推挽式功率放大电路的设计

推挽式功率放大电路的设计
推挽式功率放大电路的设计

第一部分课程设计

桥式推挽功率放大器是一种在较低的电源电压下能得到较大输出功率的功放,它由前置放大电路、BTL功率放大电路、电源电路三部分所构成。前置放大电路采用了集成运放NE5532将小信号电压放大,使其能够驱动功率放大器;功率放大电路由倒相电路和BTL 电路两部分组成,前者负责为后者转换两个大小相等、方向相反的激励信号,后者则是在信号不失真的前提下,尽可能地放大电流,从而提高输出功率;电源电路通过降压、整流、滤波、稳压产生±12V直流电压。运用Protel软件对所设计的电路图进行建库、绘图、制板;再借助Multisim仿真软件对各个单元电路进行了性能与功能仿真,通过仿真分析验证了设计的正确性,整体电路也基本达到了设计的预期目的。

关键词:推挽功放;集成运放;前置放大;倒相

The push-pull circuit occupies an important position in the amplifier circuit and switching power supply areas. Bridge push-pull amplifier circuit is constituted by three parts of the power supply circuit, the preamplifier circuit, BTL power amplifier circuit. The preamplifier circuit uses the integrated operational amplifier NE5532 small signal voltage amplification, so that the power amplifier input sensitivity to match. The power amplifier circuit consists of two parts of the inverting circuit and BTL circuit. The former is responsible for the conversion for the latter two of equal size, in the opposite direction of the excitation signal. The latter is the signal undistorted under the premise, as far as possible to enlarge the current, increasing the output power. ± 12V DC voltage power circuit through the buck, rectifier, filter and regulator.With of Multisim simulation software on each unit circuit performance and functional simulation. Verify the correctness of the design through simulation analysis, the results are to achieve the intended purpose of the design. Then use Protel software for building a database, drawing and board schematic design.

Keywords:Push-pull amplifier, Integrated operational amplifier, Preamplifier , Inverting

目录

摘要.............................................................................................................................................. I Abstract .......................................................................................................................................... II 第一章推挽式功率放大器方案设计.. (1)

1.1 绪论 (1)

1.2 功率放大器的性能指标 (1)

1.3 推挽式功率放大器设计方案 (2)

1.3.1 变压器耦合式推挽功放 (2)

1.3.2 桥式推挽功放 (2)

1.3.3 方案分析 (3)

第二章推挽式功放电路设计 (4)

2.1 前置放大电路 (4)

2.1.1 反相比例放大电路 (4)

2.1.2 同相比例放大电路 (5)

2.1.3 前置放大电路 (5)

2.2 BTL功放输出电路 (6)

2.2.1 倒相电路 (6)

2.2.2 BTL电路 (7)

2.3 电源电路 (7)

2.4 整体电路 (8)

第三章推挽式功放电路仿真与实验 (10)

3.1 前置放大电路仿真 (10)

3.2 倒相电路仿真 (11)

3.2 整体电路仿真 (11)

总结 (13)

参考文献 (14)

致谢 (15)

附录1 推挽式功放电路图 (16)

附录2 推挽式功放元件明细表 (17)

第一章推挽式功率放大器方案设计

在音响世界中往往需要将低频信号放大后加以利用,一般处理频率较低的信号采用音频功率放大电路来实现。它的作用是对音频信号进行不失真的功率放大,以足够的电功率去推动扬声器,故而音频功率放大电路在音响产品中得到广泛使用。

1.1 绪论

功率放大器的作用是放大来自前放大器的音频信号,产生足够的不失真输出功率,以推动扬声器发声。功率放大器的种类繁多,其中推挽式功放有利于改善宽带能力和提高增益,对偶次谐波滤波度好。传统的推挽电路总需要输出变压器和输入变压器,这种变压器耦合的电路存在一些缺点,诸如:由于变压器铁心的磁化曲线是非线性的,它会使放大电路产生非线性失真,特别是由于变压器的存在,严重地影响了电路的频率特性。为了克服这些缺点,出现了一类电路叫“无输出变压器电路”。这类无变压器功放电路舍去了级间耦合用的输入、输出变压器,改用直接耦合。虽然这样电路结构复杂些,但是便于加负反馈电路,使频响宽、失真小,易满足大功率和小型化的要求。无输出变压器电路的种类很多,按输出级与扬声器的连接方式分OTL电路(电容耦合)、OCL电路(直接耦合)、BTL(电桥形式连接)。如表1.1所示是根据功放级输出电路形式来分类的音频功率放大器。

表1.1 音频功率放大器

1.2 功率放大器的性能指标

在放大通道的正弦信号输入电压幅度10~100mV,等效负载电阻RL为8Ω时,放大

(1)额定输出功率P≥10W;

(2)通频带BW:30Hz~20kHz;

(3)在额定输出功率下和通频带内的非线性失真系数γ≤3%;

(4)在额定输出功率下的效率η≥55%。

1.3 推挽式功率放大器设计方案

功率放大器按照其输出特点分为变压器耦合功放、OTL(Output Transformer Less)功放、OCL(Output Capacitor Less)功放和BTL(Balanced Transformer Less)功放。根据此分类标准和本设计的要求提出两种推挽式功放设计方案,分别是变压器耦合推挽功放和桥式推挽功放。

1.3.1 变压器耦合式推挽功放

变压器耦合式是一种传统的电路结构形式,采用该结构形式设计的推挽功放,它的优点是便于实现阻抗匹配。其设计方案如图1.1所示。推动级单元的输入端采用变压器进行阻抗变换,同时使激励输出两个幅度大小相等、相位差为180°的信号,进而使推动级晶体管满足推挽工作,实现推动级输入阻抗匹配;然后通过级间变压器耦合单元将前级的输出信号尽可能多的传递到后一级;最后耦合输出单元利用传输线阻抗变换器来实现负载与输出端之间的阻抗匹配。偏置电路是为了调节偏置电压和防止产生大电流时损坏元器件。

图1.1 变压器耦合式推挽功放设计方案结构图

1.3.2 桥式推挽功放

桥接推挽功率放大电路简称BTL(Balanced Transformer Less)功放电路。它的优点是在较低的电源电压下能得到较大的输出功率。其设计方案如图1.2所示。

图1.2 桥式推挽功放设计方案结构图

前置放大单元主要是把输入的小信号放大到一定标准的电平;再输送到倒相单元产生两个大小相等、方向相反的激励信号;然后在允许的失真限度内,通过BTL单元进一步放

大电流,从而尽可能高效率地向负载提供足够大的功率;电源单元为整个电路提供稳定的直流电源做保证。

1.3.3 方案分析

在设计过程中,方案的选择必须结合实际情况,要从各个方面考虑设计的可行性,不仅要考虑其先进性,还要考虑其现实性,要从多方面综合寻求最佳方案。由于方案一中用到多个变压器,不仅体积大、笨重、消耗有色金属,还严重地影响了电路的频率特性,能使放大电路产生非线性失真,另外引入负反馈后易形成自激振荡。而由方案二设计出的电路便于加负反馈电路,使频响宽、失真小,易满足大功率和小型化的要求。故选择方案二。

第二章 推挽式功放电路设计

桥式推挽功放电路由前置放大电路、BTL 功率放大电路、电源电路三部分所构成。前置放大电路采用了集成运放NE5532将小信号电压放大,使其能够驱动功率放大器;功率放大电路由倒相电路和BTL 电路两部分组成,前者负责为后者转换两个大小相等、方向相反的激励信号,后者则是在信号不失真的前提下,尽可能地放大电流,从而提高输出功率;电源电路为前置放大电路和BTL 功率放大电路提供能源。

2.1 前置放大电路

前置放大电路(亦称电压放大电路)作为输入功率放大器之前的处理电路,利用前置放大电路把输入信号放大或进行阻抗变换,使其能够驱动功率放大器。由于许多基于运放组成的功能电路都是在同相比例放大电路和反相比例放大电路的基础上组合或演变来的,本节先讨论这两种电路,再根据需要选择适当的集成运放。 2.1.1 反相比例放大电路

反相比例放大电路如图2.1所示,由反馈分析可知,其引入的是电压并联负反馈。电压信号 i u 通过 1R 作用于运放的反相端,且反相端为虚地点即0n u ≈ ,由虚断可知:

f

i n

n o

R

R u u u u --=

………(2-1)

则有f o i R R

u u =-

………(2-2)

其闭环增益为:f v o

i R A R

u u =

=-

………(2-3) 由式(2-2)可知:o u 、i u 相位相反,输出与输入

成比例。尽管理想运放的输入电阻无穷大,但电路引入电压并联负反馈后,电路的输入电阻R 并不大。若要增大电路的放大倍数,需增大f R 的值。当阻值与集成运放的输入等数量级时,比例系数产生较大变化,即不再由反馈网络的阻值所决定。

o

u i

u 图2.1 反相比例放大电路图

n

u p

u

2.1.2 同相比例放大电路

同相比例放大电路如图2.2所示,由反馈分析可知,其引入的是电压串联负反馈。电压信号i u 通过2R 作用于运放的同相端,由虚短和虚断可知:

i p n u u u =≈………(2-4) 1

f i n

o i

R R u u u u --=

………(2-5)

1

(1)f o i R R u u =+………(2-6)

1

1f v o

i R A R u u ==+

………(2-7) 由(2-6)式可知:o u 、i u 相位相同,输出与输入也

成比例。综上:反相比例放大电路中输入阻抗是反馈电阻和输入电阻的并联,阻抗比较小放大倍数是反馈电阻比输入电阻,可以小于1也可大于1,输出与输入是反向的。同相比例放大电路输入阻抗等于放大器内部阻抗,而内部阻抗远大于输入电阻和反馈电阻,所以同相放大器的输入阻抗高,在相同条件下放大倍数是反相放大倍数加1且只可能大于等于1,输出与输入同相。另外,若用反相放大器,由于分压关系显然几乎所有的源电压将消耗在输出电阻的两端。故选用同相比例放大电路形式来设计前置放大电路。 2.1.3 前置放大电路

由于前置放大电路放大的信号为低频电压信号,幅值为10~100mV (即输入的共模电压)、频率为30Hz ~20kHz 、最大增益为40倍,所以运放的单位增益带宽GB 应该满足

GB=20kHz 40=0.8MHz ?,电源电压为±12V 。再结合NE5532、LM358这两种常用的运放

比较,如表2.1中的参数可知:两款集成运放均能满足设计的需要。

表2.1 技术参数

图2.2 同相比例放大电路图

o

u i

u p

u n

u

放使用,如表2.1为NE5532的极限参数。由NE5532集成运算放大器构成的电压放大电路如图2.3所示。电源支路的电容3C 、4C 是去耦电容,用来消除高频杂波。

根据虚短和虚断有: i P n V V V =≈,

0p n I I ==………(2-8)

由CVL 定律有:

20 n n o

p

V V V R R --=

………(2-9) 由式(2-8)、(2-9)解得电压增益为:

22 11000

p

p o V i R R R V A V R -=

==+

…(2-10) 2.2 BTL 功放输出电路

功放输出级电路采用BTL 电路结构形式。其组成方框图如图2.4所示。输入信号i u 分成两路,一路直接加到上面的一组功率放大电路中;另一组加到倒相级电路中,获得大小相等、方向相反的信号i u -,然后加到下面一组功率放大电路中。当输入信号i u 为正半周时,上、下两组功率放大电路同时放大信号,其输出端A 的信号相位为正,B

的信号相位为负,此时信号电流从A 流出,经过负载流入B 点电路;反之,当输入信号i u 为负半周时,A 端的信号相位为负,B 端的信号相位为正,此时信号电流从B 流出,经过负载流入A 点电路。 2.2.1 倒相电路

如图2.5所示为倒相电路图。后级功率放大电路需要有两个大小相等、方向相反的激励信号,这两个激励信号由倒相电路来实现。当2V 管工作在甲类状态,把输入信号i u 转换成1o u 和2o u 两种两个大小相等、方向相反的激励信号。电源支路的电容6C 是去耦电容,用来消除高频杂波。电解电容6C 、7C 起耦合作用,即在低频信号的传递与放大过程中,为防

图2.4 集成功放BTL 电路简化原理框图

图2.3 前置放大电路

o

u i

u n

V p

V

乙类互补推挽功率放大器

科信学院CDIO项目设计说明书(2010 /2011学年第二学期) CDIO项目名称:电子应用系统一级项目 专业班级:电子信息工程 学生姓名: 学号: 指导老师: 设计成绩: 2011年6月28日

1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法 1.2 CDIO 设计正文 1. 2.1设计要求 电压增益:10倍(20分贝) 输出功率:0.5W 以上(负载R L =8?) 频率特性:20Hz ~20KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载R1=8Ω V o= Po R *1=2V ,输出功率Po=0.5W 峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V 若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io= 2 1 Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA 取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω 因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω 当交流分析时,R6被短路,Av=15符合要求

实验1 单级放大电路

实验1 单级放大电路 1.实验目的 1)学习使用电子仪器测量电路参数的方法。 2)学习共射放大电路静态工作点的调整方法。 3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。2.实验仪器 示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)三极管及共射放大器的工作原理。 2)阅读实验内容。 4.实验内容 实验电路为共射极放大器,常用于放大电压。由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。 1)联接电路 (1)用万用表判断实验箱上的三极管的极性和好坏。由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。改用万用表测量二极管档测量。对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。这说明该三极管是好的。用万用表判断实验箱上电解电容的极性和好坏。对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。这说明该电解电容是好的。 ⑵按图1.1联接电路。 ⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。若正常,则将12V 电源接至图1.1的Vcc。 图1.1 共射极放大电路

⑷ 测量电阻R C 的阻值。将V i 端接地。改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。建议使用以下方法。 b B cc 2b B B R V V R V I -=+ p 1b b R R R += B C I I =β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。本实验用测电阻值、电 压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。 Vcc=11.992 V 图1.2是示意图。它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。通常, β随i B 增大而增大。 对于一个三极管,β随i B 的变化越小越好。用图 解法表示共发射极放大器放大小信号的原理可知,β 随i B 变化而变化是正弦波小信号经共发射极放大器放 大后产生非线性谐波失真的原因。若表1.1中β的数 值较接近,则表1.6中的非线性谐波失真应较小。使 用不同实验箱的同学之间可验证上述分析。由此可见, 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。 2) 调整静态 电压放大器的主要任务是使失真尽可能小地放大电压信号。为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。 将V i 端接地。调整R P ,使V C =6V ,测量计算并填写表1.2,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

OCL功率放大器的设计报告解析

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生姓名:郭二珍 学生学号: 07 系别:电气学院 专业:自动化 届别: 2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。 (3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。 因此,本设计可采用甲乙类互补电路。

2、内容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P ≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ o 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。 因此,需要设计两部分,即驱动级和功率输出级。

音频功率放大器的设计报告

音频功率放大器的设计报告 目录 一、设计任务和要求 (2) 二、设计方案的选择与论证 (2) 三、电路设计计算与分析 (4) UA741介绍 (4) 前级电路原理图及仿真结果 (5) (6)TDA2030介绍·················································· 音频功放电路原理图及仿真结果 (7) 结果与分析 (8) 总原理图 (9) PCB图 (10) 四、总结及心得 (12) 五、附录 (14) 六、参考文献 (15)

音频功率放大器的设计 一、设计任务和要求 1、设计任务 设计一音频功率放大器,满足: (1)、输出功率为1W---2W; (2)、输出阻抗8-16欧姆; (3)、带宽:100Hz—10KHz; 2、设计要求 (1)、根据设计指标,确定电路的理论设计; (2)、学会合理的选择电路的元器件; (3)、利用multisim软件完成对相关电路模块的仿真分析; (4)、按时提交课程设计报告,画出设计电路图,交一份A3的图纸,完成相 应的答辩; 二、设计方案的选择与论证 音频功率放大器,简称音频功放,该设备主要用于推动扬声设备发声,因而,在很多电子设备上均有应用,比如,手机、电脑、电视机、音响设备等,是我们生活、学习不可或缺的重要设备,为我们的生活带来了很多便利。 音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。设计时首先根据技术

推挽式功率放大电路的设计

第一部分课程设计

桥式推挽功率放大器是一种在较低的电源电压下能得到较大输出功率的功放,它由前置放大电路、BTL功率放大电路、电源电路三部分所构成。前置放大电路采用了集成运放NE5532将小信号电压放大,使其能够驱动功率放大器;功率放大电路由倒相电路和BTL 电路两部分组成,前者负责为后者转换两个大小相等、方向相反的激励信号,后者则是在信号不失真的前提下,尽可能地放大电流,从而提高输出功率;电源电路通过降压、整流、滤波、稳压产生±12V直流电压。运用Protel软件对所设计的电路图进行建库、绘图、制板;再借助Multisim仿真软件对各个单元电路进行了性能与功能仿真,通过仿真分析验证了设计的正确性,整体电路也基本达到了设计的预期目的。 关键词:推挽功放;集成运放;前置放大;倒相

The push-pull circuit occupies an important position in the amplifier circuit and switching power supply areas. Bridge push-pull amplifier circuit is constituted by three parts of the power supply circuit, the preamplifier circuit, BTL power amplifier circuit. The preamplifier circuit uses the integrated operational amplifier NE5532 small signal voltage amplification, so that the power amplifier input sensitivity to match. The power amplifier circuit consists of two parts of the inverting circuit and BTL circuit. The former is responsible for the conversion for the latter two of equal size, in the opposite direction of the excitation signal. The latter is the signal undistorted under the premise, as far as possible to enlarge the current, increasing the output power. ± 12V DC voltage power circuit through the buck, rectifier, filter and regulator.With of Multisim simulation software on each unit circuit performance and functional simulation. Verify the correctness of the design through simulation analysis, the results are to achieve the intended purpose of the design. Then use Protel software for building a database, drawing and board schematic design. Keywords:Push-pull amplifier, Integrated operational amplifier, Preamplifier , Inverting

单级放大电路的设计与仿真

单级放大电路的设计与仿真 一、实验目的 1)掌握放大电路静态工作点的调整与测试方法。 2)掌握放大电路的动态参数的测试方法。 3)观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验器材 1mV 5KHz 正弦电压源,15mV 5KHz 正弦电压源,12V直流电压源,2N2222A三极管,10uF电容(3个),10KΩ电阻(2个),3.0KΩ电阻,1.5KΩ电阻,5.1KΩ电阻,250KΩ电位器,万用表,示波器等。 三、实验原理与要求 三极管工作在放大区时具有电流放大作用,只有给放大电路中的三极管提供合适的静态工作点才能保证三极管工作在放大区。如果静态工作点不合适,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。静态工作点合适时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。表征放大电路放大特性的交流参数有电压放大倍数、输入电阻、输出电阻。对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。 设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。测电路的输入电阻、输出电阻和电压增益。测电路的频率响应曲线和fL、fH值。 设计图如下:

四、实验内容与步骤 1.饱和失真 为了使得到的饱和、截止失真的波形图更加明显,用15mV的交流电压源代替了原先的1mV 的电源。调节电位器的百分比至0%,观察波形。 测试饱和失真下的静态工作点 可知I B=227.374uA,I C=2.576mA, U CE=69.657mV。

音频功率放大电路的设计

音频功率放大电路的设计 王##(安庆师范大学物理与电气工程学院安徽安庆246011) 指导老师:祝祖送 摘要:本文的内容是音频功率放大电路的设计,其有操控简单、音质好等特点。本设计电路使用的是TDA2030为音频功率放大器,其工作电压为+15V。它将输入电路的电流放大,之后再将扬声器驱动工作。采用LF353对输入的音频信号前级放大,采用DAC0832对前级放大进行控制,采用STC89C52单片机控制电路的放大倍数,最后由液晶显示器显示出放大倍数。 关键词:功率放大器,前级放大,保护电路 1引言 对音频功率放大电路进行研究,其意义是目前在该领域有很好的发展前景,在我们的实际生活中的应用也是十分广泛的。小至我们经常使用的音乐MP4,大到城市报警系统。该设计的研究分别为硬件及软件两部分。扬声器输入电路、功率放大电路、前级放大电路、以及单片机电路构成本设计的硬件电路;液晶显示、键盘扫描、单片机控制等构成本设计的软件部分。 音频功率放大电路设计过程中困难的是选择各部分硬件电路,由于功率放大器的技术要求比较详细,电路各部分的数据选择及硬件的选择会更加复杂,为达到相应的技术指标,需要多次对电路进行调试。熟练使用C语言,加强分层设计编程能力和程序编写程序的可读性,不断修改程序,以达到设计目的。 2 总体方案 2.1设计思路概述 2.1.1设计要求及目的 (1)学习电路的设计及C语言编程。 (2)了解功率放大电路的工作原理,绘制相应的功率放大电路。 (3)完成硬件电路的制作,完成软件程序的编辑。 (4)完成论文。 2.1.2技术指标 (1)由麦克风输入音频信号,音频功率的范围是10Hz-10KHz。 (2)失真度为0.4%-1%。 (3)输入电压范围为150mV-5V。 (4)输出负载能力为7Ω/3Ω。 2.2总体设计方案 方案一:音频功率放大器使用模电设计,硬件原理图见图1。主要设计电源和功放两部分,稳压电源由稳压电路、整流电路、滤波电路等部分组成;功放电路由TDA2030、耦合电容等部分组成。电源电压可以根据电路需要来改变电压值,而不同的电压值对应的放大器的承载能力是不同的。由扬声器提供信号源,通过功放管进行功率放大,从而达到目的,最后结果由示波器显示出来。 优点:电路中设计了电源部分,所以在连接电源的的时候方便快捷。 缺点:由于元器件较多,在选择时就比较困难,在焊接时难度较大。

推挽功率放大电路的课堂演示实验

推挽功率放大电路的课堂演示实验 杨香玉 王引娣 杨志民 (西北师范大学物理系 兰州 730070) 收稿日期:1996208219 推挽功率放大电路的工作原理是功率放 大电路教学中的重点内容。随着电子技术的发展,采用输入、输出变压器耦合的推挽功率放大电路在实际应用中已逐渐减少,但其基本工作原理仍然是理解各种新的推挽式功率放大电路如O TL 、OCL 等电路的基础。因此, 通过课堂演示实验来讲清楚电路的工作 原理及电路各处的工作波形是课堂教学很重要的一个环节。 变压器耦合的乙类推挽功率放大电路如图1中实线部分所示。其工作原理是:静态时,由于晶体管T 1、T 2均工作在乙类状态,无偏置,两管截止。负载上无输出。当输入 图1 演示实验的实现电路 3 实线部分为变压耦合推挽功率放大电路 正弦信号U i 的正半周(0~ π)作用时,U i 1对地为正极性,U i 2为负极性。由于T 1、T 2均为NPN 型晶体管,故此期间T 1导通,T 2截止。T 1导通后产生基极电流i b 1、集电极电流i c 1和负载电流i L 1。其波形如图2(a )所示。在这段时间内,由于T 2截止,故i b 2、i c 2都为零。当输入正弦信号U i 的负半周(π~2π期间)作用时,U i 1为负极性、U i 2为正极性。故T 1截止、T 2导通。T 2导通后产生相应的基极电流i b 2、集电极电流i c 2和负载 电流i L 2。其波形如图2(b )所示。当输入信 号U i 周期性地作用于电路时,两个晶体管T 1和T 2轮流推挽工作,i c 1和i c 2分别流过输出变压器T r 2初级绕组的上、下半部分,在T r 2的次级负载上就得到一个合成的正弦波形U L 。 由于功率放大电路的工作原理主要是通过图解法来讲解和描述的,因此,如再能通过演示实验让学生观察到推挽功率放大电路的 第3期 实验室研究与探索 LABORA TOR Y RESEARCH AND EXPLORA TION No.3 1997

实验一单级放大电路

实验一单级放大电路 一、实验目的 1、掌握单管电压放大电路的调试和测试方法。 2、掌握放大器静态工作点和负载电阻对放大器性能的影响。 3、学习测量放大器的方法,了解共射极电路的特性。 4、学习放大器的动态性能。 二、实验仪器 1、模拟电路实验箱及附件板 2、示波器 3、万用表 4、直流毫伏表 5、交流毫伏表 6、函数发生器 7、+12V 电源 三、实验原理 实验采用分压式工作点稳定电路,如图1.1所示。 1、静态工作点的估算 当流过基极分压电阻的电流远远大于三极管的基极电流时,可以忽略BQ I , 则有:CC 2b 1b 1 b BQ V R R R V += ,e BEQ BQ EQ CQ R U V I I -=≈

)(e c CQ CC e EQ c CQ CC CEQ R R I V R I R I V U +-≈--= β CQ BQ I I = 2、动态指标的估算与测试 放大电路的动态指标主要有电压放大倍数,输入电阻,输出电阻及通频带等。 理论上,电压放大倍数be L u r R A '-=β ,输入电阻be be 2b 1b i ////r r R R R ≈=,输出电阻c o R R ≈ 测量电压放大倍数时,首先将电路调整到的合适静态工作点,给定输入电压i u ,在输出电压不失真的情况下,用毫伏表测出输出电压o u 与输入电压i u 的 有效值,则i o u U U A = 四、实验内容及步骤 1、在模拟电路实验箱上插上附件板,按图1.1电路,用插接线连接实验电路,接线完毕,检查无误后,接上+12V 直流电源。 2、调试静态工作点 接通直流电源前,先将R W 调至最大, 函数信号发生器输出旋钮旋至零。接通+12V 电源、调节R W ,使I C =2.0mA (即U E =2.0V ), 用直流电压表测量U B 、U E 、U C 及用万用电表测量R B2值。记入表1-1。 表1-1 I C =2mA 3、测量电压放大倍数 在放大器输入端加入频率为1KHz 的正弦信号u S ,调节函数信号发生器的输出旋钮使放大器输入电压U i ≈10mV ,同时用示波器观察放大器输出电压u O 波形,在波形不失真的条件下用交流毫伏表测量下述两种情况下的U O 值,并用双踪示波器观察u O 和u i 的相位关系,记入表1-2。

音频功率放大器的设计毕业论文

音频功率放大器的设计毕业论文

单刀音频功率放大器的设计 摘要 本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。 设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。 对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。对功率放大电路进行了输入和输出功率分析。对直流电源进行了输出电压验证。最后对总电路进行了输入、输出

分析、频率响应分析、噪声分析。 关键词: OP07 音频功率放大器

目录 摘要................................................................ I Abstract.......................... 错误!未定义书签。第一章音频放大器的概述.. (1) 1.1音频放大电路的回顾 (1) 1.2音频功率放大器的介绍 (2) 1.2.1 A类(甲类)功率放大器 (3) 1.2.2 B类(乙类)功率放大器 (3) 1.2.3 AB类(甲乙类)功率放大器 (4) 1.2.4 C类(丙类)功率放大器 (4) 1.2.5 D类(丁类)功率放大器 (5) 1.3放大器的技术指标 (5) 第二章音频功率放大器的设计 (11) 2.1设计方案分析 (11) 2.2前置放大电路设计 (11) 2.3二级放大电路设计 (15) 2.2.1 低通滤波器设计 (15) 2.2.2 高通滤波器设计 (17) 2.2.3 二级放大电路电路设计 (20) 2.4功率放大器设计 (21) 2.5 直流稳压电源设计 (23)

乙类推挽功率放大器

乙类推挽功率放大器 一.选择题 ( )1.决定功率放大器效率的主要因素是。 A.电路的输入功率 B.电路的工作状态 C.电路的最大输出功率 D.功放管的消耗功率 ( )2.乙类推挽功率放大器设置适当的静态工作点,其目的是。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )3.一个理想乙类功放电路的最大输出功率为10W,当输入信号为零时,每个功放管的管耗约为。 A.10W B.1.35W C.2W D.0W ( )4.乙类功率放大器的失真一般是。 A.饱和失真 B.截止失真 C.交越失真 D.线性失真 ( )5.甲乙类功放提供一定的偏置电流的目的是为了。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )6.变压器耦合推挽功放中的输出变压器,其作用是。 A,耦合作用 B.合成波形的作用 C.分解波形的作用 D.A和B两者兼有 ( )7.一个乙类功放的理性输出功率为4W,当输入信号为0时,则功放管的管耗为。 A.4W B.2W C.088W D.0W ( )8.低频功放之所以工作在甲乙类,除了提高效率为,还为了。 A.克服交越失真 B.克服截止失真 C.克服饱和失真 D.克服频率失真 二.判断题 ( )1.乙类功放的效率比甲类功放的效率高。 ( )2.乙类功放的管耗会随着输出功率的增大而增大。 ( )3.在甲乙类推挽功放电路中,当负载由固定负载减小时,输出功率增大。

( )4.乙类功放的效率最高,故乙类功放应用最广泛。 ( )5.在推挽功率放大器电路中,只要两个三极管具有合适的偏置电流,就可以消除交越失真。 ( )6.对于乙类功放,当输入信号为零时,电源提供的功率和管耗均为零,随着输入信号的增大,输出功率增大,同时管耗也随之增大。 ( )7.推挽功率放大器输入交流信号时,总有一个功放三极管是截止的所以输出波形必然失真。 ( )8.晶体管不能放大功率,只能起能量转换作用。 ( )9.功放电路中的非线性失真就是交越失真。 三.填空题 1.由于在功放电路中功放管常常处于 工作状态,因此,在选择功放管时要特别注意 、 和 三个参数。 2.一个乙类推挽功放电路的电源电压24G V V =、负载16L R =Ω,变压器初级线圈匝数为160N =,现要求其输出最大不失真功率om P 达到50W 则输出变压器的匝数比n = ,次级线圈的匝数2N = 。 3.甲乙类推挽功放电路与乙类功放电路比较,前者加了偏置电路向功放管提供少量 ,以减少 失真。 4.推挽功率放大器的最大输出功率om P = ,最高理论效率η= 。 5.为了提高功率效率,低频功率放大器应该工作在 工作状态;但该电路存在交越失真,故实用的低频功率放大器一般工作在 工作状态。 6.乙类功率放大器中每个三极管导通时间为 半个周期;甲乙类功放电路中每个三极管导通时间 半个周期。

音频功率放大器设计案例

1 概述 在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N 是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。 THD+N 性能指标 THD+N 表示失真+噪声,因此THD+N 自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N 的值会有很大的变动。 这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN (一般常用1KHZ )、一定的输出功率Po下进行测试。若改变了其中的条件,其THD+N值是不同的。例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32 Q、Po=25mW 条件下测试,其TDH+N=0.003% , 若将RL改成16欧,使Po增加到50mW, VDD及FIN不变,所测的TDH+N=0.005%。 一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N 指标可达10-5,具有较高的保真度。输出几百mW 的音频功率放大器,要用扬声器放音,其THD+N 一般为10-4;输出功率在1?2W,其THD+N 更大些,一般为0.1?0.5%.THD+N这一指标大小与音频功率放大器的结构类别有关(如 A 类功放、 D 类功放),例如 D 类功放的噪声较大,则THD+N 的值也较 A 类大。 这里特别要指出的是资料中给出的THD+N 这个指标是在FIN=1kHz 下给出的,在实际上音频范围是20Hz ?20kHz,则在20Hz?20kHz范围测试时,其THD+N 要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+N 变为小于0.5%。 输出额定功率的条件 过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。这话的意思指的是输出的峰 峰值没有“削顶”现象出现,即Vout(P-P)=Vcc- (上压差+下压差)这种说法是不科学的。即使不产生削顶,它也有一定的失真。较科学的说法是THD+N 在某一指标下可输出的功率是多少。即在一定的Vcc 电压、一定的负载电阻RL 时、一定的THD+N 下可输出多少功率。这输出功率一般是在这条件下的最大输出功率,称为额定功率。音频功率的额定功率主要取决于Vcc 的大小。在THD+N 不变条件下,女口Vcc=5V , RL=4 Q时,输出额定功率为2W;若Vcc=3V、RL=4 Q时,输出额定功率降为0.7W。当然,若额定功率为2W,如果增加输入电压使输出超出2W,则其TDH+N必然大于额定值时的THD+N 值。

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

乙类互补推挽功率放大器

科信学院 CDIO项目设计说明书(2010 /2011学年第二学期) CDIO项目名称:电子应用系统一级项目 专业班级:电子信息工程 学生姓名: 学号: 指导老师: 设计成绩: 2011年6月28日

1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的 通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法 1.2 CDIO 设计正文 1. 2.1设计要求 电压增益:10倍(20分贝) 输出功率:0.5W 以上(负载R L =8?) 频率特性:20Hz ~20KHz 1.2.2 设计原理 乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。 1.2.3设计过程 负载R1=8Ω V o= Po R *1=2V ,输出功率Po=0.5W 峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V 若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io= 2 1 Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA 取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω 因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω 当交流分析时,R6被短路,Av=15符合要求

单级共射放大电路的设计共7页word资料

实验二、单级共射放大电路的设计 一、实验目的 1.掌握共射放大器电路的设计方法 2.掌握如何设置放大电路的静态工作点及其调试方法 3.学习放大电路性能指标 4.观察基本放大电路参数对放大器的静态工作点、电压放大倍数及最 大不失真电压、以及频率响应的测量方法 5.进一步熟悉函数发生器、等常用仪器的使用方法 6.进一步熟悉晶体管参数的测试 7.了解负反馈对放大电路性能的影响 二、实验仪器与器件: 直流稳压电源、万用电表、双踪示波器、交流毫伏表、直流毫安表、频率计、三极管、电阻器、电容器、电位器若干。 三、实验原理: 连接电路图如下图,并测量相关数据,了解单级共设放大电路 四、实验内容 1.静态工作点的调整与测量: 将R L 开路;在接通电源钱,将R b2 调至最大,并使u i =0.调节R b2 测量相应数 据填入下表

2.观察静态工作点对输出波形失真的影响: 调节函数信号发生器找到最大不失真输入电压,然后观察u O 输出波形,判断失真情况以及管子工作状态填入下表

3.电压放大倍数的测量 将频率为1kHz 、u i =300mV (参考)的正弦信号作为输入信号,用交流毫伏表测量U i 和U o 有效值,用示波器观察输入输出电压的波形,把测量结果记入下表 U i =248mV

4.观察静态工作点对电压放大倍数的影响 将R L 开路,R C =2k欧姆,输入适当u i 。改变R b2 ,将数据填入下表 U i =106.06mV 注意:测量U CE 时它是静态参数。 5.输入电阻和输出电阻的测量 输入端开关打开,用交流毫伏表测量U i 和U s ,计算输入电阻 R i =U i /I i =R s *U i /(U s -U i ) 闭合输入端开关,打开和闭合输出端开关,用交流毫伏表测量U L 和U O ,计 算输出电阻 R O =(U O /U L -1)*R L 6.最大不是真输出电压V opp 的测量 同时调节输入信号的幅度和电位器R b2 ,用示波器和交流毫伏表测量填表 7.幅频特性的测量 采用主点法进行测量,填表。

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

单级放大电路的设计和仿真

实验一单级放大电路的设计和仿真 一、实验目的 1、掌握放大电路静态工作点的调整和测试方法。 2、掌握放大电路的动态参数的测试方法。 3、观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验要求 1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。 2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。 3、加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。测电路的输入电阻、输出电阻和电压增益; 4、测电路的频率响应曲线和f L、f H值。 三、设计原理图 Rb1=160kΩ,Rb2=80.6kΩ,Rc=2.2kΩ,Re=1.65kΩ,C1=C2=10uF,Ce=100uF,RL=3,9kΩ,R1=10Ω 四、实验过程 1、观测饱和失真、截止失真与不失真 <1饱和失真的观测 使Rb1=51kΩ,用示波器观测波形,并做直流工作点分析。此时的静态工作点,ICQ=3.05334mA,IBQ=49.41790uA,VCEQ=130.534mV

静态工作点 <2截止失真的观测 使Rb2=20.0k ,信号源电压峰值40mv,用示波器观测波形,并做直流工作点分析。此时的静态工作点,ICQ=418.088uA,IBQ=1.88563uA,VCEQ=10.382913V 不失真

静态工作点 <2不截止失真的观测 用示波器观测波形,并做直流工作点分析。此时的静态工作点,ICQ=1.78125mA,IBQ=8.28494uA,VCEQ=5.18389V

相关文档
最新文档