单载波与多载波说明
基于OFDM技术的无线通信系统的信道估计的毕业设计

基于OFDM技术的无线通信系统的信道估计的研究毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:目录1绪论 (1)1.1 研究内容及背景意义 (1)1.2 本论文所做的主要工作 (2)2 OFDM系统简介 (3)2.1 单载波通信与多载波通信 (3)2.2 OFDM基本原理 (5)2.3 OFDM的优缺点 (6)2.4 OFDM系统的关键技术 (7)3 OFDM信道估计及其性能仿真 (9)3.1 信道估计概述 (9)3.2 信道估计的目的 (10)3.3 OFDM信道特性 (10)3.4 信道估计方法 (13)3.4.1 插入导频法信道估计 (13)3.4.2 最小平方(LS)算法 (15)3.4.3 最小均方误差估计(MMSE) (17)3.4.4 线性最小均方误差(LMMSE)算法 (19)3.4.5 基于DFT变换的信道估计 (20)3.5性能比较与分析 (21)4 改进的DFT算法及其性能仿真 (25)4.1 算法简介 (25)4.2 性能仿真 (26)5 结论与展望 (33)参考文献............................................................................... 错误!未定义书签。
对峰均比的一些理解

对峰均比的一些理解峰均比,或称峰值因数(crest factor),简称PAR(peak-to-average ratio), 或叫峰均功率比(简称PARR,peak-to-average power ratio) 。
先说定义:峰均比就是一种对波形的测量参数,等于波形的振幅除以有效值(RMS)所得到的一个比值。
C=凶泄X rms对这个定义还有一种理解:峰值的功率与平均功率之比。
这里先了解峰值功率:很多信号从时域观测并不就是恒定的包络,而就是如下面图所示:峰值功率既就是只以某种概率出现的肩峰的瞬时功率。
通常概率取为0、01%。
平均功率就是系统输出的实际功率。
在某个概率下峰值功率跟平均功率的比就称为某个概率下的峰均比,比如PAR=9、%,各种概率的峰均比就形成了CCDF曲线(互补累积分布函数)。
在概率为0、01%处的PAR一般称为CREST因子。
我的认识,峰均比的应用有两种:1、在射频中用来评价器件非理想线性带来的影响。
2、在调整方式上的不同,这里基本的先了解单载波与多载波。
(1)峰均比可以用来评价器件(基带DAC与RF的HPA)非理想线性带来的影响,所以在实际中峰均比越大的信号,在应用相同非线性器件时需要引入越大的功率回退。
但在实际中信号中可能有很多小于峰值的次峰,峰均比不能表示出来,但就是略小于峰值的次峰,那么非线性对信号的畸变影响并不大。
当然,PAPR只就是一个简单的指标,并不能完全确定信号受非线性的影响。
逻辑上用幅度的概率分布应该会更精确一些,但就是实际应用会很麻烦。
(2)对于单载波与多载波的峰均比就是有些不同的:正弦波(单载波)有峰均比一说。
这个比值就是峰值功率跟均值功率的一个比, 就是时间域测量结果。
既然就是时域的结果,就一定要附上采样时间。
比如正弦波,您关心它的一个周期内的特性,在一个周期采很多点,那得到数据就会有峰均比。
如果关心几个周期,每个周期只有一个点,那么结果就就是没有峰均比。
基于决策理论算法的单载波多载波数字调制识别技术研究

单载波和OFDM调制方式介绍

单载波和OFDM调制方式介绍单载波和OFDM都是数字通信系统中常用的调制方式。
单载波调制(Single Carrier Modulation,SCM)是一种使用单个载波频率进行数据传输的调制技术,而正交频分多路复用(Orthogonal Frequency Division Multiplexing,OFDM)则使用多个正交频率子载波进行并行传输。
本文将详细介绍单载波调制和OFDM调制的原理和特点。
一、单载波调制(SCM):单载波调制是一种基带数字调制技术。
在单载波调制中,数字信号经过数字调制解调器生成基带信号,该基带信号通过数字的频率转换技术与载波相乘形成调制信号,再通过模拟调制器将调制信号转换为可传输的模拟信号。
单载波调制的特点:1.简单性:单载波调制的实现相对简单,仅需要一个载波频率即可实现数据的传输。
2.低复杂度:因为只需要一个载波频率,所以单载波调制的计算复杂度较低,适用于硬件实现。
3.较强适应性:单载波调制可以灵活适应不同的信道环境,能够适应稳定、不衰落的信道。
4.抗多径衰落差:由于单载波调制技术只有一个信道传输符号,因此对于多径信道衰落影响较强。
二、正交频分多路复用(OFDM):OFDM是一种多载波调制技术,在正交频分多路复用调制中,将数据信号拆分成多个子信道,并使用正交子载波将数据传输并行进行。
OFDM 将宽带信号分割成多个窄带信号,并在子载波之间设置隔离带,以减小同频信号之间的干扰。
OFDM调制的特点:1.高频谱效率:OFDM将频谱分成多个子带,每个子带上传输的数据速率相对较低,可以充分利用整个频谱,提高频谱利用率。
2.抗多径效应:由于采用了多个子载波,并且它们之间正交,所以OFDM系统对多径效应具有较好的抵抗能力,对时间延迟扩展具有较好的补偿能力。
3.抗频率选择性衰落:在OFDM系统中,子载波之间正交分割,减小了频率选择性衰落的效应,可以减小码间干扰。
4.N-路径传播抗干扰能力强:当信号通过多径传播存在多个路径时,OFDM系统可以对该干扰进行抑制,提高系统性能。
3.6正交频分复用技术全解

图2-66 多载波系统的基本结构
在单载波系统中,一次衰落或者干扰就可以导 致整个传输链路失效,但是在多载波系统中,某一 时刻只会有少部分的子信道会受到深衰落或干扰的 影响,因此多载波系统具有较高的传输能力以及抗 衰落和干扰能力。
3.6 正交频分复用技术 (OFDM)
学习目标
理解正交频分复用技术(OFDM)的基本原理 了解其与MIMO(多输入多输出系统)相结合的应用
多载波调制
多载波传输系统
多载波传输首先把一个高速的数据流分解为若 干个低速的子数据流(这样每个子数据流将具有低 得多的比特速率),然后,每个子数据流经过调制
(符号匹配)和滤波(波形形成g(t)),去调制相
分布式系统将分配给一个用户的子载波分散到整个带 宽,从而获得频率分集增益。但这种方式下信道估计 较为复杂,也无法采用频域调度。设计中应根据实际 情况在上述两种方式中灵活进行选择。
在未来的宽带无线通信中,存在两个最严峻的挑战 :多径衰落信道和带宽效率。因此,802.11n计划采 用MIMO与OFDM相结合,使传输速率成倍提高。 这是因为,OFDM通过将频率选择性多径衰落信道在 频域内转换为平坦信道,减小了多径衰落的影响;而 MIMO技术能够在空间中产生独立的并行信道同时传 输多路数据流,这样就有效地提高了系统的传输速率 ,即在不增加系统带宽的情况下增加频谱效率。因此 ,OFDM和MIMO相结合,就能达到两种效果:一 种是实现很高的传输速率,另一种是通过分集实现很 强的可靠性。
实现框图如图3-31和图3-32所示。用DFT和 IDFT实现的OFDM系统,大大降低了系统的复杂 度,减小了系统成本,为OFDM的广泛应用奠定 了基础。
水声通信技术总结

水声通信技术总结
水声通信技术是一种利用水介质进行信息传递的通信技术。
该技术主要应用在海洋测量、水下探测、海底资源开发等领域,以及军事领域的水下通信。
水声通信技术的优点在于传输距离远、传输速度较快、不受电磁干扰、适用于深海等环境。
但是也存在一些问题,如传输距离会受到水温、盐度、压力等因素的影响,同时水声信号易受到环境噪声的影响。
水声通信技术主要包括单载波调制、多载波调制、脉冲编码调制等多种调制方式。
其中,单载波调制是最常用的一种方式,其利用单一的载波信号进行传输。
多载波调制则采用多个载波信号进行传输,可以提高传输速度和传输距离,但同时也增加了复杂度。
脉冲编码调制通过对脉冲进行编码,可以在保证传输速度的同时提高传输质量。
除了调制方式,水声通信技术还需要考虑信号处理、信道建模等问题。
信号处理可以提高信号的质量和可靠性,包括预处理、滤波、解调等。
信道建模则是估算水声信号在水中传播时的损耗、传播路径等信息,以便对传输进行优化。
总的来说,水声通信技术是一种在特定环境下具有优异性能的通信技术,未来将继续得到广泛应用和研究。
- 1 -。
单载波和OFDM调制方式介绍

单载波调制和OFDM调制单载波的调制:单载波的调制就是采用一个信号载波传送所有的数据信号。
无线信道的多路径散射会造成相邻符号之间的干扰,就是我们常说的符号间干扰(ISI)。
如果这一信号使有用信号恶化,影响到射频信号的正确解调,那么有两种方法来解决:一种是在接收机端采用均衡器来消除ISI干扰,可以达到接近OFDM调制的误码率。
另一种是采用分集天线的方式可以有效地消除这种干扰,即采用两个不同方向的天线来进行接收。
对于3.5G的频段,在城市的覆盖区中,不同天线接收的信号必须将延迟均方根值速度限制在1us或者更少,尽量减少延迟速度大于10us的信号的比例。
对于这些延迟速度的值,本地时间均衡器提供一个简单的解决方法。
按照这种方式,单载波系统能够与OFDM调制方式提供相同的误码率。
时分单载波处理系统提供很大的灵活性,因为发射的数据包能被动态调整到恰当的长度,而最小数据包的长度上没有限制。
如果需要,很小长度的数据包都能够被处理,如短的确认信号等。
这种方式相对于以数据块交换的系统如OFDM有着更高的传输效率和更低传输延迟的优点。
单载波调制的其它关键优势:单载波避免了多载波系统的在各相位相同时的最大瞬时电功率与平均电功率的比值(PAPR)很大的问题,这样在设计中可以采用更经济高效的功率放大器,技术更成熟,系统的稳定性更高。
单载波系统对频率偏移和相位噪声要求相对于OFDM系统要低得多。
对于突发的点对多点的通信系统,单载波的调制方式能够使频率和时间同步设计变得更加简单,同时提高了系统的稳定性。
OFDM 调制:OFDM调制方式是一种多载波调制方式,这种方式将一个载波分为许多个带宽较窄的次载波,这些次载波相互正交,采用快速傅立叶变换将这些次载波信号进行编码。
次载波频分器将信号反转,使之正交,对于n个次载波,每一个次载波的符号速率被载波调制器分为整个符号速率的1/n,这使得调制后符号速率长于多经延迟从而减少符号间干扰(ISI)。
PLC相关资料介绍

2DPSK 差分相干解调器原理框图和各点时间的波形 2DPSK 信号的另一种解调方法是差分相干解调(相位比较法) ,其原理框图和解调过程各点的波形如 图 2-12 所示,用这种方法解调时不需要专门的相干载波,只需要由收到的 2DPSK 信号延时一个码元间隔 Ts,然后与 2DPSK 信号本身相乘。相乘器起着相位比较的作用,相乘结果反映了前后码元的相位差,经 过低通滤波器后再进行抽样判决,即可恢复出原始的数字信息,故解调器中不需要码反变换器。
第一代窄带载波技术主要使用的是基于单载波和双载波技术,调制方式主要有 PSK、FSK、S-FSK(扩 展的频移键控调制)传输速度慢(最高只有几 Kbps) 、抗干扰能力差、频带利用率低。 第 二 代 窄 带 载 波 ( NB-PLC ) 技 术 普 遍 采 用 正 交 频 分 复 用 技 术 ( Orthogonal Frequency Division Multiplexing, OFDM)的多载波调制。 OFDM 的抗频率选择性衰落强、频谱利用率高、易于均衡,传输速 率可以达到 100kbps。 国内窄带领域企业的主要情况
������ 2������
通常,M 取 2 的某次幂: M = 2k k=正整数 (式 2-5-3) 对于多进制 PSK 信号, 不能简单的采取一个相干载波进行相干解调。 它需要用两个正交的相干载波进行解 调。为了便于分析,不失一般性的,令式 2-4-2 中的 A=1,然后将 MPSK 信号码元表示式展开写成: sk(t)=Acos(ω 0t +θ k) =akcosω 0t −bksinω 0t(式 2-5-4) 式中:ak=cosθ k ,bk=sinθ k 。 MPSK 信号码元 sk(t)可以看做是由正弦和余弦两个正交分量合成的信号,他们的振幅分别是 ak 和 bk,并 且(ak)2+(bk)2=1.这就是说,MPSK 信号码元可以看做是两个特地个的 MASK 信号码元之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
载波概念虽然类似载频,不过载波不是物理上的概念而是逻辑上的概念,某载波说白了就是承载业务的某一频点。
单载波就是一个频点,双载波就是两个频点,依次类推。
对于上述所说的两种多载波技术,所谓多载波调制是指发射端将多个输入信号调制到不同的子载波上,然后同时发射出去。
由于采用多载波调制这一并行化技术,使每个信号的周期延长了若干倍,多径延时被削弱。
多载波调制的传输系统是下一代移动通信多媒体业务的主要实现方式之一。
而多载波基站的收发信机支持多个载波,便于实现网络扩容。
在3G 网络部署和扩容过程中,经常使用多载波基站。
在第三代移动通信系统中,在原有单载波基站的基础上,推出多载波基站,例如按照载波数量划分为二载波、三载波和四载波基站。
基于基站的资源架构和多载波基站,可以快速实现3G网络的平滑扩容。
因此,多载波基站成为3G移动通信网络扩容的主要实现方式之一。
3、单载波和多载波的区别:
多载波可以克服频率选择性衰落
因为它的信号带宽要小于相关带宽,所以会有平坦性衰落,但是这个不会使得信号失真,只会导致信号能量减低。
在单载波的情况下,cp需要很长很长才行的,所以单载波一般不用cp的方法,而是采用接收端时域均衡,但时域均衡器的复杂性限制了信息速率不能够太高,为了传送更高的信息速率,现在逐渐用
OFDM替代单载波,因为前者容易实现得多。
简单的说,单载波只用一个频率点,多载波用几个频点来传送信息,如果n个频率给一个用户传送信息,则速率可以提高n倍,如果给不同的用户使用,则为多址接入。
多载波调制最主要的特点是把数据调制到多个并行的子载波上传输,这样可以实现高速通信。
虽然说使用一个载波也可以是传输速度很高,但会产生严重的码间干扰,而多载波通信中,每个子信道的速率相对的可以较低,这样,总的速率也很高而码间干扰则得到了消除。
另外要注意的是,多载波调制是一种基带处理技术,而射频载波仍然只有一个。