二元一次方程组应用题复习资料整理版
二元一次方程应用题分类复习(整理)

- 1 -二元一次方程应用题分类复习日期: 2月 8日1、知道用方程组解决实际问题的一般步骤2、读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.列二元一次方程组解应用题(1)列二元一次方程组解应用题的一般步骤 ①设出题中的两个未知数; ②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组; ④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案. (2)用方程解决实际问题的几个注意事项①先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.②“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.③所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等. ④要养成“验”的好习惯,即所求结果要使实际问题有意义. ⑤不要漏写“答”,“设”和“答”都不要丢掉单位名称. ⑥分析过程可以只写在草稿纸上,但一定要认真.⑦对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程,即未知数的个数应与方程组中方程的个数相等.例1:配套问题1. 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y人生产螺母,则每天可生产螺栓25x 个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套- 2 -成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a 件甲产品和b 件乙产品配成一套,那么甲产品数的b 倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a 件,乙产品b件,丙产品c 件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.跟踪练习1、木工厂有28个工人,每个工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?2、某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?3、现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套? 例2、数字问题2.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系 原两位数xy10x +y10x+y=x +y+9- 3 -解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.跟踪练习1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数.某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克?2、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?- 4 -3、学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,信封个数分别为多少个?4、为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?1.在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B的距离为120千米,B到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得- 5 -()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.跟踪练习1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二元一次方程组应用题强化训练100题学习资料

二元一次方程组解应用题强化训练100题列方程解应用题的基本关系量(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(2)工程问题:工作效率×工作时间=工作量(3)浓度问题:溶液×浓度=溶质(4)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的讲解:(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票题中的两个相等关系:1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:2、10分邮票的总价+ =全部邮票的总价可列方程为:10X+ =(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系:1、做4个小狗的时间+ =3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
列二元一次方程组解应用题复习

根据表格信息列方程
方程组中的两个 方程必须是独立 的,即不能通过 简单的变形得到 另一个方程。
通过以上方法,我们可 以将实际问题转化为数 学问题,进而利用数学 方法解决问题。在列二 元一次方程组时,需要 仔细分析问题中的已知 条件和未知量,找出能 够表示问题中全部含义 的两个相等关系,从而 列出正确的方程组。
解题步骤
1. 读题,明确已知量和未知量。
2. 根据速度、时间和距离的关系列出方程。
3. 解方程组,求出未知数的值。
例题二:工程问题
首先,根据题意设 定未知数,通常设 工作量、工作时间 或工作效率为未知 数。然后,根据工 作量、工作时间和 工作效率的关系列 出方程。最后,解 方程组求出未知数 的值。
折扣问题
根据商品打折后的售价和折扣率, 求出商品的进价和利润。
利润率问题
根据题目中给出的利润和进价或 售价,求出利润率。
浓度问题
浓度=溶质/溶液
根据题目中给出的溶质和溶液的量, 计算出浓度。
稀释问题
根据溶液稀释前后的浓度和体积,求 出稀释后溶液的浓度或体积。
浓缩问题
根据溶液浓缩前后的浓度和体积,求 出浓缩后溶液的浓度或体积。
复习成果总结
掌握了列二元一次方程组的基本方法和步骤,能够熟练地将实际问题转化为数学问题,并列出相 应的方程组。
加深了对二元一次方程组解法的理解,能够灵活运用代入法、加减法等方法求解方程组。 通过大量的练习,提高了自己的计算能力和思维水平,能够快速准确地完成方程组的求解。
存在问题反思
在列方程组时,有时会出现理解题 意不准确、设立未知数不合理等问
PART 05
应用题类型与解题技巧
点击此处添加正文,文字是您思想的提炼。
初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4一、选择题1. 若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-4 【答案】A.2. “六.一”儿童节前夕,某超市用3360元购进A 、B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( ) A .⎩⎨⎧=+=+33602436120y x y x B .⎩⎨⎧=+=+33603624120y x y xC .⎩⎨⎧=+=+33601202436y x y x D .⎩⎨⎧=+=+33601203624y x y x 【答案】B3. 一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算? ( )A. 甲B. 乙C. 一样D.无法确定 【答案】B .4. 若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值. 解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A5. 方程组125x y x y +=⎧⎨-=⎩的解为A. 12x y =-⎧⎨=⎩ B. 23x y =-⎧⎨=⎩ C. 21x y =⎧⎨=⎩ D. 21x y =⎧⎨=-⎩【答案】D 6.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n -的值是A .1B .2C .3D .4【答案】D7.方程5x+2y=-9与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )(A )x+2y=1 (B )3x+2y=-8(C )5x+4y=-3 (D )3x-4y=-8 【答案】D 。
二元一次方程组复习(带解析)

二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
专题05 二元一次方程(组)的应用(知识点串讲)(解析版)

专题05 二元一次方程(组)的应用知识网络重难突破一. 二元一次方程的应用利用二元一次方程求方案数的一般方法:挖掘题目中的关系,找出等量关系,列出二元一次方程,然后根据未知数的实际意义求其整数解,整数解的个数即为方案数.典例1.(2018春•召陵区期末)“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种B.5种C.6种D.7种【答案】A【解析】解:设购买8元的商品数量为x,购买12元的商品数量为y,依题意得:8x+12y=100,整理,得y.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.典例2.(2018春•江油市期末)甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为()A.18分钟B.10分钟C.12分钟D.16分钟【答案】C【解析】解:设公交车的速度为x米/分钟,人步行速度为y米/分钟,根据题意得:8x+8y=24x﹣24y,解得:x=2y,∴12.故选:C.二. 二元一次方程组的应用1.常见的利用二元一次方程组解决实际问题的类型有:配套问题、分配问题、行程问题、销售问题、数字问题、几何问题、梯度收费问题、方案问题等.2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.典例1.(2018春•思南县期末)某校举行研学旅行活动,车上准备了7箱矿泉水,每箱的瓶数相同,到达目的地后,先从车上搬下3箱,发给每位同学1瓶矿泉水,有9位同学未领到.接着又从车上搬下4箱,继续分发,最后每位同学都有2瓶矿泉水,还剩下6瓶.问:有多少人参加此次研学旅行活动?每箱矿泉水有多少瓶?【答案】见解析【解析】解:设有x人参加此次研学旅行活动,每箱矿泉水有y瓶,根据题意得:,解得:.答:有81人参加此次研学旅行活动,每箱矿泉水有24瓶.典例2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)商品价格 A B进价(元/件)1200 1000售价(元/件)1350 1200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?【答案】见解析【解析】解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(12001000)=54000,解得:m=9.答:B种商品打9折销售的.典例3.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨,某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【答案】见解析【解析】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=35,∴a∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案三:A型车1辆,B型车8辆,最少租车费为2120元.三. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤和列二元一次方程组解应用题的一般步骤类似,如下:①弄清题意和题目中的数量关系,用字母表示题目中的两个(或三个)未知数;②找出能够表达应用题全部含义的相等关系;③根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;④解这个方程组,求出未知数的值;⑤写出答案.注意:一般来说,设几个未知数,就应列出几个方程并组成方程组.典例1.(2018春•无棣县期末)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).安全员是数学爱好者,制定加密规则为:明文x,y,z对应密文x+y+z,x﹣y+z,x ﹣y﹣z.例如:明文1,2,3对应密文6,2,﹣4.当接收方收到密文12,4,﹣6时,则解密得到的明文为______________.【答案】3,4,5【解析】解:依题意得:,解得故答案是:3,4,5.典例2.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖动y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?【答案】见解析【解析】解:(1)根据题意得:,解得:.(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据题意得:,(①+②)÷4,得:a+b+c=190.答:购买甲、乙、丙服装各一件共需190元.巩固练习1.(2018春•邢台期末)某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A.B.C.D.【答案】D【解析】解:由题意可得,,故选:D.2.(2018春•孝昌县期末)为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1【答案】B【解析】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=60,y,当x=0,y=6符合题意,当x=1,则y(不合题意);当x=2,则y;(不合题意);当x=3,则y(不合题意);当x=4,则y(不合题意);当x=5,则y(不合题意);当x=6,则y=5当x=7,则y(不合题意);当x=8,则y(不合题意);当x=9,则y(不合题意);当x=10,则y(不合题意);当x=11,则y(不合题意);当x=12,则y=0故有3种分组方案.故选:B.3.(2018春•泗洪县期末)甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需215元钱,购甲1件、乙2件、丙3件共需185元钱,那么购甲、乙、丙三种商品各一件共需()A.100元B.130元C.150元D.160元【答案】A【解析】解:设购买1件甲商品需要x元,购买1件乙商品需要y元,购买1件丙商品需要z元,根据题意得:,(①+②)÷4,得:x+y+z=100.故选:A.4.(2018春•丰台区期末)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为_________.【答案】【解析】解:根据题意得:;故答案为:.【点睛】本题是二元一次方程组的应用,列方程组时要抓住题目中的一些关键性词语,找出等量关系;因为此类题要列二元一次方程组,因此要注意两句话;同时本题要注意绳子对折,即取绳子的二分之一.5.(2018春•卫辉市期末)小明在拼图时,发现8个大小一样的小长方形,恰好可以拼成一个大的长方形.如图(1)所示,小红看见了,说“我来试一试”,结果小红七拼八凑,拼成如图(2)那样的正方形,可中间还留下一个边长为6cm的小正方形.请你求出这些小长方形长和宽.【答案】见解析【解析】解:设小长方形的长为xcm,宽为ycm,根据题意得:,解得:.答:小长方形的长为30cm,宽为18cm.6.(2018春•江海区期末)列方程组解应用题:新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法.王丽答对7道题,答错3道题共获得50分;李强答对8道题,答错1道题,共获得62分.问答对一题得多少分,答错一题扣多少分?【答案】见解析【解析】解:设答对道题得x分,答错一道题扣y分,由题意可得:,解得:.答:答对道题得8分,答错一道题扣2分.7.某加工厂有工人60名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?【答案】见解析【解析】解:设应安排x人生产螺栓,有y人生产螺母.由题意,得,解这个方程组得:,答:应安排25人生产螺栓,35人生产螺母,才能使生产出的螺栓和螺母刚好配套.8、(2017秋•安庆期末)某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了萝卜和白菜共40kg到菜市场去卖,萝卜和白菜这天每千克的批发价与零售价如下表所示:品名萝卜白菜批发价/元 1.6 1.2零售价/元 2.5 1.8问:他当天卖完这些萝卜和白菜共能赚多少钱?【答案】见解析【解析】解:设白菜的重量是xkg,萝卜的重量是ykg,依题意有解得:,10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些白菜和萝卜能赚33元.9.列方程(组),解应用题甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.【答案】见解析【解析】解:设甲、乙二人的速度分别为xm/s,ym/s,根据题意列方程为:,解得:,答:甲的速度分别为m/s,乙的速度分别为m/s.。
(完整版)二元一次方程组知识点及典型例题
二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。
练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。
的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
(完整版)二元一次方程组应用题大全(2),推荐文档
知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。
2、已知板凳和木马共有33个,腿共有101条。
板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。
其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。
问成人票与学生票各售出多少张?分析:两个相等关系:①;②。
4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。
已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。
及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:①3⨯树的棵数+5=乌鸦的只数;②5⨯(树的棵数-1)=乌鸦的只数。
解:设乌鸦有x只,树有y棵。
1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。
求参加会议的人数和宿舍数。
分析:两个相等关系:①;②。
二元一次方程组解应用题(分类归纳)
二元一次方程组解应用题(分类归纳)二元一次方程组解决实际问题的基本步骤1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)一、和差倍问题:直译原则(1)A与B的比为3:2—→A是B的C倍—→A比B多C—→A比B多C倍—→A比B增加C%—→就近原则A比B减少C%—→增长率:原量×(1+增长率)=增长后的量1.学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个?2.一次篮,排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮,排球各有多少队参赛?3.有甲、乙两种金属,甲金属的16分之一和乙金属的33分之一重量相等,而乙金属的55分之一比甲金属的40分之一重7克,求两种金属各重多少克?4.共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?5.一个矩形周长为20cm,且长比宽大2cm,则矩形的长为cm,宽为cm6.一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则宽和长分别为____________________.7.一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x 米,另一段为y,那么列的二元一次方程组为8.某老翁将一根长草绳剪成前、中、后三段,中段长等于前段长加后段长,后段长等于前段长加中段长的一半,现只知道前段长5m,则该草绳的中段,后段各长多少米?9.甲、乙两条绳共长17m,如果甲绳减去15,乙绳增加1m,两条绳长相等,求甲、•乙两条绳各长多少米.10.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x万人,农村人口有y万人题中的两个相等关系:1、现在城镇人口+ =现在全市总人口可列方程为:2、明年增加后的城镇人口+ =明年全市总人口可列方程为:(1+0.8%)x+ =11. 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
完整版)二元一次方程组应用题经典题及答案
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥。
注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。
6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。
如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排。
需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。
注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。
知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。
类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系:①相向而行:汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;②同向而行:汽车行驶小时的路程=拖拉机行驶小时的路程.解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组解这个方程组,得:.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
2.---航行问题轮船从甲地到乙地顺流航行需4h,从乙地到甲地逆流航行需6h,那么一木筏由甲地漂流到乙地需多长时间? 思路点拨:本题是行程问题中的“航行问题”,要抓住:顺水航行速度=静水航行速度水流速度.逆水航行速度=静水航行速度-水流速度.“航行问题”实质上等同于行程问题,根据顺流速度,逆流速度与静水速度、水流速度的关系即可列方程(组本题如果采用直接设元,则难以解决,故选用间接设元,设出轮船在静水中的速度和水流速度,为了解题更简单,可增设一个未知数,即甲、乙两地间的路程.:设轮船在静水中的速度xkm/h,水流速度为ykm/h,甲乙两地之间的距离为akm根据题意,得⎩⎨⎧=-=+a y x a y x )(6)(4 解得x=5y把x=5y 代入4(x+y)=a 中,得a=24y所以木筏由甲地漂流到乙地所需时间为ay=24yy=24(h)答:木筏由甲地漂流到乙地所需时间为24h.【变式】船在顺水中航行100km 需2h ,在逆水中航行需90km 需3h ,求船在静水中的速度和水速3.----上坡、下坡问题学校组织学生乘汽车去自然保护区野营,先以60km/h 的速度走平路,后又以30km/h 的速度爬坡,共用了6.5h ;汽车以40km/h 的速度下坡,又以50km/h 的速度走平路,共用了6h ,问平路和坡路各有多远?思路点拨:设平路有x 千米,坡路有y 千米,由题意可得等量关系:①平路所用时间+爬坡所用时间=6.5h ,②下坡所用时间+平路所用时间=6h ,可得方程组,求出即可.设平路有x 千米,坡路有y 千米,由题意得:⎧⎧⎧⎧⎧⎧⎪⎪⎩⎪⎪⎨⎧=+=+640505.63060y x y x 解得:⎩⎨⎧==120150y x答:平路和坡路分别有150千米和120千米。
总结升华:本题所含的关系式为路程÷速度=时间,解题的关键是弄清题意,找出题目中相等的关系列出方程【变式】学校组织学生乘汽车去自然保护区野营,先以60km/h 的速度走平路,后又以30km/h 的速度爬坡,共用了6.5h ;汽车以40km/h 的速度下坡,又以50km/h 的速度走平路,共用了6h ,问平路和坡路各有多远?类型二:列二元一次方程组解决——工程问题4.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。
设甲组单独做一天商店应付x 元,乙组单独做一天商店应付y 元,由第一层含义可得方程8(x+y )=3520,由第二层含义可得方程6x+12y=3480.解:(1)设甲组单独做一天商店应付x 元,乙组单独做一天商店应付y 元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元。
(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元, 故请乙组单独做费用最少。
答:请乙组单独做费用最少。
总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a ,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。
【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题5.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为x元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元。
【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2A B进价(元/件)1200 1000售价(元/件)1380 1200(注:获利 = 售价—进价)求该商场购进A、B两种商品各多少件;类型四:列二元一次方程组解决——银行储蓄问题6.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?类型五:列二元一次方程组解决——生产中的配套问题7.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。