油膜振荡
汽轮发电机机组油膜振荡综合诊断与处理建议

汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组是电力工业中常用的发电设备之一。
在运行过程中,由于各种原因,可能会出现油膜振荡现象。
油膜振荡是指在发电机机组的主轴承上存在高频振动,在没有办法最终解决问题之前,用以稳定轴承与轴之间的油膜。
本文将对油膜振荡的综合诊断与处理提出相关建议。
1. 油膜振荡的综合诊断1.1 振动信号的采集与分析对发电机机组的振动信号进行采集,可以使用加速度传感器或振动传感器。
采集到的振动信号可以通过频域分析、时域分析和轨迹分析等方式进行分析,了解振动的频率、振幅和振动模态等信息,进一步判断是否存在油膜振荡现象。
1.2 润滑油分析通过对润滑油的取样与分析,检测其中存在的金属颗粒、水分和气体等,判断润滑油中的污染程度。
油膜振荡可能与润滑油的污染程度相关,因此通过润滑油分析可以初步判断是否存在油膜振荡问题。
1.3 轴承与轴的检查对发电机机组的主轴承和转子轴进行检查,观察是否存在磨损、裂纹等现象。
同时检查轴承支座的状况,确保其安装固定良好,并检查轴承间隙是否合适。
1.4 机械结构与零部件的检查对发电机机组的机械结构和零部件进行检查,包括转子、密封件、键槽等。
确保机械结构和零部件的完好性,防止振动信号传导到轴承处,引起油膜振荡。
2. 油膜振荡的处理建议2.1 清洗润滑油系统定期清洗润滑油系统,确保润滑油的质量。
清洗时使用适当的清洗剂,将污染物和金属颗粒等清除,降低润滑油的污染程度,减少油膜振荡的概率。
2.2 替换润滑油定期更换润滑油,防止润滑油在使用过程中积累过多的污染物。
合理选择合适的润滑油,以减少油膜振荡的风险。
2.3 修复或更换磨损严重的零部件对于存在磨损、裂纹等严重问题的零部件,应及时进行修复或更换,避免其对机组运行造成不利影响,减少油膜振荡的概率。
2.4 加装振动阻尼器在主轴承上加装振动阻尼器,以调节轴的振动,减少油膜振荡的发生。
振动阻尼器可以通过调整阻尼力大小来降低轴的振动幅度,从而改善油膜振荡现象。
油膜振荡产生的原因

油膜振荡产生的原因
油膜振荡是一种常见的结构振动现象,通常出现在液体的表面上,例
如水面或油面。
其产生的原因比较复杂,可能与多种因素有关。
本文
将分步骤阐述油膜振荡产生的原因。
第一步,流体运动的不平稳性。
当流体泵送速度不稳定或通道结构设
计不合理时,会形成流体的不平稳流动,导致油膜振荡。
此时,油膜
表面的压力和速度分布不均匀,产生涡旋和涡流,增大了油膜表面的
摩擦力,引起油膜的振荡。
第二步,振荡源的非线性性。
当油膜表面受到冲击或扰动时,会出现
振荡。
此时,振动源的非线性特性使油膜振动形成不规则的振动波形,难以被精确地描述和预测。
第三步,油膜表面的几何形状。
油膜受到外界扰动后,表面几何形状
的变化将对油膜振动产生重要影响。
例如,当油膜表面存在凸起或凹
陷时,将导致波形的反射或干涉,使油膜振动加强或抑制。
第四步,油膜表面的材料和粘性特性。
油膜的材料和粘度将影响油膜
表面的振动模式。
例如,粘度较高的油膜会抵抗振动的扰动,从而减
小振幅,而材料较硬的油膜则对油膜表面的扰动具有较小的响应。
总之,油膜振荡产生的原因是多种因素综合作用的结果。
这一现象存
在于多个领域,例如工业生产、机械工程和环境科学等领域,对其进
行研究和控制具有重要意义。
油膜振荡报告

13
根据油流的连续条件分析油膜振荡
• 在△t时间内流进间隙(C+e)的油量为: • 在△t时间内流出间隙(C-e)的油量为:
t
t
R C e 2 R
2
C e
• 轴颈中心围绕O旋转时所造成空穴的体积为上图中月牙形部 分的体积,等于通过OO1线的直径所扫过的体积: e 2 R t 根据油腔中油流连续条件可得:
t R R C e t C e 2Re 2 2
2
流体涡动旋转速度等于轴 的旋转速度的一半
“半速涡动”现象
实际上,考虑到油膜速度并不按线性规律分布,而且由于润滑油在轴 承端面有泄露,一般涡动频率略小于轴颈转速的一半,约为轴颈转速 的0.40-0.49。
抑振措施 1、合理的选取轴承 轴承的选取主要是改变产生油膜压力的油 楔数目。 a、圆形轴瓦:一个 b、椭圆轴瓦:两个 c、多油楔轴承:大于两个
单油楔与多油楔轴承
2、避开共振区域 通过改变结构增加转子的固有频率,使转子 的工作转速低于2倍的临界转速。
3、采用稳定性很好的可倾轴瓦式轴承 当转子受到外界激励因素干扰,轴 颈暂时偏离原来位置时,各瓦块可按轴 颈偏移后的载荷方向自动调整位置, 使油膜合力与外载荷相平衡。
可倾轴瓦
4、其它措施 a、改变润滑油的粘度 b、减少轴承的长径比 c、增加供油压力
谢谢
化工学院
当涡动力超过油膜的阻尼,则使轴颈绕原平衡位置O′产 生涡动,这时涡动是发散的,轴颈运动是不稳定的。随着 转速的进一步提高,从而形成油膜振荡。
油膜涡动和油膜振荡
区别:油膜涡动(半速涡动)一般是在低转速下发生的, 而油膜振荡一般是在高转速下发生。
联系:油膜涡动一旦发生,不会随着转速的升高而消失, 会保持一定的振幅,涡动频率随转动频率的升高而增加, 始终保持一半的转速频率;在高转速下,油膜涡动的频率 会跟轴的固有频率发生共振。
汽轮发电机机组油膜振荡综合诊断与处理建议

汽轮发电机机组油膜振荡综合诊断与处理建议一、概述汽轮发电机机组作为发电厂的核心设备,其运行稳定性和可靠性对供电系统的正常运行至关重要。
而油膜振荡作为汽轮发电机机组常见的故障之一,一旦出现将严重影响设备的安全运行。
对汽轮发电机机组油膜振荡进行综合诊断与处理具有重要的意义。
二、油膜振荡的概念及危害油膜振荡是指在摩擦副间的油膜中因为受到外界激振或者系统本身的激振而发生振动的现象。
油膜振荡会导致机械部件磨损加剧、噪音增大、振动增大等问题,严重时还会造成设备损坏、停机甚至事故。
三、油膜振荡的诊断方法1. 实测法:通过振动仪、加速度传感器等设备对汽轮机设备进行实时监测,获得机组振动和频谱信息,判断是否存在油膜振荡现象。
2. 振动信号处理和分析法:通过对振动信号进行处理和分析,提取特征频点和特征值,判断是否存在油膜振荡现象。
3. 润滑油分析法:对发电机机组的润滑油进行分析,判断是否存在异常现象。
四、油膜振荡的处理建议1. 优化油膜结构:通过改进滑动轴承的结构、参数和材料,减少外激振和本振,提高滑动轴承的稳定性和可靠性。
2. 优化润滑系统:采用先进的油膜振动抑制技术,优化机组的润滑系统,提高摩擦副的稳定性和可靠性。
3. 控制外界激振:对机组的外界激振源进行控制和抑制,减少外界激振对机组的影响。
4. 提高润滑油质量:选择优质的润滑油品牌,保障机组的润滑油质量,减少润滑副的摩擦和磨损。
五、实际应用案例某电厂的汽轮发电机机组在运行中出现了油膜振荡的故障,严重影响了机组的安全运行。
经过综合诊断和处理,先后采取了优化油膜结构、改进润滑系统和控制外界激振等措施。
经过一段时间的试运行,汽轮发电机机组的油膜振荡问题得到了有效控制,机组的运行稳定性和可靠性得到了显著提高。
油膜振荡实验报告

一、实验目的本次实验旨在通过模拟油膜振荡现象,探究油膜振荡的产生机制、影响因素以及危害,为实际工程应用中预防和控制油膜振荡提供理论依据。
二、实验原理油膜振荡是指旋转轴颈在滑动轴承中带动润滑油高速流动,在一定条件下,高速油流反过来激励轴颈,产生一种强烈的自激振动现象。
其主要原因是在轴颈与轴瓦之间的间隙中形成的油膜,其承载力与外载荷平衡时,轴颈处于平衡位置;当转轴受到某种外来扰动时,轴颈中心就会在静平衡位置附近发生涡动,其振动频率约为转子回转频率的一半,称为半速涡动。
当转速达到比第一阶临界转速的2倍稍高以后,半速涡动的涡动速度与转轴的第一阶临界转速相重合,产生共振,振动幅度剧烈增加,称为油膜振荡。
三、实验仪器与材料1. 实验台:用于放置实验装置,确保实验过程稳定;2. 轴承:模拟实际工程中的轴承,提供支撑和承载;3. 轴颈:模拟实际工程中的轴颈,承受油膜振荡带来的振动;4. 润滑油:模拟实际工程中的润滑油,提供润滑和承载;5. 传感器:用于测量振动信号;6. 数据采集系统:用于实时采集振动数据;7. 电脑:用于数据处理和分析。
四、实验步骤1. 将轴承安装在实验台上,确保轴承与轴颈的配合精度;2. 将润滑油加入轴承中,确保油膜形成;3. 启动轴颈,逐渐提高转速,观察振动信号;4. 记录不同转速下的振动数据;5. 分析振动数据,判断是否存在油膜振荡现象;6. 通过改变轴承间隙、润滑油种类、转速等参数,研究油膜振荡的影响因素。
五、实验结果与分析1. 实验结果表明,当转速达到一定值时,振动信号出现约转速频率0.35~0.49倍的频率成分,表明半速涡动现象的存在;2. 当转速继续升高,半速涡动的频率成分保持不变,说明半速涡动现象稳定;3. 当转速达到比第一阶临界转速的2倍稍高时,振动幅度急剧增加,表明油膜振荡现象发生;4. 通过改变轴承间隙、润滑油种类、转速等参数,发现轴承间隙过小、润滑油粘度过高、转速过高等因素容易引发油膜振荡。
汽轮发电机机组油膜振荡综合诊断与处理建议

汽轮发电机机组油膜振荡综合诊断与处理建议一、背景介绍汽轮发电机机组是燃气轮机和电力发电机的一个组合系统,通过燃气轮机驱动电力发电机发电。
在汽轮发电机运行过程中,由于各种原因,容易出现油膜振荡现象,导致设备性能下降、工作效率降低,甚至可能造成设备损坏。
对汽轮发电机机组油膜振荡进行综合诊断与处理显得十分重要。
二、油膜振荡的原因1. 油膜振荡的原因一般包括:轴承磨损、油膜不稳定、轴承间隙不当、转子不平衡、机械故障、传动系统失效等。
2. 轴承磨损会导致轴承的正常运行受阻,油膜产生振荡,影响设备正常运行。
3. 油膜不稳定也是油膜振荡的重要原因,主要表现在油润滑状况不良、油泵失效、油品质量不合格等方面。
4. 轴承间隙不当、转子不平衡、机械故障、传动系统失效等也都可能导致油膜振荡。
三、诊断方法1. 振动测量:通过振动测量系统对汽轮发电机机组进行全面的振动监测,可以辨别出振荡频率、振幅及振动类型,为后续的故障分析提供重要数据。
2. 润滑油分析:通过对润滑油进行化学元素分析、油品粘度测试等手段,可以判断油品质量是否合格,进而判断油膜是否稳定。
3. 热测量:利用红外热像仪对汽轮发电机机组各个部位的温度进行监测,可以发现存在油润滑不良、轴承磨损等问题。
四、诊断结果与处理建议1. 轴承磨损:若因轴承磨损引起的油膜振荡,建议及时更换轴承,并重新调整轴承间隙,确保轴承正常运行。
2. 润滑油不稳定:如果发现润滑油不稳定导致的油膜振荡,应及时更换润滑油,确保油品质量合格。
3. 传动系统失效:对于传动系统失效导致的油膜振荡,应对传动系统进行全面检修,并重新调整传动系统参数,确保传动系统正常运行。
4. 机械故障:若原因为机械故障导致的油膜振荡,应对机械部件进行全面检修,确保设备正常运行。
五、预防措施1. 定期维护:加强汽轮发电机机组的定期维护工作,包括对轴承、润滑系统、传动系统等进行全面检修,确保设备运行状态良好。
2. 润滑油管理:对汽轮发电机机组的润滑油进行严格管理,保证油品质量合格,确保油膜稳定性。
汽轮发电机机组油膜振荡综合诊断与处理建议

汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组是利用汽轮机驱动发电机产生电能的装置,其正常运转对于电力生产至关重要。
由于机组长期运行以及其他因素的影响,机组中的润滑油系统可能出现油膜振荡问题,严重影响机组的正常运行和寿命。
对于汽轮发电机机组油膜振荡问题的综合诊断和处理非常重要。
本文将从机组油膜振荡的原因、诊断方法和处理建议三个方面进行综合分析。
一、机组油膜振荡的原因1. 油膜振荡是由于机组运行时润滑油的振动引起的。
润滑油在机械部件表面形成一层薄膜,减少机械部件之间的摩擦和磨损,从而保证机组的正常运行。
但当润滑油的振动频率与机械部件的共振频率相近时,就会产生油膜振荡。
2. 机组设计不合理是油膜振荡的重要原因之一。
机组结构刚度不足、支座刚度不均匀、轴承刚度过大或过小等问题都可能导致油膜振荡的发生。
3. 机组运行过程中的机械故障也是油膜振荡的重要原因。
机械部件的磨损、轴承的损坏、齿轮间隙过大等问题都可能导致机组的振动频率发生变化,从而引发油膜振荡。
二、机组油膜振荡的诊断方法1. 观察机组的振动情况:通过安装振动传感器等设备,观察和记录机组的振动情况,特别是在运行过程中的振动频率和振幅的变化。
如果发现振动频率接近共振频率,说明存在油膜振荡的可能性。
2. 检测润滑油的振动:将机组的润滑油样品取出,使用振动传感器等设备检测润滑油的振动情况。
如果发现润滑油的振动频率与机组振动频率相近,说明存在油膜振荡问题。
3. 利用计算机模拟或仿真软件进行分析:将机组的结构和运行参数输入计算机模拟或仿真软件,通过计算和分析机组的共振频率和振动模态,判断是否存在油膜振荡。
三、机组油膜振荡的处理建议1. 对机组进行结构改造:根据机组的实际情况,对结构刚度不足、支座刚度不均匀等问题进行改造。
增加机组的刚度可以降低共振频率,从而减少油膜振荡的发生。
2. 更换合适的润滑油:选择合适的润滑油可以改善油膜振荡问题。
润滑油的黏度、粘度指数、摩擦系数等参数对油膜的形成和振动频率有一定的影响。
汽轮发电机机组油膜振荡综合诊断与处理建议

汽轮发电机机组油膜振荡综合诊断与处理建议
汽轮发电机机组是电力系统的重要组成部分,油膜振荡是其常见的故障之一。
本文将综合分析汽轮发电机机组油膜振荡的原因,并提出相应的综合诊断与处理建议。
油膜振荡是由于轴承与油膜之间的相互作用引起的,主要原因有以下几点:
1. 轴承结构设计不合理。
轴承结构设计不合理,如径向间隙过大、刚度不足等,会导致轴承在运行过程中产生振动,进而引起油膜振荡。
2. 润滑系统故障。
润滑系统存在故障,如油道堵塞、油压不足等,会导致油膜形成不稳定,从而造成油膜振荡。
3. 轴承磨损严重。
轴承磨损严重会导致轴承与油膜之间的间隙增大,从而造成油膜振荡。
针对以上原因,可以采取以下综合诊断与处理建议:
2. 加强润滑系统维护与管理。
定期检查润滑系统,清理油道,保证油压稳定,及时更换润滑油等措施,可以有效防止润滑系统故障引起的油膜振荡。
3. 加强轴承保养与检修。
定期检查轴承磨损情况,及时更换磨损严重的轴承,避免轴承磨损引起的油膜振荡。
4. 引入振动监测系统。
安装振动传感器,实时监测轴承振动情况,及时发现轴承运行异常并采取相应的处理措施,避免油膜振荡的发生。
汽轮发电机机组油膜振荡是一个常见的故障,需要综合诊断与处理。
通过优化轴承结构设计、加强润滑系统维护与管理、加强轴承保养与检修以及引入振动监测系统等措施,可以有效降低油膜振荡的发生概率,提高机组的可靠性和稳定性,保证电力系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油膜振荡Oil whip,油膜振荡油膜振荡发生在油润滑滑动轴承的旋转设备中,在转子正常工作时,轴颈中心和轴承中心并不重合,而是存在一个偏心距e,当载荷不变、油膜稳定时,偏心距e保持不变,机组运行稳定,轴颈上的载荷W与油膜压力保持平衡,若外界给轴颈一扰动力,使轴心O1位置产生一位移△e而达到新位置,这时油膜压力由p变为p′,因而不再与此时的载荷W′(W′-W)平衡,两者的合力为F,其分力F1将推动轴颈回到起初的平衡位置O1,而在分力F2的作用下,轴颈除了以角速度?棕作自转外,还将绕O 1涡动(涡动方向与转动方向相同),其涡动速度约为角速度的一半,称为油膜涡动(半速涡动)。
油膜涡动产生后就不消失,随着工作转速的升高,其涡动频率也不断增强,振幅也不断增大。
如果转子的转速继续升高到第一临界转速的2倍时,其涡动频率与一阶临界转速相同,产生共振,振幅突然骤增,振动非常剧烈,轴心轨迹突然变成扩散的不规则曲线,半频谐波振幅值就增加到接近或超过基频振幅,若继续提高转速,则转子的涡动频率保持不变,始终等于转子的一阶临界转速,这种现象称为油膜振荡。
发生油膜振荡时,其主要特征是:a.发生强烈振动时,振幅突然增加,声音异常。
b.振动频率为组合频率,次谐波非常丰富,并且与转子的一阶临界转速相等的频率的振幅接近或超过基频振幅;c.工作转速高于第一临界转速的2倍时才发生强烈振动,振荡频率等于转子的第一临界转速,并且不随工作转速的变化而变化,只有工作转速低于2倍第一临界转速后,剧烈振动才消失;d.轴心轨迹为发散的不规则形状,进动方向为正进动;e.轴承润滑油温度变化对振动有明显的影响,降低润滑油温度可以有效地抑制振动。
概述轴瓦自激振动是现场较常见的一种自激振动,它常常发生在机组启动升速过程中,特别是在超速时。
当转子转速升到某一值时,转子突然发生涡动使轴瓦振动增大,而且很快波及轴系各个轴瓦,使轴瓦失去稳定性,这个转速不失稳转速。
轴瓦失稳除与转速直接有关外,还与其他许多因素有关,因此轴瓦自激振动有时会在机组带负荷过程中发生中。
下面将详细讨论其振动机理、轴瓦自激振动故障原因、诊断方法和消除措第一节半速涡动和油膜振荡轴瓦自激振动一般分为半速涡动和油膜振荡两个过程。
转子工作转速在两倍转子第一临界转速以下所发生的轴瓦自激振动,称为半速涡动,因为这时自激振动频率近似为转子工作频率的一半。
这种振动由于没有与转子临界转速发生共振,因而振幅一般不大,现场大量机组实结果多为40-100μm。
转子工作转速高于两倍第一临界转速时所发生的轴瓦自激振动,称为油膜振荡,这时振动频率与转子第一临界转速接近,从而发生共振,所以转子表现为强烈的振荡。
这时转轴和轴承的振幅要比半速涡动大得多,目前已检测到的轴承最大振幅可达600-700μm。
这时要指出,油膜振荡是涡动转速接近转子第一临界转速而引起的共振,而不是与转子当时的转速发生共振,因此采用提高转速的办法是不能避开共振的。
进一步研究表明,轴瓦在不同载茶下的失稳转速有较大的差别。
图所示是轻载轴瓦,轴瓦失稳(半速涡动)在转子第一临界转速之前就发生,而且当转子转速达到两倍第一临界转速,就发生了油膜振荡。
图所示是中载轴瓦,轴瓦失稳(半速涡动)在第一临界转速之后才发生,在高于两倍第一临界转速的某一转速下才发生油膜振荡。
图所示是重载轴瓦,在油膜振荡之前没有发生半速劝,直到高于两倍第一临界转速较多时才发生油膜振荡,而且升速时发生油膜振荡的转速总比降速时油膜振荡消失的转速高,这种现象称为油膜振荡惯性效应。
第二节轴瓦自激振动的机理要了解轴瓦内油膜如何能维持轴瓦自激振动,就行分析油膜力对轴颈的作用。
为了简化起见,现以圆筒形轴瓦为例加以说明。
考虑一根没有受任何载荷,完全平衡的理想转轴。
在高速转动时,其轴颈中心应位于轴承中心一个小位移,则转轴在轴承中的位置在正中心,这时偏离轴承中心的轴颈必然要受油膜弹性恢复力的作用,这个弹性恢复力又有迫使轴颈返回原位置的趋势。
但是,由于轴颈的编移,油流所产生的压力分布发生了变化。
在小间隙的上游侧,被轴颈带动而高速流动的润滑油,从大间隙流往大间隙,压力降低,即油膜压对轴颈的径向偏移线是不对称的,上游侧的压力比下洲侧的压力高。
这个压差垂直于径向偏移线方向,它有迫使转轴沿着垂直于径向偏移线方向(切线方向)进行同向涡动的倾向。
当这个切向力超过各种阻尼力时,转轴就会脱离平衡位置而产生涡动,涡动方向与转动方向一致。
一旦发生涡动,整个转轴就围绕平衡位置涡旋,转轴将受到离心力作用。
这个因涡动而产生的离心力将加大轴颈在轴瓦内的偏移量,从而进一步减少这个小间隙,使得上游和下游之间的压差更大,造成切向力增大。
这又进一步推动轴颈涡动,周而复始,愈演愈烈形成自激。
很明显,轴承内的油膜和一般的机械弹簧不一样,当油膜在外界一个偶然的扰动下变形时,它除了产生一个沿着变形方向的弹性恢复力外,还将产生一个垂直变形方向的切向分力。
这个切向分力就是破坏轴颈在轴承内的稳定性,引起涡动的根源,一般称这个切向分力为失稳分力。
上述分析的是绝对平衡的无载荷轴的理想情况。
对于实际的汽轮发电机组的轴承来讲,总是有载荷的,因而轴颈不会处在轴承中心,转子也不会绝对平衡,所以轴颈中心不可能静止地停留在一点上,但是,油膜具有产生一垂直于变形方向的切向失稳分力的本质没有变。
所以,对于轴颈在外界偶然扰动下所发生的任一偏移,轴承油膜除了产生沿偏移方向的弹性恢复力保持和外界载荷平衡外,仍然要产生一个垂直于偏移方向的第三节轴瓦自激振动的原因在早先的振动原因诊断中,当做出振动原因是轴瓦自激振动诊断之后,诊断就此结束。
消除振动措施几乎都是从增加轴瓦稳定性着手。
这样做一般都是有效的,但是对于有些机组,特别是在同型机组中,有些有效,有些则无效,这就引起了人们的注意,从而着手研究轴与自激振动的原因。
进一步研究发现,增加轴瓦稳定性未能消除轴瓦自激振动的主要原因是由于轴颈在轴瓦内存在着较大的扰动。
这与普通强迫振动中轴承座动刚度和扰动力的关系一样,当扰动力较大时,只采取增加轴承座动刚度措施,效果不会显著。
所以轴瓦自激振动总的来有轴颈扰动过大和轴瓦稳定性差两个原因。
3.1 轴颈扰动过大这时所说的轴颈扰动过大,不是指转子暂态瞬间产生的扰动,而是指稳定的扰动,进一步说是指轴颈与轴瓦之间的相对振动。
简称转轴振动。
从许多机组观察到,转轴振动过大确实是引起轴瓦自激振动的重要原因之一。
一些机组实测结果表明,在一般圆筒形、椭圆形和三油楔轴瓦上,当转轴振动超过轴瓦正常顶隙的1/2时,很容易引起轴瓦自激振动。
引起转轴振动过大的原因有:1.转子热弯曲运行的汽轮机、发电机转子产生热弯曲是较为常见的一种振动故障。
当机组有功负荷时,突然发生轴瓦自激振动,而且与机组有功负荷或励磁电流有着一定的对应关系(再现性不好),这种现象大部分是由于转子发生热弯曲所致。
转子在运行状态下会因种种原因发生热弯曲,当转子热弯曲轴向对称时,在工作转速下对轴承振动的影响很小。
当然,实际转子的热弯曲大部分不是完全轴向对称的,因此在工作转速下测量轴承振动与有功负荷或励磁电流的关系,也能发现转子是否存在热弯曲。
不论是轴向对称还是不对称的转子热弯曲,都会使转轴振动明显增大,在这种情况下,若不降低转轴振动,而只从增加轴瓦稳定性着手消除轴瓦自激振动,虽然短时间内会有效,但运行一段时间(几周或1-2个月)之后,会引起轴瓦乌金碾轧或龟裂,所以有些机组的轴瓦虽经多次修理,但轴瓦自激振动却一直不能获得根治。
这种故障只要通过测量转轴振动即能查明;若无条件测量转轴振动,则通过对振动与有功负荷、励磁电流关系的分析,也能诊断出转子是否热弯曲,具体诊断方法见本章第八节。
2.转子永久弯曲转子永久弯曲与热弯曲一样,除了产生质量不平衡外,还会引起转轴过大轴仍然存在较大振动。
弯曲转子质量不平衡引起过大振动,通过转子平衡可以获得改善,但是转轴仍然存在较大振动。
这种故障通过在静态下测量转子弯曲值,或在盘车转速下采用大轴弯曲指示器测量转轴晃摆值即能查明。
3.轴承座动刚度过大从减少轴瓦振动角度来看,希望承座动刚度愈大愈好,但是这会引起转轴相对振动的增大,对轴瓦稳定运行不利。
因此对于一些转子质量较小的汽轮机高压转子来说,其轴承座动刚度往往显得过高,在较大的不平衡力作用下,轴承动虽然不大,但转轴存在因过大的振动而激起轴瓦自激振动的趋势,例如国内运行的苏制BIIT-50-2高压转子,近几年先后发生了多起轴瓦半速涡动,原因是转轴振动过大(300-600μm)。
在未发生轴瓦半速涡动时,轴承振动一般小于30μm。
消除这种半速涡动,开始只采取增加轴瓦稳定性的措施,当时虽然奏效,但运行1-2个月后,上瓦发生了损坏(龟裂)。
后来通过调整转子平衡减少了转轴振动,在不更动轴瓦的情况下,半速涡动获得了消除,经4-5a连续运行,轴瓦工作一直正常。
4.转子对中不好这时所说的转子对中不好是指采用固定式联轴器连接的转子同心度和平直度偏差,这种故障引起转轴振动过大的道理和转子永久弯曲及热弯曲的道理一样,它是引起轴颈扰动过大的常见故障之一。
3.2 轴瓦稳定性差影响轴瓦稳定性因素较多,它涉及轴瓦设计、制造、检修和运行等方面。
下面要只是针对轴瓦在现场使用中可能出现的影响轴瓦稳定性的故障原因。
1.轴瓦顶隙过大在轴瓦稳定性计算中,不论是圆筒瓦、椭圆瓦还是三油楔瓦,随着轴瓦半径间隙的增大,稳定性将增高。
但根据运行经验来看却并非如此,这三种轴瓦过大的顶隙都会显著降低轴瓦稳定性,特别是转轴振动较时,更容易引起轴瓦失稳。
过大的轴瓦顶隙使轴瓦稳定性降低的机理比较复杂,但有一点可以肯定,这三种轴瓦过大的顶隙会显著减少上瓦的油膜力,即降低了轴瓦的预载荷,使轴瓦偏心降低,稳定性下降。
2.轴瓦形式目前现场使用的有圆筒瓦、椭圆瓦、三油楔瓦和可倾瓦,前两作轴瓦在现场使用已有较长的历史,而且积累了较丰富的使用经验。
从稳定性来说,椭圆瓦好,因此在现场发生轴瓦自激振动时,首先是将圆筒形改成椭圆瓦。
实践证明,效果良好。
目前国内可倾瓦只是局限在进口和引进型的机组上使用。
三油楔轴瓦近十年开始在国内使用,但早期这些轴瓦在发电机转子早使用后,几乎所有的机组都发生了油膜振荡,通过多次减少长径比(L/D)后,轴瓦稳定性虽有改善,但其稳定性余度仍不能满足机组运行的要求,因此就200MW机组来说,最近仍有约20%的机组在现场发生了油膜振荡。
三油楔轴瓦的静态试验证明,其静态稳定性较椭圆瓦好,但动态稳定性目前尚缺乏实验数据。
由于油膜刚度和阻尼系数目前还不能取准,因此理论计算求得的失稳转速与实际有较大出入。
据国外资料介绍,使用在汽轮发电机组上稳定性最好的是可倾瓦、本油叶瓦,其次是椭圆瓦、再次是三油楔瓦,最后是圆筒瓦。
从国内这几种轴瓦的使用情况来看,这种排列次序与实际情况是符合的。