人教版数学七年级上册 第一章有理数1.4.2-除法1(共21张PPT)

合集下载

2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版

2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版
第一章 有理数
1.4 有理数的乘除法 第3课时 有理数的除法
提示:点击 进入习题
1 倒数;1b;≠0
6C
7D
答案显示
2 见习题 3 C 4 C 5 A 8 除法 9 不变 10 C
11 D
12 见习题 13 B
14 A
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题 20 见习题
【点拨】A.3+(-2)=1,故A不符合题意; B.3-(-2)=3+2=5,故B不符合题意; C.3×(-2)=-6,故C符合题意; D.(-3)÷(-2)=1.5,故D不符合题意.
【答案】C
*7.(2019·广东)有理数 a,b 在数轴上的对应点的位置如图所示, 下列式子成立的是( )
A.a>b C.a+b>0
A.-ba=-ab=-ab
B.--ba=- -ab=ab
C.--ab=ab
D.若 a>b,ab<0,则 a<0
12.有理数的除法可以转换为乘法,所以有理数的乘除混合 运算可以统一成乘法运算,其步骤为:
(1)__将__所__有__除__数__转__化__为__其__倒__数__,__将__除__法__转__化__为__乘__法________; (2)__运__用__乘__法__法__则__计__算__,__能__简__算__的__运__用__运__算__律__简__化__运__算____.
3.(教材 P34 例 5 变式)(2020·山西)计算(-6)÷-13的结果是( C )
A.-18
B.2
C.18
D.-2
4.下列把除法转换为乘法的过程中,正确的是( C ) A.13÷(-4)=-13×4 B.(-3)÷(-6)=3×-16 C.1÷(-4)=1×-14 D.(-3)÷4=3×14

人教版七年级上册第一章有理数1.4有理数的乘除法(第4课时)课件

人教版七年级上册第一章有理数1.4有理数的乘除法(第4课时)课件

12以 可以利用乘法的运算性质简化运算.
例2
(1)(125 5) (5); 7
原式 (125 5) 1 75
125 1 5 1 5 75
25 1 7
25 1 7
(2) 2.5 5 ( 1) 84
原式 5 8 1 254
1
例3 (1) (-8)÷(-4) (2) (-3.2)÷0.08
知识点二:有理数除法法则2
两个有理数相除, 同号得____,正 异号得__负___,并把绝对值____相_除__. 0除以任何一个不等于0的数都得__0___.
注意:0不能作为除数
例1
化简下列分数:
(1) 12 3
(2) 45 12
解: (1) 12 (12) 3 4 3
(2) 45 (45) (12) 45 12 15
a÷b=a
1 ·b
(b≠0).
注意:除法在运算时有 2 个要素要发生变化。
1除变 乘 2 除数 变 倒数
例1 计算: (1) (-36) ÷9
(2) ( 25 ) ÷( 5 )
12
13
解: (1) (-36) ÷9 =(-36) × =-4
(2)
25
÷
( 5
9
)
12
3
= 25 × ( 3 )
人教版七年级上册
第一章 有理数 1.4 有理数的乘法(第4课时)
学习目标
1.认识有理数的除法,经历除法的运算过程。 2.理解除法法则,体验除法与乘法的转化关系。 3.增强数学应用意识,提高学生学习数学的兴 趣。
探究:由乘法与除法的互逆关系研究除法
计算:
8×9=__7_2_, 72÷9=__8__,

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3

人教版七年级数学上册1.2.2 数轴 课件(共21张PPT)

人教版七年级数学上册1.2.2 数轴 课件(共21张PPT)

个单位长度到点B时,点B所表示的数为 ( C )
A.2
B.-6
C.2或-6 D.不同于以上
分析:点A可能向左移,也可能向右移,所以需 分情况讨论.
当堂练习
1.下列说法中正确的是( C ) A. 在数轴上的点表示的数不是正数就是负数 B.数轴的长度是有限的 C. 一个有理数总可以在数轴上找到一个表示它的点 D. 所有整数都可以用数轴上的点表示,但分数就不 一定能找到表示它的点
2.与原点距离是2.5个单位长度的点所表示的有理数是
(C)
A.2.5
B.-2.5
C.±2.5
D.这个数无法确定
3.在数轴上表示数6的点在原点__右___侧,到原点的距
离是__6___个单位长度,表示数-8的点在原点的__左___
侧,到原点的距离是__8___个单位长度.表示数6的点
到表示数-8的点的距离是___1_4__个单位长度.
西
电 线 杆 槐树
汽 车 站
柳树
杨树

-4.8 -3
0
3
7.5
正数、0、负数用一条直线上的点表示出来了.
生活中用直线上的点表示数的例子可多着呢!
概念从生活中来!
经 验 汽车站-参照点 东西向-方向 柳树、杨树、槐树、 电线杆-位置
数学化
概念
抓特征 直线、
原点、
正方向、 单位长度.
类比归纳
画一条水平直线,在直线上取一点表示0, 并把这个点叫作原点,选取某一长度作为单位长 度,规定直线上向右的方向为正方向,就得到下 面的数轴.
D. C. .B
A.
-2
-1
0
1
2
解: (1)A 点表示2; (2) B 点表示0.25; (3)C点表示-0.75; (4) D点表示-1.5

2利用计算器进行有理数的加减乘除混合运算(最新)人教版七年级数学(上)课件(15张)-公开课

2利用计算器进行有理数的加减乘除混合运算(最新)人教版七年级数学(上)课件(15张)-公开课
7.用计算器计算下列各题: (1)-98×(-32.7); (2)36÷7.2+(-48.6)÷2.4. 解:(1)3 204.6;(2)-15.25.
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )
9.在计算器上按图1-4-7的程序进行操作,表中的x与y分别是输入的数及相应 的计算结果:
x -2 -1 0 1 2 3 y -5 -2 1 4 7 10
图1-4-7
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )
【名师示范课】第一章 1.4.2 第3课时 利用计算器进行有理数的加减乘除 混合运 算-2020 秋人教 版七年 级数学 上册课 件(共1 5张PPT )-公开 课课件 (推荐 )

七年级数学上章1.4有理数的乘除法(人教版)

七年级数学上章1.4有理数的乘除法(人教版)

七年级数学上章1.4有理数的乘除法(人教版)4 有理数的乘除法.4.1 有理数的乘法第1课时有理数的乘法法则.了解有理数乘法的实际意义..理解有理数的乘法法则..能熟练的进行有理数乘法运算.阅读教材P28~30,思考并回答下列问题.知识探究.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘..通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值..乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.自学反馈计算:×=1,×=-6,0×=0,123×=-2,×=5,-│-3│×=6.运用乘法法则,先确定积的符号,再把绝对值相乘;0没有倒数.活动1 小组讨论例1 计算:×9;8×;×.解:×9=-27.×=-8.×=1.例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1气温的变化量为-6℃,攀登3后,气温有什么变化?解:×3=-18.答:气温下降18℃.活动2 跟踪训练.计算:×0.2=-1;×=2;×=1;0.1×=-0.001..若a×=1,则a=-65.已知一个有理数的倒数的绝对值是7,则这个有理数是±17..判断对错:两数相乘,若积为正数,则这两个数都是正数.两数相乘,若积为负数,则这两个数异号.互为相反的数之积一定是负数.正数的倒数是正数,负数的倒数是负数.活动3 课堂小结.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘..倒数:乘积是1的两个数互为倒数.第2课时多个有理数的乘法进一步学习有理数乘法运算,掌握多个有理数相乘积的符号的确定.阅读教材P31,思考并回答下列问题.知识探究体会几个不等于零的有理数相乘,积的符号的确定方法:.几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;当负因数的个数是奇数时,积为负..几个数相乘,如果其中有因数为0,那么积等于0.自学反馈计算:××=-30,×3×=1,××××0=0.活动1 小组讨论例计算:×56××;×6××14.解:-98.6.活动2 跟踪训练计算:×0.01×0=0;×××=-250.活动3 课堂小结.几个不为0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数..任何数同0相乘,都得0.第3课时有理数的乘法运算律.进一步应用乘法法则进行有理数的乘法运算..能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用..培养学生通过观察、思考找到合理解决问题的能力.阅读教材P32~33,思考并回答下列问题.知识探究乘法交换律的文字表达:两个数相乘,交换因数的位置,积相等.乘法交换律的字母表达:ab=ba.乘法结合律的文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律的字母表达:c=a.乘法分配律的文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.乘法分配律的字母表达:a=ab+ac.自学反馈.计算:×56××××.解:-9..计算:-34×;1819×.解:-4310.-299419.运用运算律进行简便运算.活动1 小组讨论例计算:×××113;×12;×;××722×2122;×27-1117×8+117×8.解:-1.-1270.-5.-4.3.活动2 跟踪训练.运用分配律计算×,下面有四种不同的结果,其中正确的是A.×4-3×2-3×3B.×-3×2-3×3c.×+3×2-3×3D.×-3×2+3×3.在运用分配律计算3.96×时,下列变形较合理的是A.×B.×c.3.96×D.3.96×.对于算式XX×+×,逆用分配律写成积的形式是A.XX×B.-XX×c.XX×D.-XX×.计算1357×316,最简便的方法是A.×316B.×316c.×316D.×316.计算:×8××0.1××10;×117;×-4.73×-25×;解:-10.1921.250.活动3 课堂小结.有理数乘法交换律..有理数乘法结合律..有理数乘法分配律.4.2 有理数的除法第1课时有理数的除法法则.理解除法的意义,掌握有理数的除法法则..能熟练进行有理数的除法运算.阅读教材P34,思考并回答下列问题.知识探究.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.自学反馈计算:÷9=-2;0÷=0;25÷=-32.活动1 小组讨论例计算:÷9;÷.解:÷9=-=-4.÷=×=45.在做除法运算时,先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.活动2 跟踪训练.两个不为零的有理数的和等于0,那么它们的商是A.正数B.-1c.0D.±1.计算:-0.125÷;÷1110.解:13.-2.活动3 课堂小结.a÷b=a•1b..两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得第2课时有理数的乘除混合运算.掌握有理数除法法则,能够化简分数..能熟练地进行有理数的乘除混合运算.阅读教材P35,思考并回答下列问题.自学反馈.化简:204=5;-255=-5..计算:5÷15=25;÷3×4=-16.活动1 小组讨论例1 化简下列分数:-123;-45-12;解:-123=÷3=-4.-45-12=÷=45÷12=154.例2 计算:÷;-2.5÷58×.解:2517.1.活动2 跟踪训练.化简:-729;-30-45;0-75.解:-8.23.0..计算:÷×0;-112÷34××134÷1.4×.解:0.-310.活动3 课堂小结.化简分数..乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.第3课时有理数的加减乘除混合运算.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算..能解决有理数加减乘除混合运算应用题..了解用计算器进行有理数的加减乘除运算.阅读教材P36~37,思考并回答下列问题.知识探究有理数加减乘除混合运算的顺序:先乘除,后加减,有括号的先算括号内的.自学反馈计算:-÷;×+÷7;÷8-×;2×+÷.解:2.-16.-156.-25.在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.活动1 小组讨论例1 计算:-8+4÷;×-90÷.解:-8+4÷=-8+=-10.×-90÷=35-=35+6=41.例2 一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米.活动2 跟踪训练.计算:×-÷;|-512|÷×.解:-1.3..高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米..某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米.活动3 课堂小结有理数加减乘除混合运算的顺序:无括号,先算乘除,后算加减;有括号,先算括号里面的.。

数学有理数的乘法法则课件(人教版七年级)上册

1
数a(a≠0)的倒数是什么? (a≠0时,a的倒数是 )
a
练一练
说出下列各数的倒数:
1,-1, 1 ,- 1 ,5,-5,0.75,-2 1
33
3
1 ,-1, 3,
—3,
1, 5
-1, 5
4, 3
-3 7
三 有理数的乘法的应用
例4 用正负数表示气温的变化量,上升为正,下降 为负.登山队攀登一座山峰,每登高1km,气温的变化 量为-6℃,攀登3km后,气温有什么变化?
3 5
(3)8 ( 2) (3.4) 0 0 73
课堂小结
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相 乘.任何数同0相乘,都得0.
2.几个不是零的数相乘,负因数的个数为 奇数时积为负数 偶数时积为正数
3.几个数相乘若有因数为零则积为零.
4.有理数乘法的求解步骤: 有理数相乘,先确定积的符号,再确定积的绝对值.
为了区分方向与时间: 规定:向左为负,向右为正.
现在前为负,现在后为正.
探究1
(1)如果蜗牛一直以每分钟2 cm的速度向右爬行,3分 钟后它在什么位置?
2
l
0
2
4
6
结果:3分钟后在l上点O 右 边 6 cm处
表示: (+2)×(+3)= 6 . (1)
探究2
(2)如果蜗牛一直以每分钟2 cm的速度向左爬行,3分 钟后它在什么位置?
七年级数学上(RJ) 教学课件
第一章 有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法
第1课时 有理数的乘法法则
导入新课
讲授新课
当堂练习
课堂小结
学习目标

七年级数学 第一章 有理数 1.4 有理数的乘除法 1.4.2 第1课时 有理数的除法法则复习


第十九页,共二十六页。
9.计算: (1)-23÷-85÷(-0.25); (2)-47÷-134÷-23; (3)(-2)÷13×(-3); (4)-2.5÷-156×-18÷(-4).
第二十页,共二十六页。
解:(1)原式=-23×-58÷-14 =-23×58×4=-53; (2)原式=-47×-134×-32=-4; (3)原式=(-2)×3×(-3)=18;
B.-32
C.8
D.-8
Байду номын сангаас
3.如果一个数除以它的倒数,商是 1,那么这个数是( D )
A.1
B.2
C.-1
D.1 或-1
4.倒数是它本身的数是 ±1 ,相反数是它本身的数是 0 .
第十五页,共二十六页。
5.计算: (1)[2017·大连](-12)÷3; (2)(-12)÷-14; (3)(-12)÷-12÷(-10). 解:(1)原式=-4; (2)原式=12×4=48; (3)原式=-12×2×110=-152.
③-45÷-45=1;
④-334÷-45=1. A.1 个
B.2 个
C.3 个
D.4 个
第十一页,共二十六页。
3.计算:
(1)-8÷-23= 12 ; (2)-370÷10= -37 .
4.计算:
(1)(+48)÷(-8)= -6 ;
(2)-1225÷-35=
4 5
.
第十二页,共二十六页。
5.计算:
计算: (1)+56÷-23; (2)-223÷+1261; (3)-427÷-116.
第六页,共二十六页。
解:(1)+56÷-23=-56×32=-54; (2)-223÷+1261=-83×2116=-72; (3)-427÷-116=370×67=14890. 【点悟】 (1)做除法时常用转化的数学思想,把除法转化为乘法进行运算; (2)算式中含有带分数时,应把带分数化为假分数,以便于约分.

人教版七年级数学上册有理数的加减乘除混合运算


2 计算-28-53的按键顺序是( D ) A.()2 8()5 3 = B. 2 8()5 3 = C. + / 2 8()5 3 = D. 2 8 / 5 3 =
知2-练
知2-练
3 用计算器计算(结果保留两位小数). (1)2.52÷(-15)≈ -0.17 ; (2)-2.34×(-0.12)-3.74÷(-2.68)
知1-讲
知1-讲
例4 〈易错题〉计算:(-12)÷
1 3
+
1 4
1 6
.
错解:-12÷
1 3
+
1 4
1 6
(12)
1 3
(12)
1 4
(12)
1 6
=-36-48+72=-12.
错解分析:错解是由于受分配律a(b+c)=ab+ac
思维定式的影响,错误地认为a÷(b
+c)=a÷b+a÷c,这是不正确的;
2 3 2,就可以得到答案3. 7.
不同品牌的计算器的操作方法可能有所不同,
具体参见计算器的使用说明.
(来自教材)
知2-练
1 下列说法错误的是( D ) A.开启计算器使之工作的按键是 ON 键 B.输入-5.8的按键顺序是 5 8 +/ 或()5 8 C.输入0.58的按键顺序是 5 8 D.按键 6 9 + / 8 7 / 能计算-69-87的结果
结果是( D )
A.-24
B.-20
C.6
D.36
2 若两个数的和为0,且商为-1,则这两个数( C )
A.互为相反数
B.互为倒数
C.互为相反数且不为零 D.以上都不对
知1-练
3 根据有理数的运算律,下列等式正确的是( B )

七年级上册数学人教版1.4.2第1课时 有理数的除法法则

一、有理数除法法则:
1.
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0
两个法则都可以用来求两个有理数相除.
如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.
第五步:
师友反馈
环节1:师友检测
1.填空
(1)-40÷(-5)=____; (2)(-36)÷6=____;
(1)-54 (-9);(2)-27 3;
(3)0 (-7); (4)-24 (-6).
2.完成下列问题,结合有理数乘法法则,观察有理数除法是否也有类似的性质呢?
8×9=____, 72÷9=____,
(-4)×3 =____, (-12)÷(-4)=____,
(-4)×(-3)=____, 12÷(-4)=____,
(1)因为( )×(-4 )=8,
所以8÷(-4)=
(2) =
观察8÷(-4)与 有什么关系?并讨论:除号和除数都发生了怎样的变化?
环节2:教师讲解
除号变乘号
8 ÷(-4)=
除数变为它的倒数
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.
符号表示为:
第三步:
分层提高
环节1 师友训练
1.利用上面的除法法则计算下列各题:
0×(-6)=____, 0÷(-6)=____,
例1:(1)(-36)÷9
例2:
环节2 教师提升
两数相除的法则:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0 .
第四步:
总结归纳
环节1:师友归纳
•这节课我学会(懂得)了……
•这节课我想对师傅(学友)说……
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档