管道应力分析及计算共51页文档
管道应力分析和计算汇总

管道应力分析和计算
目次
1 概述
1.1 管道应力计算的主要工作
1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法
1.4 管道荷载
1.5 变形与应力
1.6 强度指标与塑性指标
1.7 强度理论
1.8 蠕变与应力松弛
1.9 应力分类
1.10 应力分析
2 管道的柔性分析与计算
2.1 管道的柔性
2.2 管道的热膨胀补偿
2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算
2.6 冷紧
2.7 柔性系数与应力增加系数
2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算
3 管道的应力验算
3.1 管道的设计参数
3.2 钢材的许用应力
3.3 管道在内压下的应力验算
3.4 管道在持续荷载下的应力验算
3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算
3.7 力矩和截面抗弯矩的计算
3.8 应力增加系数
3.9 应力分析和计算软件。
管道应力分析及计算全

B、动力分析包含的内容 a)管道固有频率分析 — 防止共振。 b)管道强迫振动响应分析 — 控制管道振动及应力。 c)往复式压缩机(泵)气(液)柱频率分析 — 防止气柱 共振。
d)往复式压缩机(泵)压力脉动分析 — 控制压力脉动 值(δ值)。
C、动力分析要点
a)
振源
机器动平衡差 — 基础设计不当
⑶ 编制临界管线表(三级签署) — 应力分析管线表
静力分析
⑷ 应力分析
(三、四级);
动力分析
⑸ 卧式容器固定端确定,立式设备支耳标高确定;
⑹ 支管补强计算;
⑺ 动设备许用荷载校核(四级)
⑻ 夹套管(蒸汽、热油、热水)计算(端部强 度计算、内部导向翼板位置确定、同时 包括任何应力分析管道的所有内容);
三、管道的柔性设计
3.1、柔性定义及柔性设计的方法和目的 a)定义 b)目的 c)设计方法 d)端点位移考虑 3.2、是否进行详细柔性设计的判别方法 a)应进行详细柔性设计的管道 b)可以不进行详细柔性设计的管道 c)判别式的使用方法与注意事项 3.3、管道的热补偿
三、管道的柔性设计
3.4、应力增大因子 3.5、柔性分析方程 3.6、弹性模量随温度变化效应 3.7、柔性分析的另一规则
2)两台或三台压缩机的汇集总管截面积至少为进口管 截面积的三倍,且应使柱塞流的冲击力不增加。
3)孔板消振 — 在缓冲罐的出口加一块孔板。
孔径大小:
d D
4
U,
U
V气体流速 V介质内的声速
d 0.3 ~ 0.5 D
孔板厚度=3~5mm
孔板位置 — 在较大缓冲罐的进出口均可
d)减少激振力——减少弯头、三通、异径管等管件。
A、当
LNG管道应力计算与分析

LNG管道应力计算与分析1 应力分析的基础知识1.1 应力分析的主要目的首先,使管道各处的应力水平处在允许的范围内,使与设备相连的管口荷载符合制造商或公认的标准规定的受力条件。
其次,计算出各约束处所受的荷载及各种工况下管道的位移。
最终,帮助技术人员对管系进行优化。
1.2 应力分析的理论材料破坏的形式主要有两类:流动破坏和断裂破坏。
强度理论相应分为两类。
一类是解释材料断裂的强度理论,包括最大拉应力理论(第一强度理论)和最大伸长线应变理论(第二强度理论);另一类是解释材料流动破坏的强度理论,包括最大剪应力理论(第三强度理论)和形变比能理论(第四强度理论)[1、2]。
GB 50316—2000《工业金属管道设计规范》是目前国内应力计算方面较权威的规范,与美国标准ASME B31.3《工艺流程管道》(Process Piping)基本等效。
我国其他有关管道应力分析的行业标准基本上参照了ASME B31《压力管道规范》系列。
ASME B31系列中各标准在应力校核条件方面存在一些差别,但总的来说这些差别是非原则性的。
从强度理论分类方面来讲,GB 50316—2000《工业金属管道设计规范》与美国标准ASME B31.3《工艺流程管道》相同,均采用了最大剪应力理论。
1.3 应力的分类在应力分析领域,工程师为便于分析,人为将应力分为一次应力、二次应力、峰值应力。
在计算前假定了一定的边界条件,计算出的应力按照一定的判别条件进行分析和判断。
计算出的应力不是管道实际承受的应力,与实际工程中在管道上用应变仪测量出来的应力无任何关系。
1.3.1 一次应力一次应力是由机械外荷载引起的正应力和剪应力,它必须满足外部和内部的力和力矩的平衡法则。
其特征是:一次应力是非自限性,它始终随所加荷载的增加而增加,超过材料的屈服极限或持久强度时,将使管道发生塑性破坏或总体变形,因此在管系的应力分析中,首先应使一次应力满足许用应力值。
1.3.2 二次应力二次应力是由于变形受到约束所产生的正应力或剪应力,它本身不直接与外力平衡。
管道应力分析和计算解析

管道应力分析和计算
目次
1 概述
1.1 管道应力计算的主要工作
1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法
1.4 管道荷载
1.5 变形与应力
1.6 强度指标与塑性指标
1.7 强度理论
1.8 蠕变与应力松弛
1.9 应力分类
1.10 应力分析
2 管道的柔性分析与计算
2.1 管道的柔性
2.2 管道的热膨胀补偿
2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算
2.6 冷紧
2.7 柔性系数与应力增加系数
2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算
3 管道的应力验算
3.1 管道的设计参数
3.2 钢材的许用应力
3.3 管道在内压下的应力验算
3.4 管道在持续荷载下的应力验算
3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算
3.7 力矩和截面抗弯矩的计算
3.8 应力增加系数
3.9 应力分析和计算软件。
管道应力分析及计算PPT课件

2)两台或三台压缩机的汇集总管截面积至少为进口管 截面积的三倍,且应使柱塞流的冲击力不增加。
3)孔板消振 — 在缓冲罐的出口加一块孔板。
孔径大小:
d D
4
U,
U
V气体流速 V介质内的声速
d 0.3 ~ 0.5 D
孔板厚度=3~5mm
孔板位置 — 在较大缓冲罐的进出口均可 18
d)减少激振力——减少弯头、三通、异径管等管件。
强度条件:连续敷设水平直管允许跨距强度条件是管
道中最大
纵向应力不得大于设计温度下的材
料的许用应力。
b)管道跨距计算
c) 不考虑内压最大允许跨距
d)考虑内压最大允许跨距
e)大直径薄壁管道
28
10.2、管道跨距及导向间距 2)导向间距:
a)水平管 b)垂直
垂直管道的最大导向支架间距大致可按不 保温管充水的水平管道支架间距进行圆整。
需提条件给土建 :沉降量的考虑;储罐抗震措施。
22
⑿设备管口荷载及预焊件条件 — 供设备专业校核 局部应力和设计用 设备管口承载能力表
插图
⒀编制弹簧架采购MR文件及弹簧架技术数据表 — 选型、荷载、位移
串联 — 按最大荷载选弹簧
位移按最大位移量分配
并联 — 选同型号弹簧、荷载平均分配
荷载变化率 — 国标≤25%(可改变)
(8)夹套管 b)端部强度计算 管端结构
c)内部导向翼板位置确定
⑼ 往复式机泵动力分析
安全阀与爆破片
⑽ 安全阀,爆破膜泄放反力计算(见标准计算程序)
ANSI/B 31.1(气体);API RP 520(气体、气混)
⑾结构,荷载条件: F≥1000Kgf,M≥750Kgf × Bf Bf — 梁翼缘宽度。
管道应力分析及计算

三、管道的柔性设计
3.1、柔性定义及柔性设计的方法和目的 a)定义 b)目的 c)设计方法 d)端点位移考虑 3.2、是否进行详细柔性设计的判别方法 a)应进行详细柔性设计的管道 b)可以不进行详细柔性设计的管道 c)判别式的使用方法与注意事项 3.3、管道的热补偿
三、管道的柔性设计
3.4、应力增大因子 3.5、柔性分析方程 3.6、弹性模量随温度变化效应 3.7、柔性分析的另一规则
五、管道机械专业(应力分析)常用的标准规范
1、GB50316-2000《工业金属管道设计规范》 2、HG/T20645-1998《化工装置管道机械设计规定》 3、SH/T3041-2002《石油化工企业管道柔性设计规范》 4、GB150《钢制压力容器》 5、JB/T8130.1-1999 《恒力弹簧支吊架》 6、JB/T8130.2-1999 《可变弹簧支吊架》 7、GB 50251-2003 《输气管道工程设计规范》 8、GB 50253-2003 《输油管道工程设计规范》 9、ASME/ANSI B31.1 -- Power Piping
10、ASME/ANSI B31.3 Process Piping 11、ASME/ANSI B31.4 Liquid Transmission and
Distribution piping systems 12、ASME/ANSI B31.8 Gas Transmission and Distribution piping systems 13、API610 -- 离心泵 14、NEMA SM23 -- 透平 15、API617 -- 离心式压缩机 16、API618 -- 往复式压缩机 17、API661 -- 空冷器 18、ANSI/B31.1、APIRP520 -- 安全阀、爆破膜
管道应力分析及计算PPT课件

(6)限位架 2 限制性管架
(7)轴向限位架
用于限制任一方向线位移的场合; 用于限制管道轴向线位移的场合;
(8)导向架 3 减振支架 (9)减振器
用于允许有管道轴向位移,但不允 许有横向位移的场合
用于限制或缓和管道振动
27
10.2、管道跨距及导向间距
1)管道跨距 — 强度及刚度两项控制
a)力学模型
气流脉动 — 气柱共振 阻力、流速、流向变化 — 异径管、弯头、 阀门、孔板等附近产生激振力 共振 — 激振力频率等于或接近管线固有频 率
b) 机器动平衡差——修改基础设计
17
c)减少脉动和气柱共振的方法:
1)加大缓冲罐 — 依据API618计算缓冲罐的体积,一 般为气缸容积的10倍以上,使缓冲罐尽量靠近进出 口,但不能放在共振管长位置。
小分类
(1)刚性支吊架
用途 用于无垂直位移的场合;
(2)可调刚性支吊架 用于无垂直位移,但安装误差要求 严格的场合;
1 承重管架 (3)可变弹簧支吊架 用于有少量垂直位移的场合;
(4)恒力弹簧架 (5)固定架
用于垂直位移较大或要求支吊点的 荷载变化率不能太大的场合; 用于固定点处,不允许有线位移和 角位移的场合;
振幅
(3)激振力频率
W0
n 60
缸数
单(双 )作用数(1 /
秒)
n = 转/分 — 压缩机转数
20
(4)控制压力脉动
P ≤5Kg/cm2 ≤5 ~100 Kg/cm2 ≤100 ~ 200Kg/cm2 ≤200 ~ 500Kg/cm2
压力脉动值δ 2~8% 2~6% 2~5% 2~4%
注:此为原苏联标准
13
⑶ 临界管线表
钢管应力计算【可编辑范本】

第一章总则第1。
0.1条管道应力计算的任务是:验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备的推力和力矩是否在设备所能安全承受的范围内。
第1.0.2条本规定适用于以低碳钢、低合金钢和高铬钢为管材的火力发电厂汽水管道的应力计算。
油、空气介质的管道应力计算,可参照本规定执行。
核电站常规岛部分管道应力计算,可参照本规定执行。
第1.0.3条管道的热胀应力按冷热态的应力范围验算。
管道对设备的推力和力矩按在冷状态下和在工作状态下可能出现的最大值分别进行验算。
第1.0.4条恰当的冷紧可减少管道运行初期的热态应力和管道对端点的热态推力,并可减少管系的局部过应变。
冷紧与验算的应力范围无关.第1。
0。
5条进行管系的挠性分析时,可假定整个管系为弹性体。
第1.0。
6条使用本规定进行计算的管道,其设计还应遵守《火力发电厂汽水管道设计技术规定》。
管道零件和部件的结构、尺寸、加工等,应符合《火力发电厂汽水管道零件及部件典型设计》的要求。
第二章钢材的许用应力第2。
0.1条钢材的许用应力,应根据钢材的有关强度特性取下列三项中的最小值:σb20/3,σst/1。
5或σst(0。
2%)/1.5,σD t/1.5其中σb20—-钢材在20℃时的抗拉强度最小值(MPa);σs t-—钢材在设计温度下的屈服极限最小值(MPa);σs t(0。
2%)—-钢材在设计温度下残余变形为0。
2%时的屈服极限最小值(MPa);σDt——钢材在设计温度下105h持久强度平均值。
常用钢材的许用应力数据列于附录A.国产常用钢材和附表中所列的德国钢材的许用应力按本规定的安全系数确定.美国钢材的许用应力摘自美国标准ASMEB31.1。
ﻩ对于未列入附录A的钢材,如符合有关技术条件可作为汽水管道的管材时,它的许用应力仍按本规定计算.第三章管道的设计参数第3.0。