2)以及启动信号ad_start㊂经过查看仿真图5可以看出,在时钟与信号有效时,A/D数据转换并没有立即开始,直到ad_start启动后,数据采集才开始,片选ad_cnv拉高㊁采集过程循环进行,ad_data也输出了寄存的数值,得出结论满足时序要求㊂图5㊀ADC仿真时序4.2㊀DAC仿真DAC时序首先必须有时钟clk㊁复位rst以及启动da_start指令㊂查看仿真图6可以看到,在rst无效㊁clk有效时,DAC并没有立即输出信码Din,这是因为da_start没有启动,时序仿真在启动start有效后立即进入工作状态㊂在启动信号有效时,持续进行信码输出㊂图6㊀DAC仿真时序4.3㊀系统仿真对于UART串口没有单独测试㊂把它作为系统代码测试的一部分进行了综合仿真㊂在系统仿真图7中,仿真了上位机发送代码senddata为8h10指令,即ADC㊁DAC同时工作,可以从图7看到rxd拉低发生了接收,最后可以看到寄存器rx_data成功接收了8h10㊂可见指令正确接收㊂紧接着系统在得到rx_data的信息码后,ADC和DAC的start都拉高启动㊂ADC和DAC随后都进入工作模式㊂在数据有效后采集数据通过2个UART发送到发送线txd1和txd2㊂最终得出时序仿真符合要求㊂5㊀实际测试本次设计主要测试有DAC驱动测试㊁ADC采集测试㊂主要用到仪器有GDS-2204A(200MHz)㊁小型MEMS干涉仪㊁1310nm的近红外作为参考光源㊁CPU主机㊂整体布局图如图8所示,示波器主要为了观察ADC采集输入信号与DAC的输出信号,首先测试图7㊀采集系统仿真时序FPGA输出电压数据与频率是否符合要求,图9是1Hz与6.6V的测试结果,可以看出三角波十分标准㊂验证了驱动没有问题,下一步就可以进行采集设置了,首先利用信号发生器产生一个三角波,然后利用MATLAB将串口发回数据绘制出来,结果如图10所示,虽然有少许毛刺,但是经计算是输入的20kHz三角波,最后在ADC和DAC都符合要求时,进行系统连接,最终采集的光谱信号如图11所示,可以看出水和空气的光谱具有明显的特征差别㊂最终得出,光谱仪采集部分结果基本符合设计要求,后期进一步的光谱数据处理交由CPU部分处理㊂图8㊀布局图图9㊀驱动电压图10㊀采集三角波㊀㊀㊀㊀㊀第2期贾明俊等:基于FPGA的FTIR光谱仪采集系统的设计51㊀㊀图11㊀水和空气采集的相对强度图6㊀结论与不足设计的基于FPGA的光谱采集系统,经仿真论证设计满足要求,并且改变了多数利用ARM设计驱动底层器件的现状,为广大科研人员提供了一个更为可靠的路线㊂与此同时,采用FPGA设计整个下位机系统,不仅缩短了开发周期,而且节约了成本㊂利用FPGA开发的系统不仅更加高速高效灵活,而且便携升级换代也可以发挥技术沉淀的优势㊂但是整套系统还可以进一步提高,集成度也可进一步优化㊂在下一步设计中,从ARM与FPGA结合的角度出发,开发更加小型化的设备㊂参考文献:[1]㊀王国龙,高少华,朱胜杰,等.基于开路式傅里叶变换红外光谱仪现场实测法的污水处理单元VOCs排放核算研究[J].环境科学学报,2020,40(3):865-870.[2]㊀李忠兵,许贤泽,乐意,等.FTIR光谱仪中基于定镜调整的动镜运动控制研究[J].光谱学与光谱分析,2012(8):281-284.[3]㊀李妍,李胜,高闽光,等.FTIR光谱仪中傅里叶插值采样方法的研究[J].红外与激光工程,2018,279(1):276-281.[4]㊀GEISSELH,WINFIELDJS,BERGGPA,etal.Dispersion⁃matchedspectrometerinthelow⁃energybranchoftheSuper⁃FRSforhigh⁃resolutionmeasurementswithlarge⁃emittancerelativisticfragmentbeams[J].NuclearInstruments&MethodsinPhysicsResearch.B,BeamInteractionswithMate⁃rialsandAtoms,B,2013,317:10.1016/j.imb.2013.07.064.[5]㊀YUXINM,YANGP,XUANL,etal.High⁃precisiondigitaldropletpipettingenabledbyaplug⁃and⁃playmicrofluidicpi⁃pettingchip[J].LabonaChip,2018,10:1039[6]㊀MILHONEJ,FLANAGANK,NORNBERGMD,etal.Aspectrometerforhigh⁃precisioniontemperatureandvelocitymeasurementsinlow⁃temperatureplasmas[J].ReviewofSci⁃entificInstruments,2019,90(6):063502.[7]㊀BABUNTSRA,BADALYANAG,GURINAS,etal.Capa⁃bilitiesofcompacthigh⁃frequencyEPR/ESE/ODMRspec⁃trometersbasedonaseriesofmicrowavebridgesandacryo⁃gen⁃freemagneto⁃opticalcryostat[J].AppliedMagneticRes⁃onance,2020,51:10.1007/s00723-020-01235-9.[8]㊀GZAUKUUJLZ,AOUADIB,MÁTYÁSLUKÁCS,etal.Detec⁃tinglowconcentrationsofnitrogen⁃basedadulterantsinwheyproteinpowderusingbenchtopandhandheldNIRspectrometersandthefeasibilityofscanningthroughplasticBag[J].Molecules,2020,25(11):10.3390/molecules25112522.[9]㊀KRISTENSENGH,KLAUSENMM,HANSENVA,etal.On⁃linemonitoringofthedynamicsoftrihalomethanecon⁃centrationsinawarmpublicswimmingpoolusinganunsu⁃pervisedmembraneinletmassspectrometrysystemwithoff⁃sitereal⁃timesurveillance[J].RapidCommunicationsinMassSpectrometry,2010,24(1):30-34.[10]㊀ZHENGBW,ZHANGW,WUTY,etal.Developmentofthereal⁃timedouble⁃ringfusionneutrontime⁃of⁃flightspec⁃trometersystematHL-2M[J].NuclearScienceandTech⁃niques,2019,30(12):175.[11]㊀TÜRK,MUSTAFA,TUNCER,etal.Sahadaprogramlanabilirkapdizilerikullanlarakkikanalldarbegenilikmodülasyonlusinyallerinretimi:birH-Kprüdnütürücü.(Turkish).[J].FiratUniversityJournalofEngineering,2009,21(2):133-140.[12]㊀ZENGH,CHENR,ZHANGC,etal.[ACMPressthe2018ACM/SIGDAInternationalSymposium⁃Monterey,CALI⁃FORNIA,USA(2018.02.25-2018.02.27)]Proceedingsofthe2018ACM/SIGDAInternationalSymposiumonField⁃ProgrammableGateArrays⁃FPGA\ᵡ18-AFrameworkforGeneratingHighThroughputCNNImplementationsonFP⁃GAs[C]//Acm/sigdaInternationalSymposium.ACM,2018:117-126.[13]㊀DUD,XUX,YAMAZAKIK.Astudyonthegenerationofsilicon⁃basedhardwarePlcbymeansofthedirectconversionoftheladderdiagramtocircuitdesignlanguage[J].InternationalJournalofAdvancedManufacturingTech⁃nology,2010,49(5-8):615-626.[14]㊀LANDMANNC,KALLR.Graphicalhardwaredescriptionasahigh⁃leveldesignentrymethodforFPGA⁃baseddataac⁃quisitionsystems[J].KeyEngineeringMaterials,2014,613:296-306.[15]㊀CHOIDG,KIMMH,JEONGJH,etal.AnFPGAlmple⁃mentationofhigh⁃speedflexible27-Mbps8-stateTurbode⁃coder[J].EtriJournal,2007,29(3):363-370.作者简介:贾明俊(1995 ),硕士研究生,主要研究FPGA应用及嵌入式开发㊂E⁃mail:528194621@qq.com陆安江(1978 ),副教授,博士,现主要从事光电子技术应用方面的研究㊂E⁃mail:39146565@qq.com。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档