平行四边形的判定练习题
判定平行四边形的证明题-(分类+练习大全+自学成才)

判定平行四边形的五种基本方法――分类讲解判定一个四边形是平行四边形共有五种方法: 定义:两组对边分别平行的四边形是平行四边形 判定1:两组对边分别相等的四边形是平行四边形 判定2:两组对角分别相等的四边形是平行四边形 判定3:对角线互相平分的四边形是平行四边形 判定4:一组对边平行且相等的四边形是平行四边形一、运用定义“两组对边分别平行的四边形是平行四边形”判定,证两组对边分别平行。
1、如图,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,求证:四边形AECF 是平行四边形 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠DAB =∠BCD , ∴AF ∥EC .又∵∠1=21∠DAB ,∠2=21∠BCD ,∴∠1=∠2. ∵AD ∥BC , ∴∠2=∠3, ∴∠1=∠3, ∴AE ∥CF .∴四边形AECF 是平行四边形.(两组对边分别平行的四边形是平行四边形)ABC DE1 3 2F2、已知:如图,在△ABC 中,AB =AC ,E 是AB 的中点,D 在BC 上,延长ED 到F ,使ED = DF = EB . 连结FC .求证:四边形AEFC 是平行四边形.证明:∵AB =AC ,∴∠B =∠ACB . ∵ED = EB , ∴∠B =∠EDB . ∴∠ACB =∠EDB . ∴EF ∥AC . ∵E 是AB 的中点, ∴BD = CD .∵∠EDB =∠FDC ,ED = DF , ∴△EDB ≌△FDC . ∴∠DEB =∠F . ∴AB ∥CF .∴四边形AEFC 是平行四边形. (两组对边分别平行的四边形是平行四边形)练习在□ABCD 中,E 、F 分别为AD 、BC 上一点,DF ∥BE,求证:四边形BEDF 是平行四边形.二、运用判定1 “两组对边分别相等的四边形是平行四边形”判定,证两组对边分别相等1.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:四边形DBCE是平行四边形.证明:∵E是AC的中点,∴EC=AC,又∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.(两组对边分别相等的四边形是平行四边形)2、已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
2021年人教版数学八年级下册18.1.2 《平行四边形的判定》同步练习(含答案)

人教版数学八年级下册18.1.2 《平行四边形的判定》同步练习一、选择题1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD.从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=AD2.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,还不能判定四边形ABCD为平行四边形,若想使四边形ABCD为平行四边形,要添加一个条件:①BC=AD;②∠BAD=∠BCD;③OA=OC;④∠ABD=∠CAB.这个条件可以是( )A.①或②B.②或③C.①或③或④D.②或③或④3.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是()①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形.②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.A.①②B.①③④C.②③D.②③④4.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )A.∠A=∠BB.∠C=∠DC.∠B=∠DD.AB=CD5.下列说法正确的是( )A.对角线相等的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直且相等的四边形是平行四边形6.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC7.如图,在四边形ABCD中,点E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE8.点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任意选两个,能使四边形ABCD是平行四边形的有( )A.3种B.4种C.5种D.6种9.已知四边形ABCD是平行四边形,再从:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④10.在如图所示的网格中,以格点A,B,C,D,E,F中的4个点为顶点,你能画出平行四边形的个数为( )A.2B.3C.4D.5二、填空题11.如图,已知AB∥DC,要使四边形ABCD是平行四边形,还需增加条件.(只填写一个条件即可,不再在图形中添加其它线段).12.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有_____(添序列号即可).13.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.14.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).15.如图,AC是□ABCD的对角线,点E、F在AC上,要使四边形BFDE是平行四边形,还需要增加的一个条件是 (只要填写一种情况).三、解答题16.如图,点E,F在□ABCD的边BC,AD上,BC=3BE,AD=3DF,连接BF,DE.求证:四边形BEDF是平行四边形.17.在△ABC中,D是AB边上任意一点,E是BC边的中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若DF=8,BC=6,DB=5,求▱CDBF的面积.参考答案1.答案为:C2.答案为:B3.答案为:C4.答案为:C5.答案为:B6.答案为:C7.答案为:D8.答案为:B9.答案为:B10.答案为:B.11.答案为:AB=DC或AD∥BC12.答案为:①②③.13.答案为:BE=DF或BF=DE或∠BAE=∠DCF14.答案为:AB=CD或AD∥BC15.答案为:AE=CF16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=3BE,AD=3DF,∴BE=FD,∴四边形BEDF是平行四边形.17.(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形;(2)解:∵四边形CDBF是平行四边形,∴BE=0.5BC=3,DE=0.5DF=4,∴∠BED=90°,∴BC⊥DE,∴四边形CDBF是菱形,∴S=0.5BC•DF=0.5×6×8=24.。
平行四边形的判定常考题(含详细解析)

一、选择题<共14小题)1、<2003•广西)如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是< )A、5B、10C、15D、202、在四边形ABCD中,AB∥CD,若ABCD不是梯形,则∠A:∠B:∠C:∠D可能为< )A、2:3:6:7B、3:4:5:6C、3:5:7:9D、4:5:4:53、<2006•佛山)如图,平面上两颗不同高度、笔直的小树,同一时刻在太阳光线照射下形成的影子分别是AB、DC,则< )b5E2RGbCAPA、四边形ABCD是平行四边形B、四边形ABCD是梯形C、线段AB与线段CD相交D、以上三个选项均有可能4、<2005•柳州)不能判断四边形ABCD是平行四边形的是< )A、AB=CD,AD=BCB、AB=CD,AB∥CDC、AB=CD,AD∥BCD、AB∥CD,AD∥BC5、<2004•聊城)如图,有两块全等的含30°角的三角板拼成形状不同的平行四边形,最多可以拼成< )p1EanqFDPwA、1个B、2个C、3个D、4个6、<2002•山西)A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有< )DXDiTa9E3dA、6种B、5种C、4种D、3种7、<1998•内江)能判定四边形是平行四边形的条件是< )A、一组对边平行,另一组对边相等B、一组对边相等,一组邻角相等C、一组对边平行,一组邻角相等D、一组对边平行,一组对角相等8、已知四边形ABCD,AC与BD相交于点O,如果给出条件AB∥CD,那么还不能判定四边形ABCD为平行四边形,以下四种说法正确的是< )RTCrpUDGiT①如果再加上条件BC=AD,那么四边形ABCD一定是平行四边形;②如果再加上条件∠BAD=∠BCD,那么四边形ABCD一定是平行四边形;③如果再加上条件AO=CO,那么四边形ABCD一定是平行四边形;④如果再加上条件∠DBA=∠CAB,那么四边形ABCD一定是平行四边形.A、①②B、①③④C、②③D、②③④9、已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD;②AD∥BC;③AB=CD;④∠BAD=∠DCB.从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有< )5PCzVD7HxAA、6组B、5组C、4组D、3组10、在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有jLBHrnAILg< )A、3B、4C、5D、611、四边形ABCD中,AD∥BC,当满足下列< )条件时,四边形ABCD是平行四边形.A、∠A+∠C=180°B、∠B+∠D=180°C、∠A+∠B=180°D、∠A+∠D=180°12、以不在同一直线上的三个点为顶点作平行四边形,最多能作< )A、4个B、3个C、2个D、1个13、在下列给出的条件中,能判定四边形ABCD为平行四边形的是< )A、AB=BC,CD=DAB、AB∥CD,AD=BCC、AB∥CD,∠A=∠CD、∠A=∠B,∠C=∠D14、下列哪组条件能判别四边形ABCD是平行四边形< )A、AB∥CD,AD=BCB、AB=CD,AD=BCC、∠A=∠B,∠C=∠DD、AB=AD,CB=CD二、填空题<共4小题)15、<2018•常德)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是_________.<添加一个条件即可,不添加其它的点和线).xHAQX74J0X16、<2009•郴州)如图,在四边形ABCD中,已知AB=CD,再添加一个条件_________ <写出一个即可),则四边形ABCD是平行四边形.<图形中不再添加辅助线)LDAYtRyKfE17、如图,△ABC、△ACE、△ECD都是等边三角形,则图中的平行四边形有哪些_________ _________ .Zzz6ZB2Ltk18、把边长为3,5,7的两个全等三角形拼成四边形,一共能拼成_________ 种不同的四边形,其中有_________ 个平行四边形.dvzfvkwMI1三、解答题<共8小题)19、<2018•贵阳)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.rqyn14ZNXI求证:<1)△AFD≌△CEB;<2)四边形ABCD是平行四边形.20、<2018•本溪)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:EmxvxOtOco<1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;<2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.SixE2yXPq521、<2006•镇江)已知:如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO.6ewMyirQFL求证:四边形ABCD是平行四边形.22、<2004•万州区)已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于,若MA=MC,求证:CD=AN.kavU42VRUs23、如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.<1)求证:△BDE≌△CDF;<2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.24、如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.y6v3ALoS8925、<2006•泰安)已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.M2ub6vSTnP<1)BC与⊙O是否相切?请说明理由;<2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.26、<2007•南宁)如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.0YujCfmUCw<1)请指出图中哪些线段与线段CF相等;<2)试判断四边形DBCF是怎样的四边形,证明你的结论.答案与评分标准一、选择题<共14小题)1、<2003•广西)如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是< )eUts8ZQVRdA、5B、10C、15D、20考点:平行四边形的性质;等腰三角形的性质;平行四边形的判定。
平行四边形性质和判定综合练习题(含答案)

平行四边形性质和判定综合练习题(含答案)平行四边形性质和判定综合习题精选一•解答题(共26小题)1. (2011?资阳)如图,已知四边形ABCD为平行四边形, AE丄BD于E, CF丄BD于F.(1)求证:BE=DF ;(2)若M、N分别为边AD、BC上的点,且DM=BN , 试判断四边形MENF的形状.2. (2011?昭通)如图所示,平行四边形AECF的对角线相交于点O, DB经过点O,分别与AE ,CF 交于B, D.求证:四边形ABCD是平行四边形.卫 B £3. (2011?徐州)如图,在四边形ABCD中,AB=CD ,BF=DE , AE丄BD , CF丄BD ,垂足分别为E , F.(1)求证:△ ABE CDF ;4. (2011?铜仁地区)已知:如图,在△ ABC中,/ BAC=90 ° , DE、DF是厶ABC的中位线,连接EF、AD .求证:EF=AD .5. (2011?泸州)如图,已知D是厶ABC的边AB上一点,CE II AB ,DE交AC于点0,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.B C6. (2010?恩施州)如图,已知,平行四边形ABCD中,AE=CF , M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形. -三 -78平行四边形ABCD中,分别以AD、BC为边向内作等边厶ADE和等边△ BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9. (2006?黄冈)如图所示,DB II AC,且DB= AC , E是AC的中点,求证:BC=DE .10. (2002?三明)已知D、E、F分别是△ ABC各边的中点, 求证:AE与DF互相平分.11•已知:如图,在平行四边形 ABCD 中,对角线AC 交 BD 于点0,四边形AODE 是平行四边形•求证:AB0E 、四边形DC0E 都是平行四边形.12•如图,已知四边形ABCD 中,点E , F , G , H 分别是13.如图:平行四边形 ABCD 中,MN II AC ,试说明 MQ=NP .四边形AB 、CD 、AC 、BD 的中点,并.一条直线上.求证:EF 和GH 互相平分.,F 、G 、H 有在同SD14•已知:如图所示,平行四边形ABCD的对角线AC, BD相交于点0, EF经过点0并且分别和AB , CD相交于点E,F,点G,H分别为0A,0C的中点•求证:四边形EHFG是平行四边形.15•如图,已知在平行四边形ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG •(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC 上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)16•如图,在△ ABC中,D是AC的中点,延长线一点,过点A作BE的平行线与线段交于点F,连接AE、CF •(1)求证:AF=CE ;(2)如果AC=EF,且/ ACB=135 °是什么样的四边形,并证明你的结论.B仃•如图平行四边形ABCD中,/ ABC=60。
1.平行四边形判定(含答案)

平行四边形判定1.如图:四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BC B.AB//DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC2.下列条件中,能判定四边形是平行四边形的是()A.一组对边相等B.对角线互相平分C.一组对角相等D.对角线互相垂直3.在四边形ABCD中,AB=CD,请添加一个条件,使得四边形ABCD是平行四边形.4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=ODB.∠BAD=∠BCD,AB//CDC.AD//BC,AD=BCD.AB=CD,AO=CO5.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A.AD=BCB.OA=OCC.AB=CDD.∠ABC+∠BCD=180∘6.已知,在四边形ABCD中AB//CD,则下列所给条件中,不能判断四边形ABCD为平行四边形的是()A.AD//BC B.AB=CD C.∠A=∠C D.∠B=∠C7.如图,已知平行四边形ABCD , 点MN分别在边AD和边BC上,点EF在线段BD上,且AM=CN , DF=BE .(1) 求证:∠DFM=∠BEN(2) 求证:四边形MENF是平行四边形8.如图,在△ABC中,∠ACB=90∘,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,且AF=CE=AE.求证:四边形ACEF是平行四边形;9.如图,在平行四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为点E,F(1) 求证:四边形BEDF是平行四边形.(2) 若AB=13,AD=20,DE=12,求平行四边形BEDF的面积.BC,连接DE,CF.10.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=12(1) 求证:四边形CEDF是平行四边形;(2) 若AB=4,AD=6,∠B=60°,求DE的长.11.如图,在四边形ABCD中,AB//DC,∠A=∠C.求证:四边形ABCD是平行四边形,写出两种证明方法.12.如图,点B、E、C、F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.(1) △ABC≅△DEF吗?为什么?(2) 判断四边形ACFD的形状,并说明理由.13.已知:如图,梯形ABCD中,AD//BC,点E是CD的中点,BE的延长线与AD的延长线相交于点F.(1) 求证:△BCE≅△FDE.(2) 连接BD,CF,判断四边形BCFD的形状,并证明你的结论.14.如图,已知AB//DC,且AB=CD,BF=DE,试说明AF//CE.15.如图,E,F是四边形ABCD对角线AC上的两点,AD//BC,DF//BE,AE=CF.求证:(1) △AFD≅△CEB;(2) 四边形ABCD是平行四边形.平行四边形判定1.【答案】B【解析】A项:两组对边分别平行的四边形是平行四边形,可以判定四边形ABCD是平行四边形;B项:一组对边平行,另一组对边相等的四边形可以是平行四边形,也可以是等腰梯形。
平行四边形的判定练习题

平行四边形的判定练习题在几何学中,平行四边形是指有四边形的对边两两平行的情况。
平行四边形具有特定的性质和判定方法。
本文将为您提供关于平行四边形的练习题,帮助您巩固对平行四边形的判定方法的理解。
题目一:判断以下四边形是否是平行四边形。
1. ABDC,其中∠ABC = 60°,∠BAD = 120°,AB = AD,BC = CD2. MNOP,其中MN = OP,NO = MP,∠MNO = 80°,∠NOP = 100°3. PQRS,其中∠PQR = 90°,∠SPQ = 40°,∠SPR = 100°,RS = PQ4. XYZW,其中XY = WZ,YZ ≠ XW,∠XYZ = 120°,∠WZY = 60°解答:1. 四边形ABDC满足两对对边平行的条件,且相邻内角互补(∠ABC + ∠BAD = 180°),因此是平行四边形。
2. 四边形MNOP满足两对对边平行的条件,但不满足相邻内角互补的条件,因此不是平行四边形。
3. 四边形PQRS满足对边平行的条件,但不满足相邻内角互补的条件,因此不是平行四边形。
4. 四边形XYZW满足对边平行的条件,但不满足相邻内角互补的条件,因此不是平行四边形。
题目二:已知ABCD是平行四边形,E为AD的中点,F为BC的中点,证明EF平行于AB和CD。
解答:由于ABCD是平行四边形,因此AB和CD是平行的。
根据平行四边形的性质,对角线的中点连线平行于两个相对边。
连接AE和BF,并延长AE和BF交于点G。
由于E是AD的中点,因此AE = ED;同理,由于F是BC的中点,因此BF = FC。
又因为平行四边形的两对对边分别平行,所以AE平行于BF。
根据平行线的性质,如果一条直线与一个平行线的一对内错角相等,则这条直线与这对平行线平行。
我们可以证明∠EAG = ∠CBF,且∠EGA = ∠CFB。
中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)一、综合题1.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.(1)求证:DE=CF;(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.2.已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)若AD与⊙O相切,求∠B.3.已知:如图,点D在ΔABC的边AB上,CF//AB,DF交AC于E,EA=EC.(1)如图1,求证:CD=AF;(2)如图2,若AD=BD,请直接写出和ΔBDC面积相等的三角形.4.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4√2,则▱ABCD的面积是.5.已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.6.如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.7.如图,在ΔABC中,点D、E、F分别在AB、AC、BC上,DE // BC,EF // AB.(1)求证:ΔADE∽ΔEFC;(2)如果AB=6,AD=4,求SΔADESΔEFC的值.8.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.BC,9.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=12连接CD和EF .(1)求证:DE=CF;(2)求EF的长.10.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.11.已知锐角△ABC内接于⊙O,AD⊥BC于点D,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,CE⊥AB于点E,交AD于点F,过点O作OH⊥BC于点H,求证:AF=2OH;,BC=2√15,求AC的长.(3)如图3,在(2)的条件下,若AF=AO,tan∠BAO=1312.如图,抛物线y=x2+bx+c与x轴交于点A(−1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.13.如图,CD是⊙O的直径,点A是⊙O外一点,AD与⊙O相切于点D,点B是⊙O上一点(点B不与点C,D重合),连接AO,AB,BC .(1)当BC与AO满足什么位置关系时,AB是⊙O的切线?请说明理由;(2)在(1)的条件下,当∠DAO=度时,四边形AOCB是平行四边形.(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足14.如图,已知函数y= kx为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点EOD,求a、b的值;(1)若AC= 32(2)若BC∥AE,求BC的长.15.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.16.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图,小华继续将图中的纸片Rt△DEF沿AC方向平移,连结AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形ABDE的形(2)如图,若BC=EF=6cm,AC=DF=8cm,当AF=92状,并说明理由.参考答案与解析1.【答案】(1)证明:在△CDE 和△ECF 中,∵∠ACB=∠ECF=90°,点D 、E 是分别是AB 、BC 的中点.∴CD=BD=AD ,∴∠B=∠DCE ,∠CED=∠ECF=90°, 又∵∠FEC=∠B ..∠FEC=∠DCE ,又∵CE=EC .∴△CDE ≌△ECF (ASA ),∴DE=CF ;(2)解:在Rt △ABC 中,∵∠ACB=90°,∴BC=√AB 2−AC 2=√102−62=8cm , ∵点D 、E 分别是AB 、BC 的中点,∴DE ∥CF ,又DE=CF , ∴四边形DCFE 是平行四边形,∴DE=12AC=12×6=3cm ,CE=12BC=12×8=4cm , ∴S 四边形DCFE =DE ×CE=3×4=12cm . 2.【答案】(1)证明:∵OA =OC =AD , ∴∠OCA =∠OAC ,∠AOD =∠ADO , ∵OD ∥AC , ∴∠OAC =∠AOD ,∴180°﹣∠OCA ﹣∠OAC =180°﹣∠AOD ﹣∠ADO , 即∠AOC =∠OAD , ∴OC ∥AD , ∵OD ∥AC ,∴四边形OCAD 是平行四边形;(2)解:∵AD 与⊙O 相切,OA 是半径, ∴∠OAD =90°, ∵OA =OC =AD , ∴∠AOD =∠ADO =45°,∵OD∥AC,∴∠OAC=∠AOD=45°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=45°.3.【答案】(1)证明:∵CF//AB∴∠DFC=∠ADF,∠DAC=∠ACF又∵EA=EC∴ΔADE≌ΔCFE(AAS)∴CF=AD又∵CF//AD∴四边形ADCF为平行四边形∴DC=AF(有一组对边平行且相等的四边形为平行四边形)(2)解:ΔADC,ΔADF,ΔCFD,ΔCFA∵AD=BD,∴SΔADC=SΔBDC (等底等高面积相等)∵四边形ADCF是平行四边形,∴SΔADC=SΔCDF=SΔADF=SΔACFF (等底等高面积相等) .故与ΔBDC面积相等的三角形为:ΔADC,ΔADF,ΔCFD,ΔCFA.4.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴ΔADF≅ΔCBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,四边形ABCD是平行四边形(2)245.【答案】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中{DF=BE∠DFA=∠BECAF=CE,∴△AFD≌△CEB(SAS).(2)解:四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.6.【答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=12OA=12OC=OF,∴四边形DEBF是平行四边形,∴BE=DF .(2)解:由(1)已证:四边形DEBF是平行四边形,要使平行四边形DEBF是矩形,则BD=EF,∵OE=12OA=12OC=OF,∴EF=OE+OF=12OA+12OC=OA=12AC,即AC=2EF,∴k=ACBD =2EFEF=2,故当k=2时,四边形DEBF是矩形. 7.【答案】(1)证明:∵DE//BC,EF//AB,∴∠A=∠CEF,∠AED=∠C,∴△ADE∽△EFC.(2)解:∵AB=6,AD=4,∴DB=6-4=2,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∴EF=DB=2,∵△ADE∽△EFC,SΔADE SΔEFC =(ADEF)2=(42)2=4.8.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行)。
平行四边形的性质与判定综合练习题课件

练习一
• 1、下列条件中,不能判定四边形ABCD是平行四边形的是( )
• A、∠A=∠C,∠B=∠D
D
• B. ∠A=∠B=∠C=90 º
• C.∠A+∠B=180º ,∠B+∠C=180 º
• D.∠A+∠B=180 º ,∠C+∠D=180 º
A
D
B
C
第12页/共36页
2,几种容易产生误判的命题: 1.一组对边平行,另一组对边相等的四边形是 平行四边形吗? 2.有两组边相等的四边形是平行四边形吗? 3.对角线相等的四边形是平行四边形吗? 4.有两组邻角互补的四边形是平行四边形吗? 5.有一组对角相等的四边形是平行四边形吗? 6.有两组角相等的四边形是平行四边形吗?
第14页/共36页
比一比
如下图,在四边形ABCD中,对角线AC,BD 相交于点O,这个四边形必须具备哪些条件 才能成为一般的平行四边形?(看谁写的多)
A 0
B
D 例如:(1)AB∥CD,AD∥BC (2) (3) (4)
C (5) (6)
第15页/共36页
如图所示,在 ABCD中,E、F分别是AB 、 CD的中点.下图中有几个平行四边形? 请说明 理由.
求证:EF=BD A 12
F
3
B
D
第31页/共36页
E C
6、已知 平行四边形 ABCD中,直线MN // AC, 分别交DA延长线于M,DC延长线于N,AB于P, BC于Q。
求证:PM=QN。
M
A
P
B
Q
第32页/共36页
D
C N
陈杰是湖州近代史上很有名的数学家,他以精确地测 得黄道、赤道的交角度数是23°27'而闻名于世.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备选习题
1、 两组对角____ 的四边形是平行四边形;
2、 两组对边____ 或____ 的四边形是平行四边形;
3、 对角线___ 的四边形是平行四边形.
4、 一组对边____ 的四边形是平行四边形.
5、 下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD
是平行四边形 的是( )
A.1:2:3:4 B.2:2:3:3 C.2:3:2:3 D.2:3:3:2
6、 下面给出的条件中,能判定一个四边形是平行四边形的是( )
A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角互补
C.一组对角相等,一组邻角互补 D.一组对角相等,另一组对角互补
7、在下面给出的条件中,能判定四边形ABCD是平行四边形的是( )
A.AB=BC,AD=CD B.AB∥CD,AD=BC
C.AB∥CD,∠B=∠D D.∠A=∠B,∠C=∠D
8、如图,在平行四边形ABCD中,EF∥AD,MN∥AB,EF,MN相交于点P,则除平行四
边形ABCD外,图中共有平行四边形( )
A.4个 B.6个 C.8个 D.10个
9、用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有( )
A.1个 B.2个 C.3个 D.4个
10、在以下条件中,能判定四边形ABCD为平行四边形的是( )
A.AB=AD,CB=CD B.AB∥CD,AD=BC
C.AB=CD,AD=BC D.∠A=∠B,∠C=∠D
(2005年苏州市)如图19-1-33,在ABCD中,以下各式不一定准确的是( )。
A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°
11、判断:一组对边平行,一组对边相等的四边形是平行四边形。( )
12、判断:一组对边平行且相等的四边形是平行四边形.( )
13、判断:两组邻角相等的四边形是平行四边形.( )
14、判断:两组邻角互补的四边形是平行四边形.( )
15、判断:对角线互相垂直的四边形是平行四边形( )
1
6、判断:一组邻边相等且一条对角线平分另一条对角线的四边形是平行四边形。( )
17、判断:平行四边形一组对边中点的连线与另一组对边平行且相等.( )
18、判断:对角线互相垂直且相等的四边形是平行四边形.( )
19、已知:如图,在平行四边形ABCD中,E,F分别是AB,DC上的两点,且AE=CF.求
证:BD,EF互相平
D
CABEF
20、已知:如图,在平行四边形ABCD中,点M,N在对角线AC上,且AM=CN.
求证:四边形BMDN是平行四边形.
ADCB
M
N
21、已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE=CF,A
F,DE相交于点M,BF,CE相交于点N.
求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)
N
M
B
A
C
D
E
F
22、已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,
且AE=CF.
求证:四边形EGFH是平四边形.
ADBCGHEF
23、已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,
且BE=BC=CF.求证:AF⊥DE.
D
EFAB
C
24、已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.
(1)猜测:DF与AE间的关系是______.
(2)证明你的猜测.
F
A
B
C
D
E
25.如图19-1-29,ABCD中,对角线AC、BD相交于点O,过点O作两条直线分别与AB,BC,
CD,AD交于G,F,H,E四点。求证:四边形EGFH是平行四边形。
26.如图19-1-30,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,
等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。
27.如图19-1-32,△ABC是边长为4cm的边三角形,P是△ABC内的任意一点,过点P作EF∥
AB分别交AC,BC于点E,F,作GH∥BC分别交AB,AC于点G,H,作MN∥AC分别交AB,
BC于点M,N,试猜想:EF+GH+MN的值是多少?其值是否随P位置的改变而变化?并说明你的理
由。