管道应力分析和计算
压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。
管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。
本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。
压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。
薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。
该方法适用于绝大部分工程中的压力管道计算。
薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。
压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。
轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。
周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。
切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。
在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。
压力管道的应力分析受到多个因素的影响。
首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。
管道的材料特性直接决定了管道的耐压能力和变形能力。
其次是管道的几何形状,包括内径、外径、壁厚等。
几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。
再次是管道的工作条件,包括温度、压力等。
不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。
最后是管道的固定和支撑方式。
固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。
为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。
应力分析主要通过有限元分析和解析方法进行。
有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。
管道应力分析计算书编制规定

中国石化集团上海工程有限公司标准
· 附录 6.6 加热炉管口受力校核表 2.7 法兰泄漏计算
法兰的泄漏计算详见附件7。
2.8 其它附图
其它附图是指应力计算时所需的各专业的条件。包括设备总装详图或小样图,膨胀节的示意图,转
动设备制造商提供的设备图和管口位移量等。
3 管道柔性分析和应力计算书的签署规定
管道应力分析报告的签署应按公司标准Q/SSEC ITE06-2003《压力管道设计管理制度》的规定签署。
Q/SSEC aabb00-2005
前 言
本标准是中国石化集团上海工程有限公司(简称SSEC)技术标准之一,属于配管室技术标准。 本标准由配管工程室提出。 本标准由配管工程室归口。 本标准主要起草人:方 立、史习庆、倪 钧。 本标准于2006年首次发布。
Q/SSEC aabb00-2005
Q/SSEC aabb00-2005
第 1 页 共 7 页
· 管道在偶发载荷(如风,地震)作用下的应力和一次应力组合后的最大偶发应力(OCC)和相
应的节点号。
· 各约束点在操作工况(OPE)和安装工况(SUS)下的受力。
· 各节点在操作工况(OPE)和安装工况(SUS)下的位移量。
管线号
管道 保温 流体 P1 P2 Pt T1 T2 T2 等级 型式,厚度 密度 MPa MPa MPa ℃ ℃ ℃
浅谈压力管道应力分析及计算

浅谈压力管道应力分析及计算摘要:压力管道在工业生产或社会建设中被越来越广泛的使用,以其自身的特殊性和有针对性的特点,成为工业社会的一个重要课题。
管道质量及应力的大小直接影响到工程的质量及安全事故的发生率,应力的分析与计算也显得十分重要。
压力管道应力可分为一次应力、二次应力及峰值应力,三种类型,各种类型应力的特点各有不同,可以通过科学的方法如CAESAR II分析系统及复杂的公式多次计算,得出准确数值。
关键词:压力管道应力分析计算随着我国现代化技术的革新,工业蓬勃发展,国家大力支持公共设施建设项目,油田建设、大兴水利、天然气工程、南水北调工程等,压力管道成为最常见设备之一,其承担着输送易燃易爆能源、放射性及高腐蚀性物资的重大任务。
压力管道的安全与质量问题也成为从设计、安装、维护到使用等各个环所有相关部门都关注的重点防范问题,但其生产和使用过受到各种荷载因素的影响,加之自身应力的原因,使得压力管道事故频频发生,成为重大公共安全隐患,其也是国家相关安全监督管理项目之一[1]。
压力管道的应力分析与计算成为各种建设项的必要课题。
现对当前常用的压力管道应力进行分析及计算,相关报告如下:一、压力管道的特点压力管道在工作过程中所承担的重任和性质的特殊性,使其呈现出与一般管道与压力容器完全不同的特性,按照使用领域来划分,压力管道了分为一般工业压力管道和大跨度的公用管道,具体分以下几点:①工业压力管道构建出现代工业化生产体系,其特点是连接点多,管道的弯曲较多,分布密度大。
各个车间职能不同,使用的压力管道材料、规格要求各不一样,降低了整个系统的均衡质量。
生产过程中影响荷载的因素众多,如温度、运送物资质量、密度、化学性质等[2]。
②大跨度公用管道该类工程均跨越地理、气候各不一样的省市,有以下几个特点即长度极大,压力荷载复杂,性质不稳定,且受自然条件影响较多,如地质压力、风雪天气、地震塌陷等。
各项安全指标的测量准确度不高,维护难度大。
管道柔性分析与应力计算.概要

今天借这个机会和大家共同学习和探讨一下管道柔性分析与应力计算以及应力计算软件CAESARⅡ。
我们作为管道工程师,配管是我们的主要工作,占据了我们大部分工作时间。
一般情况下,管道工程师在配管完成后,应将临界管系提给管道机械工程师进行管道柔性分析与应力计算,通常也简称为应力分析。
我们在配管完成后,为什么要进行管道应力分析呢?主要有以下几个原因:第一个原因是为了使管道应力在规范的许用范围内,保证所设计的管系及其连接部分的安全性。
第二个原因是为了使管口荷载符合标准规范的要求。
第三个原因是为了计算支撑和约束的设计荷载。
第四个原因是为了计算管道位移,从而选择合适的管架。
第五个原因是为了解决管道动力学问题,比如说:机械振动,声频振动,流体锤,压力脉动,安全阀的排放等等。
最后一个原因是为了帮助配管优化设计。
这些原因呢也构成了管机工程师需要完成的工作任务,对这些内容呢后面我们会作进一步学习。
今天我们学习的内容包括以下五个部分:1.管道应力分析的相关理论和基础知识。
我们简单的学习一下与管道应力分析相关的一些理论和基础知识。
2.管道应力分析的理解和工作任务。
3.实际工作中的管道应力分析的工作过程。
4.管道的柔性设计。
5. CAESARⅡ管道应力计算程序。
我们首先一起学习一下应力分析的理论基础一管道应力分析的相关理论和基础知识。
应力分析的相关理论和基础知识涉及的内容是非常广泛的,象是材料力学,结构力学,有限元,弹塑性力学等等。
今天我们只学习和它关系最为密切的一些内容。
如果有兴趣的话,大家可以在以后时间里进一步学习其他相关知识。
我们学习的第一点是强度理论在管系上的任一受力点,往往受到多方向应力的作用,例如:轴向应力,环向应力,剪切应力的作用。
这些应力会对管道材料的力学性能产生影响,严重时将使管道材料失效或产生破坏。
这种影响程度通常用“当量应力强度”来衡量,而定量求解应力强度则要依据相应的强度理论。
涉及的强度理论主要有四种:第一种是最大主应力理论。
压力管道应力分析

压力管道应力分析引言压力管道作为输送流体的重要管线,承受的压力和温度都是极高的。
这样就会导致管道中的应力和变形问题,从而产生一定的安全隐患。
因此,对于压力管道的应力分析就显得尤为重要。
压力管道的应力压力管道在运行过程中,会受到各种力的作用,如内压、重力、支架反力、温度等,这些力作用在管道上,就会造成管道内部的应力,如轴向应力、周向应力、径向应力等。
•轴向应力轴向应力是指管道轴向方向的应力,通常是指由流体作用产生的内压力和拉力两部分的影响。
在管道内部,如果内压力太大,轴向应力就会增大,会导致管道的卡铁暴力现象。
•周向应力周向应力是指管道周向方向的应力,主要受到流体和温度两个因素的影响。
当管道内部温度升高,周向应力也会随之升高,如果超过极限值,就可能导致管道的破裂。
•径向应力径向应力是指与管道中心轴线垂直方向的应力,通常是由于弯曲、扭转等变形所引起的。
如果弯曲半径过小或者存在缺陷,就会导致径向应力过大,从而容易引起管道的破裂。
压力管道应力分析压力管道应力分析是针对管道内各种应力进行综合分析的过程。
在分析的过程中,通常需要采用有限元分析等方法,通过建立合适的数学模型和计算,得出管道内部的应力情况和强度,并评估管道是否存在危险的可能性。
在进行应力分析时,一般需要考虑以下几个方面。
1. 材料力学性能材料力学性能直接影响管道的使用寿命和安全性。
因此,对于材料的强度、韧性、塑性等性能参数,都需要进行准确的测定和分析。
常见的材料包括石墨、钢铁、铝合金等。
2. 工况分析针对不同的工况,管道所受的力也会不同。
因此,在进行应力分析之前,需要准确确定工况参数,如内压、外界温度等,以便进行有针对性的分析。
3. 有限元分析有限元分析是应用计算机模拟技术,将管道模型分割成有限个小模型,通过对小模型的计算和组合,分析管道内部的应力和强度分布。
这种方法可以更直观地了解管道内部应力的变化情况,有效评估管道的安全性和强度。
压力管道应力分析是管道设计和使用过程中必不可少的环节。
管道应力计算指导

[转贴]压力管道应力分析部分第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。
电厂汽水管道应力计算与分析

电厂汽水管道应力计算与分析摘要:本文主要针对管道所受荷载以及产生的应力进行简单的分析,同时结合AutoPSA程序计算实例,探讨在汽水管道设计中,怎样通过应力计算程序对相关管道进行静应力分析同时给出正确的分析结果,从而保证管道设计的安全性与经济性。
关键词:电厂;汽水管道;应力计算1管道应力计算的任务及内容管道应力计算的主要任务是验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备推力和力矩是否在设备所能安全承受的范围内。
2管系的荷载与应力2. 1应力合成。
由不同荷载引起的管系应力可分为以下几种:(1)环向应力,主要由管内压或外压产生。
(2)轴向应力,主要由管内压或外压产生,或由外力或力矩作用在管轴方向产生。
(3)剪应力,主要由管系的热胀、自重产生的扭矩及剪切力产生。
(4)其它应力,如地震、压力脉动、汽锤等动荷载或冲击荷载产生,通常分解为管系各部分的最大等效静荷载。
2. 2评定标准。
电厂汽水管道安全性判别评定标准一般采用以下方法:2. 2. 1持续荷载下的应力:其中——一次应力(MPa)[δ]1?——管道元件材料在设计温度下的许用应力(MPa)P?——管道设计压力(MPa)DO?——管道外径(mm)Di?——管道内径(mm)MA——持续外载在管截面上的合成力矩(N.mm)W——管道的截面抗弯模量(mm3)i——应力增强系数(0.75i>1)2.22热胀应力。
管系热胀应力范围应满足下式要求:(式2)管道全温度周期范围内交变次数N≤2500时。
F取1.[δ] 20——管道元件材料在20℃下的许用应力(MPa)δE——热胀应力(MPa)3.管系的应力计算3. 1 ANSI判断分析法。
对于简单管系,如果其有同一管径、同一壁厚,两端固定,无中间约束的普通介质管道,只要管系具有足够的柔性,能满足下式要求,可不进行应力分析计算。
第一讲供热管道应力计算

供热管道应力计算的任务是计算供热管道由内压力、外部荷载和 热胀冷缩引起的力、力矩和应力,从而确定管道的结构尺寸,采取 适当的补偿措施,保证设计的供热管道安全可靠并尽可能经济合理。
进行应力计算时,主要考虑下列荷载所引起的应力: 1.由于管道内的流体压力(简称为内压力)作用所产生的应力。 2.由于外载负荷作用在管道上所产生的应力。外载负荷主要是管道 自重(管子、流体和保温结构的重量)和风雪载荷(对室外管道)。 3.由于供热管道热胀冷缩所产生的应力。
最大允许间距可按下式确定:
Lmax
53
iEI q
式中
i ——管道的坡度;
l ——管道断面惯性矩,m4(见附录14-3);
E ——管道材料的弹性模量,N/m2。
q ——外载负荷作用下管子的单位长度的计算重量, N/m。
§14-2 管壁厚度及活动支座间距的确定
对热水管道存在反坡也不会影响运行。因此,也可采用控制管道的最 大允许挠度的方法,来加大活动支座的允许间距。管道的最大允许挠度应 控制在(0.02~0.1)DN以内,此时可用下列方程组确定:
L
L1
24EI qx3
ymax
ix 2
x
L L2 2x
L.L1.L2 ——活动支座的允许间距,m;
24EI
1
x2 q • ymax x2
x ——管道活动支座到管子最大挠曲面的距离,m。
EI ——管子的刚度,N m ; q ——单位管长的计算重量,N / m
i ——管子坡度。 ymax ——最大允许挠度,ymax (0.02 ~ 0.1)DN
根据材料力学中受均匀载荷的连续梁的角应变方程,可得出结论:如管道中 间最大挠度等于或小于0.25iL值则管道不会出现反坡,即满足如下方程式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道应力分析和计算
目 次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准 1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2 管道的柔性分析与计算 2.1 管道的柔性 2.2 管道的热膨胀补偿 2.3 管道柔性分析与计算的主要工作 2.4 管道柔性分析与计算的基本假定 2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法 2.9 管道对设备的推力和力矩的计算
3 管道的应力验算 3.1 管道的设计参数 3.2 钢材的许用应力 3.3 管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5 管道在有偶然荷载作用时的应力验算 3.6 管系热胀应力范围的验算 3.7 力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件 管道应力分析和计算
1 1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程 (2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B 31.1 规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载 管道应力分析和计算 2 管道上可能承受的荷载有: (1) 重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:包括内压力和外压力; (3)位移荷载:包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流动冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击; (7)两相流脉动荷载; (8)压力脉动荷载,如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载,如回转设备的简谐振动。 上述荷载根据其作用时间的长短,可以分为恒荷载和活荷载两类;根据其作用的性质,可以分为静力荷载和动力荷载。由于不同特征的荷载产生的应力性态及其对破坏的影响不同,因此,在应力分析与计算中也将采用与之相适应的方法。 1.5 变形与应力 1.5.1 变形 在外力(荷载)作用下,结构的总体或构件的形状和尺寸都会发生不同程度的变化,这种形状的改变,一般称为变形。 1.5.2 变形的分类 (1)按照变形的性态,可分为弹性变形和塑性变形两大类。 弹性变形:构件或物体在外力作用下产生的变形,外力除去后能完全恢复其原有形状,不遗留外力作用过的任何痕迹,这种变形叫做弹性变形。 管道应力分析和计算 3 塑性变形:构件或物体在外力作用下产生的变形,当外力除去后,构件或物体的形状不能复原,即遗留了外力作用下的残余变形,这种变形称为塑性变形。 (2)按照变形的形式,可分为轴向拉伸(或压缩)、弯曲、扭转和剪切变形四种基本形式。 拉(压)变形:这种变形是由一对大小相等、方向相反、作用线与杆件轴线重合的外力所引起的。在这种外力作用下,杆的长度将伸长(或缩短)。 弯曲变形:当杆件承受与它的纵轴线垂直的荷载或纵向轴线平面内的力偶作用时,杆的纵向轴线由原来的直线变成了弧线,这种变形称为弯曲变形。 剪切变形:这种变形是杆件受到一对大小相等、方向相反、作用线相距很近的外力作用时所产生的。它的特征是在上述外力作用下杆的两个外力作用线间的各断面将力的作用方向(垂直于杆件轴线方向)发生相对错动。 扭转变形:杆件在受到一对大小相等、转向相反、作用面垂直于杆件轴线的力偶作用时,使杆件的任意的两个断面绕杆件轴线作相对的转动,即产生扭转变形。 1.5.3 应力 在外力作用下,构件发生变形,这说明构件材料内部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。这种力的改变量称为内力。 内力是沿整个断面连续分布的,单位面积上的内力强度,即应力,以“”表示。 1.5.4 应变与弹性模数 管道应力分析和计算 4 (1)应变:构件或物体受外力(荷载)作用下将产生变形,为表明变形的程度,需计算单位长度内的变形,即应变,以“”表示。 (2)弹性模数:弹性模数E,代表材料在受到拉伸(或压缩)作用时对弹性变形的抵抗能力。当杆件长度、断面积、外力以及温度均相同的条件下,E的数值越大,杆件的轴向伸长(变形)越小。因此,E也可说是衡量材料刚度的指标。 在弹性范围内,应力=弹性模数×应变,即=E·。 (3)泊松比:在弹性范围内,横向线应变与轴向线应变之比为一常数,此常数的绝对值称为泊松比,以“”表示。 泊松比的数值,对汽水管道常用的钢材,由试验得出,在弹性状态下约在0.25至0.35之间,在实用计算中取为0.3。但是,它随着钢材塑性变形的发展而增加,对塑性状态下可近似地取为0.5。 (4)剪切弹性模数:表示材料在线性弹性性态时抵抗剪切变形的能力。剪应力与剪应变也服从虎克定律。剪切弹性模数G与弹性模数E和泊松比有以下关系:G= ,若取常用管道钢材在弹性状态下的泊松比=0.3,则剪切弹性模数G将等于6.2E。 1.6 强度指标与塑性指标 钢材的强度特征与变形特征是用一定的强度指标与塑性指标来衡量的,这两类指标都是表示钢材力学性能(机械性能)的物理量,它们都可以通过钢材的拉伸试验来得到。 1.6.1 强度极限b:在拉伸应力-应变曲线上的最大应力点,单位为MPa。 1.6.2 屈服极限S:材料在拉伸应力超过弹性范围,开始发生塑性变形时的应力。有些材料的拉伸应力-应变曲线并不出现明显的屈服平
1(2E 管道应力分析和计算 5 台,即不能明确地确定其屈服点。对此种情况,工程上规定取试样产生0.2%残余变形的应力值作为条件屈服极限,用s(0.2%)表示,单位为MPa。 1.6.3 持久强度Dt:在给定温度下,使试样经过一定时间发生蠕变断裂时的应力。在工程上通常采用试样在设计温度下10万小时断裂时的平均值Dt表示,单位为MPa。 1.6.4 蠕变极限Dt:在给定温度下和规定的持续时间内,使试样产生一定蠕变量的应力值。工程上通常采用钢材在设计温度下,经10万小时,蠕变率为1%时的应力值,单位为MPa。 1.6.5 延伸率:试样在拉伸试验中发生破坏时,产生了百分之几的塑性伸长量,是衡量钢材拉伸试验时塑性的一个指标。试样的原始长度,一般选择为试样直径的5倍或10倍,因此,试样有5和10值,单位为百分率(%)。 1.6.6 断面收缩率ψ:断面收缩率表明试样在拉伸试验发生破坏时,缩颈处所产生的塑性变形率,它是衡量材料塑性的另一指标,单位为百分率(%)。 1.6.7 冲击功:钢材在进行缺口冲击试验时,消耗在试样上的能量,称为冲击功,用Ak表示,单位为焦耳(J)。消耗在试样单位截面上的冲击功,即冲击韧性(也称冲击值),用k表示,单位为J/cm2。 1.6.8 硬度:反映材料对局部塑性变形的抗力及材料的耐磨性。硬度有三种表示方法,即布氏硬度HB、洛氏硬度HR和维氏硬度HV,其测定方法和适用范围各异。 1.7 强度理论 常用的材料强度理论有四种,分别是: 1.7.1 第一强度理论-最大拉应力理论,其当量应力为 管道应力分析和计算 6 S=1 (式1.7.1) 它认为引起材料断裂破坏的主要因素是最大拉应力。亦即不论材料处于何种应力状态,只要最大拉应力达到材料单向拉伸断裂时的最大应力值,材料即发生断裂破坏。 1.7.2 第二强度理论-最大伸长线应变理论,其当量应力为 S=1-(2+3) (式1.7.2) 它认为引起材料断裂破坏的主要因素是最大伸长线应变。亦即不论材料处于何种应力状态,只要最大伸长线应变达到材料单向拉伸断裂时的最大应变值,材料即发生断裂破坏。 1.7.3 第三强度理论-最大剪应力理论,其当量应力为 S=1-3 (式1.7.3) 它认为引起材料破坏或失效的主要因素是最大剪应力。亦即不论材料处于何种应力状态,只要最大剪应力达到材料屈服极限值,材料即发生屈服破坏。 1.7.4 第四强度理论-变形能理论,其当量应力为 S=22213322121 (式1.7.4) 它认为引起材料屈服破坏的主要因素是材料内的变形能。亦即不论材料处于何种应力状态,只要其内部积累的变形能达到材料单向拉伸屈服时的变形能值,材料即发生屈服破坏。 在管道强度设计中,主要采用最大剪应力强度理论。 1.8 蠕变与应力松弛 蠕变和应力松弛是金属材料在高温下的机械性能。 1.8.1 蠕变是指金属在高温和应力同时作用下,应力保持不变,其非弹性变形随时间的延长而缓慢增加的现象。高温、应力和时间是蠕变