七年级数学一元一次方程复习题

合集下载

2024-2025学年度七年级数学上册期末复习专题训练 一元一次方程[含答案]

2024-2025学年度七年级数学上册期末复习专题训练 一元一次方程[含答案]

2024-2025学年度七年级数学上册期末复习专题训练一元一次方程当堂反馈1. 已知a=b,下列各式中:a-3=b-3,a+5=b+5,a-8=b+8,2a=a+b,正确的有( )A.1个B.2个C.3个D.4个2.将方程2x−12−x−13=1去分母,得到3(2x-1)-2(x-1)=1,错在 ( )A.最简公分母找错B.去分母时漏乘C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同3. 已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是 ( )A. -2B.2C.3D.54.某种商品每件的进价为120元,按标价的八八折销售时,利润率为10%,这种商品每件的标价是( )A. 140元B.150元C. 160元D.170元5. 已知关于x的方程4x-3m=2的解是x=m,则m的值是 .6. 已知代数式8x-12与6-2x的值互为相反数,那么x的值等于 .7.当x= 时,单项式−34a x+2b12x−1的次数为13.8.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是 .9.王会计在记账时发现现金少了153.9元,查账后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是元.10. 在等式3×□-2×□=15的两个方格内分别填入一个数,使这两个数的和为10,且使等式成立,则第一个方格内的数是 .11.解下列方程.(1)4(x+1)=3(x+2)+2; (2)y−y−12=2−y+25.12.已知关于x的方程3a−x=x2+3的解为2,求代数式(−a)²−2a+1的值.13.歼-20 战机不仅代表了中国自主研发战机的一个里程碑,也意味着中国的战机在一代代人的努力研发下正追赶世界顶尖水平.在某次军事演习中,风速为30千米/时的条件下,一架歼-20 战机顺风从A机场到B目的地要用60分钟,它逆风飞行同样的航线要多用1分钟.(1)求无风时这架歼-20战机在这一航线的平均速度;(2)求A机场到 B 目的地的距离.14.已知数轴上点 A、B表示的数分别为-1,3,动点 P 表示的数为x.(1)若P到A、B的距离和为6,写出x的值.(2)是否存在点P,使得PA-PB=3?若存在,求x的值;若不存在,说明理由.(3)若点M、N分别从点A、B同时出发,沿数轴正向分别以3个单位长度/秒、2个单位长度/秒的速度运动,多长时间后M、N相距1个单位长度?能力拓展15.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等.经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?期末复习专题(三) 一元一次方程【当堂反馈】1. C2. B3. A4. B5. 26. 17. 88. 89. 171 10. 711. (1)x=4(2)y=11712. ∵x=2是方程3a−x=x2+3的解,∴3a-2=1+3,解得:a=2,∴原式:=a²−2a+1=2²−2×2+1=1.13.(1)设无风时这架歼-20 战机在这一航线的平均速度为x千米/时,依题意得:6060×(x+30)=60+160×(x-30),解得:x=3630.答:无风时这架歼-20战机在这一航线的平均速度为3630千米/时. (2)6060×(3630+30)=3660(千米).答:A 机场到 B 目的地的距离为 3660千米.14. (1)当点 P在点A的左侧时,PA=-1-x,PB=3-x,则-1-x+3-x=6,解得x=-2;当点 P在点 B的右侧时,PA=x+1,PB=x-3,则x+1+x-3=6,解得x=4.综上所述,P到A、B的距离和为6时,x=-2或4. (2)∵AB=3-(-1)=4,∴PA-PB=3 时,点 P 在线段 AB 上,∴PA=x+1 ,PB=3−x,,由题意得,(x+1)-(3-x)=3,解得,x=2.5. (3)设出发t秒后,M、N相距1个单位长度,由题意得,点M的坐标为3t-1,点N的坐标为2t+3.当点M在点N的左侧时,(2t+3)−(3t −1)=1,解得t=3;当点M在点N的右侧时,(3t−1)−(2t +3)=1,解得t=5..综上所述,出发3秒或5秒后,M、N相距1个单位长度.【能力拓展】15.(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得:2(x+50)=3x,解得x=100,x+50=150.答:每套队服 150 元,每个足球 100 元.(2)到甲商场购买所花的费用为:150×100+100(a−10010)= 100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100·a=80a+15000(元). (3)当在两家商场购买一样合算时,10 0a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.。

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。

人教版七年级数学上册第3章一元一次方程 期末综合复习题 (1)

人教版七年级数学上册第3章一元一次方程 期末综合复习题    (1)

人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)一、选择题1.下列方程是一元一次方程的是()A.x﹣2=3B.1+5=6C.x2+x=1D.x﹣3y=02.x=﹣2是下列哪个方程的解()A.x+1=2B.2﹣x=0C.x=1D.+3=13.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d4.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x+2x=1﹣2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程3t=2,未知数系数化为1,得t=D.方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣45.解方程﹣=1时,去分母后,正确的结果是()A.15x+3﹣2x﹣1=1B.15x+3﹣2x+1=1C.15x+3﹣2x+1=6D.15x+3﹣2x﹣1=66.小马虎做作业,不小心将方程中一个常数污染了,被污染方程是2(x﹣3)﹣•=x+1,怎么办呢?他想了想便翻看书后答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是()A.70千米/小时B.75千米/小时C.80千米/小时D.85千米/小时9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.当x=﹣1时,式子ax3+bx+1=0,则关于x方程+=的解是()A.x=B.x=﹣C.x=1D.x=﹣1二、填空题11.若方程x|a|+3=0是关于x的一元一次方程,则a=.12.已知2a﹣3和4a+6互为相反数,则a=.13.若方程x+2m=8与方程的解相同,则m=.14.方程|x﹣3|=6的解是x=.15.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队踢了16场比赛,负了5场,共得27分,那么这个队平了场.16.一个两位数,个位上的数字与十位上数字之和是7,将十位和个位对调后的新数比原数的2倍还大2,则原两位数是.17.学校开设兴趣班,建模组有16人,本学期新来的学生小丽加入了已有x人的航模组,这样建模组的人数比航模组的人数的一半多5人,根据题意,可列方程.18.若关于x的方程2x﹣(3x﹣a)=1的解为负数,则a的取值范围是.三、解答题19.解下列方程:(1)3x﹣5x﹣2x=0(2)3(5x﹣6)=3﹣20x(3)2x+3[x﹣2(x﹣1)+4]=8(4)﹣=120.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为倒数,求k的值.21.某瓷器厂共有120个工人,每个工人一天能生产200个茶杯或50个茶壶,如果8个茶杯和一个茶壶为一套,问如何安排生产工人可使每天生产的产品配套?22.某件商品的进价为800元,标价为1150元,因库存积压需降价出售,若每件商品仍想获得15%的利润,需几折出售?23.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?24.数学课上,小华把一张白卡纸画出如图①所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图②的正方形ABCD,若中间小正方形的边长为1,求正方形ABCD的边长.25.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.26.“水是生命之源”,我国是一个严重缺水的国家.为倡导节约用水,某市自来水公司对水费实行分段收费,具体标准如下表:每月用水量第一档(不超过10立方米)第二档(超过10立方米但不超过15立方米部分)第三档(超过15立方米部分)收费标准(元/立方米)2.5元?元比第二档高20%已知某月市民甲交水费17.5元,市民乙用水13立方米,交费34元,市民丙交水费61.6元,求:①市民甲该月用水多少立方米?②第二档水费每立方米多少元?③市民丙该月用水多少立方米?27.数轴上,点A、点B所表示的数分别是a和b,点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,点P从点A以每秒3个单位长度的速度沿数轴正方向运动,点Q从点B以每秒1个单位长度的速度沿数轴负方向运动,两点同时出发.①求a、b的值.②设x秒后点P、点Q相遇,求x的值.③数轴上点C到点A和到点B的距离之和是30,求点C所表示的数.④设t秒后点P、Q相距6个单位长度,求t的值.参考答案一、选择题1.解:A、x﹣2=3是一元一次方程,故此选项正确;B、1+5=6不是方程,故此选项错误;C、x2+x=1是一元二次方程,故此选项错误;D、x﹣3y=0是二元一次方程,故此选项错误;故选:A.2.解:A、解方程x+1=2得:x=1,所以x=﹣2不是方程x+1=2的解,故本选项不符合题意;B、解方程1﹣x=0得:x=2,所以x=﹣2不是方程2﹣x=0的解,故本选项不符合题意;C、解方程x=1得:x=2,所以x=﹣2不是方程x=1的解,故本选项不符合题意;D、当x=﹣2时,左边=+3=1,右边=1,即左边=右边,所以x=﹣2是方程的解,故本选项符合题意;故选:D.3.解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、方程3t=2,未知数系数化为1,得t=,不符合题意;D、方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣4,符合题意,故选:D.5.解:﹣=1,去分母得:3(5x+1)﹣(2x﹣1)=6,去括号得:15x+3﹣2x+1=6.故选:C.6.解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.7.解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选:C.8.解:设乙车的速度为x千米/小时,则甲车的速度为(x+10)千米/小时,根据题意得:4(x+x+10)=600,解得:x=70.故选:A.9.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.10.解:把x=﹣1代入得:﹣a﹣b+1=0,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,解得:x=1,故选:C.二、填空题11.解:∵方程x|a|+3=0是关于x的一元一次方程,∴|a|=1,解得:a=±1,故答案为:±112.解:∵2a﹣3和4a+6互为相反数,∴(2a﹣3)+(4a+6)=0,∴6a+3=0,解得a=﹣0.5.故答案为:﹣0.5.13.解:由解得x=1,将x=1代入方程x+2m=8,解得m=,故答案为:.14.解:由题意得:x﹣3=6或x﹣3=﹣6,x=9或﹣3,故答案为:9或﹣3.15.解:设该队共平x场,则该队胜了16﹣x﹣5=11﹣x,胜场得分是3(11﹣x)分,平场得分是x分.根据等量关系列方程得:3(11﹣x)+x=27,解得:x=3,故平了3场,故答案为:3.16.解:设原来个位数字是x,十位数字是(7﹣x),2[10(7﹣x)+x]+2=10x+7﹣x,x=2.7﹣x=7﹣2=5.原数为25.故答案是:25.17.解:设航模组已有x人,则学生小丽加入后航模组共有(x+1)人,∵建模组有16人且建模组的人数比航模组的人数的一半多5人,∴(x+1)+5=16,故答案为:(x+1)+5=16.18.解:解方程2x﹣(3x﹣a)=1得,x=a﹣1,∵x为负数,∴a﹣1<0,解得a<1.故答案为a<1.三、解答题19.解:(1)3x﹣5x﹣2x=0合并同类项,可得:﹣4x=0,系数互为1,可得:x=0;(2)3(5x﹣6)=3﹣20x去括号,可得:15x﹣18=3﹣20x,移项,可得:15x+20x=3+18,合并同类项,可得:35x=21,系数互为1,可得:x=0.6;(3)2x+3[x﹣2(x﹣1)+4]=8,去括号,可得:2x+3x﹣6x+6+12=8移项,可得:2x+3x﹣6x=﹣6﹣12+8,合并同类项,可得:﹣x=﹣10,系数互为1,可得:x=10;(4)﹣=1,去分母,可得,4(2x﹣1)﹣3(2x﹣3)=12,去括号,可得:8x﹣4﹣6x+9=12,移项,可得:8x﹣6x=4﹣9+12,合并同类项,可得:2x=7,系数互为1,可得:x=.20.解:解方程2﹣3(x+1)=0得:x=﹣,﹣的倒数为x=﹣3,把x=﹣3代入方程﹣3k﹣2=2x得:﹣3k﹣2=﹣6,解得:k=1.21.解:设x人生产茶杯,则(120﹣x)人生产茶壶.50(120﹣x)×8=200x解得:x=80.所以120﹣80=40(人)答:80人生产茶杯,40人生产茶壶.22.解:由题意可知:设需要按x元出售才能获得15%的利润则:=15%解得:x=920,按n折出售,则n=×10=8故每件商品仍想获得10%的利润需八折出售.23.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.24.解:设小长方形的长为xcm,则宽为x,由题意,得:2×x﹣x=1,解得:x=5,则x=3,所以正方形ABCD的边长是:x+2×x=×5=11.答:正方形ABCD的边长是11.25.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.26.解:①∵2.5×10=25>17.5,∴甲用水量不超过10立方米,∴17.5÷2.5=7立方米,答:甲市民该月用水7立方米.②设超出的部分x元/立方米,由题意得,2.5×10+(13﹣10)x=34,解得,x=3,答:第二档水费每立方米3元.③∵2.5×10+3×(15﹣10)=40<61.6,∴丙的用水量超过15立方米,设丙用水y立方米,由题意得,2.5×10+3×5+3×(1+20%)(y﹣15)=61.6,解得,y=21,答:市民丙该月用水21立方米.27.解:①∵点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,∴a=﹣(24+6)÷2=﹣15,b=(24﹣6)÷2=9;②依题意有3x+x=24,解得x=6.故x的值为6;③(30﹣24)÷2=3,点C在点A的左边,点C所表示的数为﹣15﹣3=﹣18;点C在点A的右边,点C所表示的数为9+3=12.故点C所表示的数为﹣18或12;④相遇前,依题意有:3t+t=24﹣6,解得t=;相遇后,依题意有:3t+t=24+6,解得t=.故t的值为或.。

人教版七年级数学上册第三章《一元一次方程》知识点复习练习

人教版七年级数学上册第三章《一元一次方程》知识点复习练习

人教版七年级数学上册第三章《一元一次方程》知识点复习练习3.1 从算式到方程3.1.1 一元一次方程基础题知识点1 方程的概念含有未知数的等式叫做方程.1.下列各式中,是方程的是(A ) A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,不是方程的是(C ) A .2x +3y =1B .-x +y =4C .3π+4≠5D .x =8知识点2 一元一次方程只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.(昆明月考)下列关于x 的方程中,是一元一次方程的是(B )A .ax =5B .x =0C .3x -2=yD .-2x =3 4.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m≠0B .m≠1C .m =-1D .m =0 5.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.知识点3 方程的解6.(临沧期中)方程1-3y =7的解是(C )A .y =-12B .y =12C .y =-2D .y =27.在0,1,2,3中,0是方程13x -12=-12的解. 8.x =3是方程①3x =6;②2(x -3)=0;③x -2=0;④x +3=5中②的解.(填序号)知识点4 列方程9.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8 C.12x -3=8 D.12x +3=8 10.(杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(C )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )11.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38. 易错点 对一元一次方程概念理解不透而致错12.(昆明月考)若方程(a -1)x |a|-2=3是关于x 的一元一次方程,则a 的值为-1.中档题13.(民大附中月考)下列是一元一次方程的有(A )①23-x =23-y ;②2x -4=x -1;③x +1-3;④3x -2x =3;⑤2x -4>5.A.2个B.3个C.4个D.5个14.以x=-3为解的方程是(C)A.3x-7=5-x B.6x+7=1-12xC.2-8x=20-2x D.11x+2=5(1+2x)15.检验下列各题括号内的值是否为相应方程的解:(1)2x-3=5(x-3){x=6,x=4};(2)4x+5=8x-3{x=3,x=2}.解:(1)x=4是方程的解.(2)x=2是方程的解.16.已知y=1是方程my=y+2的解,求m2-3m+1的值.解:把y=1代入方程my=y+2中,得m=3,当m=3时,m2-3m+1=1.17.(教材P80练习变式)根据下列问题,设未知数,列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10(128-x)=912.综合题18.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x株.(1)列两个不同的含x的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树的株数是30株,而不是35株.3.1.2 等式的性质基础题知识点1 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a±c =b±c.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a c =b c . 1.下列等式变形中,错误的是(D )A .由a =b ,得a +5=b +5B .由a =b ,得a -3=b -3C .由x +2=y +2,得x =yD .由-3x =-3y ,得x =-y2.若x =y ,且a≠0,则下面各式中不一定正确的是(D )A .ax =ayB .x +a =y +a C.x a =y a D.a x =a y3.已知m +a =n +b ,根据等式的性质变形为m =n ,那么a ,b 必须符合的条件是(C )A .a =-bB .-a =bC .a =bD .a ,b 可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y 5,那么x =-2y ,根据等式的性质2,两边乘-10; (2)如果-2x =2y ,那么x =-y ,根据等式的性质2,两边除以-2;(3)如果23x =4,那么x =6,根据等式的性质2,两边乘32; (4)如果x =3x +2,那么x -3x =2,根据等式的性质1,两边减3x .知识点2 利用等式的性质解方程解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.5.解方程-23x =32时,应在方程两边(C ) A .同乘-23B .同除以23C .同乘-32D .同除以326.利用等式的性质解方程x 2+1=2的结果是(A ) A .x =2B .x =-2C .x =4D .x =-47.(梧州中考)方程x -5=0的解是x =5.8.由2x -1=0得到x =12,可分两步,按步骤完成下列填空: 第一步:根据等式的性质1,等式两边加1,得到2x =1;第二步:根据等式的性质2,等式两边除以2,得到x =12. 9.(教材P83习题T4变式)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.易错点 对等式性质理解不透致错10.有两种等式变形:①若ax =b ,则x =b a ;②若x =b a,则ax =b.其中(B ) A .只有①对B .只有②对C .①②都对D .①②都错中档题11.下列是等式2x +13-1=x 的变形,其中根据等式的性质2变形的是(D ) A.2x +13=x +1 B.2x +13-x =1 C.2x 3+13-1=x D .2x +1-3=3x 12.(贵阳中考)方程3x +1=7的解是x =2.13.若x =1是关于x 的方程3n -x 2=1的解,则n =12. 14.利用等式的性质解下列方程:(1)-3x +7=1;解:两边减7,得-3x =-6.两边除以-3,得x =2.(2)-y 2-3=9; 解:两边加3,得-y 2=12. 两边乘-2,得y =-24.(3)512x -13=14; 解:两边加13,得512x =712. 两边乘125,得x =75.(4)3x +7=2-2x.解:两边减7,得3x =2-2x -7.两边加2x ,得5x =-5.两边除以5,得x =-1.15.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x -2=2x -2.等式两边同时加上2,得5x -2+2=2x -2+2, ①即5x =2x.等式两边同时除以x ,得5=2.” ②老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正. 解:不正确.①正确,运用了等式的性质1.②不正确,由5x =2x ,两边同时减去2x ,得5x -2x =0,即3x =0,所以x =0.综合题16.能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么?解:当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数. 从x =b -1a +3可知,a +3≠0.根据等式的性质2可知,从x =b -1a +3可以得到等式(a +3)x =b -1.3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项基础题知识点1利用合并同类项解简单的一元一次方程将方程中的同类项进行合并,把以x为未知数的一元一次方程变形为ax=b(a≠0,a、b为已知数)的形式,.然后利用等式的性质2,方程两边同时除以a,从而得到x=ba如:(1)合并同类项:x-2x+4x=3x;4y-2.5y-3.5y=-2y.(2)解方程-7x+2x=9-4的步骤是:①合并同类项,得-5x=5;②系数化为1,得x=-1.1.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8 B.4x=8C.-4x=8 D.2x=82.方程x+2x=-6的解是(D)A.x=0 B.x=1C.x=2 D.x=-23.下列是小明同学做的四道解方程题,其中错误的是(B)A.5x+4x=9→x=1B.-2x-3x=5→x=1C.3x-x=-1+3→x=1D.-4x+6x=-2-8→x=-54.解下列方程:(1)6x-5x=3;解:合并同类项,得x=3.(2)-x+3x=7-1;解:合并同类项,得2x=6. 系数化为1,得x=3.(3)x2+5x2=9;解:合并同类项,得3x=9.系数化为1,得x=3.(4)6y+12y-9y=10+2+6.解:合并同类项,得9y=18.系数化为1,得y=2.知识点2列方程解决“总量=各部分量之和”问题5.某数的3倍与这个数的2倍的和是30,这个数为(C)A.4 B.5C.6 D.76.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是39.7.三个连续奇数的和为27,则这三个数分别为7、9、11.8.一条长1 210 m的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m,乙队每天挖90 m,则挖好水渠需要几天?解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x =5.5.答:挖好水渠需要5.5天.9.(教材P88练习T2变式)麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台.根据总量等于各部分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.中档题10.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C ) A .0B .2C .-2D .-611.已知某三角形的周长为60 cm ,三边长之比为3∶4∶5,则最短边的长为15cm.12.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3、10、17.13.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53.(3)x-25x=3+6;解:合并同类项,得35x=9.系数化为1,得x=15.(4)16x-3.5x-6.5x=7-(-5).解:合并同类项,得6x=12.系数化为1,得x=2.14.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x+5x=32.解得x=4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.15.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少水资源占有量的15(单位:m3)?解:设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.综合题16.(教材P87例2变式)有这样一列数,按一定规律排列成-1,2,-4,8,-16,…,其中某三个相邻数的和是768,则这三个数各是多少?解:设所求三个数分别为-x,2x,-4x,由题意,得-x+2x+(-4x)=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256、-512、1 024.第2课时 移项基础题知识点1 利用移项解一元一次方程把等式一边的某项变号后移到另一边,叫做移项.1.下列变形中属于移项的是(C )A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.解方程2x -5=3x -9时,移项正确的是(B )A .2x +3x =9+5B .2x -3x =-9+5C .2x -3x =9+5D .2x -3x =9-53.关于x 的方程3x =4x +5的解是(C )A .x =5B .x =-3C .x =-5D .x =3 4.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 5.解下列方程:(1)4x =9+x ;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.(2)4-35m=7;解:移项,得-35m=7-4.合并同类项,得-35m=3.系数化为1,得m=-5.(3)8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.(4)4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3.合并同类项,得3x=-2.系数化为1,得x=-23.知识点2根据“表示同一个量的两个不同的式子相等”列方程6.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.7.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.易错点 解方程时,移项不变号或误将不移动的项也变号8.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23.中档题9.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43,则该同学把■看成了(D ) A .3B .-1289C .-8D .810.(昆明期末)若方程2x -kx +1=5x -2的解为-1,则k 的值为-6.11.如果5m +14与m +14互为相反数,那么m 的值为-112. 12.“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x 棵,通过分析题意,鸦的只数不变,则可列方程:3x +5=5(x -1).13.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x =13. 14.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43.解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.15.(教材P88问题2变式)(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.16.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?解:(1)设小明在买x 元的书的情况下办会员卡与不办会员卡一样.则x =20+80%x.解得x =100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱.综合题17.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x的方程4x-2m=3x+1的解是x=6m. 将x=6m代入4x-2m=3x+1中,得24m-2m=18m+1.移项、合并同类项,得4m=1.所以m=14.3.3 解一元一次方程(二)——去括号与去分母第1课时 去括号基础题知识点1 利用去括号解一元一次方程解方程时的去括号和有理数运算中的去括号类似,都是利用乘法分配律,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.1.将方程2x -3(4-2x )=5去括号,正确的是(C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =52.方程2(x -3)+5=9的解是(B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2(x +12)的步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是(A )A .①B .②C .③D .①②4.解方程:5(x -4)-3(2x +1)=2(1-2x )-1.解:去括号,得5x -20-6x -3=2-4x -1.移项,得5x -6x +4x =2-1+20+3.合并同类项,得3x =24.系数化为1,得x =8.5.解下列方程:(1)3(x +4)=x ;解:去括号,得3x +12=x.移项,得3x -x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)1-(2x +3)=6;解:去括号,得1-2x -3=6.移项,得-2x =6-1+3.合并同类项,得-2x =8.系数化为1,得x =-4.(3)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.知识点2 去括号解方程的应用6.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑(C )A .20千米B .17.5千米C .15千米D .12.5千米7.父亲今年30岁,儿子今年4岁,9年后父亲的年龄是儿子年龄的3倍.易错点 去括号时漏乘某些项或弄错符号导致错解8.解方程:2(3-4x )=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题9.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是(A )A .2x -4-12x +3=9B .2x -4-12x -3=9C .2x -4-12x +1=9D .2x -2-12x +1=910.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为(B )A .-1B .1 C.12 D .-1211.若式子4-3(x -1)与式子x +12的值相等,则x =-54. 12.解下列方程:(1)3x -2(10-x )=5;解:去括号,得3x -20+2x =5.移项,得3x +2x =20+5.合并同类项,得5x =25.系数化为1,得x =5.(2)3(2y +1)=2(1+y )+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.13.若方程3(2x -2)=2-3x 的解与方程6-2k =2(x +3)的解相同,求k 的值.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.14.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h,两城之间的航程为2 448 km.综合题15.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍,问应分别调往甲、乙两工地各多少人?解:设应调往甲工地x人,则调往乙工地(20-x)人.根据题意,得27+x=2[19+(20-x)].解得x=17.则20-x=3.答:应调往甲工地17人,调往乙工地3人.第2课时 去分母基础题知识点1 利用去分母解一元一次方程(1)去分母的方法:依据等式的性质2,方程两边各项都乘所有分母的最小公倍数,将分母去掉.(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.1.解方程3y -14-1=2y +76去分母时,方程两边都乘(B ) A .10 B .12 C .24 D .62.(曲靖期末)解方程x -14=3-1+2x 8去分母正确的是(A ) A .2(x -1)=24-1-2xB .2(x -1)=24-1+2xC .2(x -1)=3-1-2xD .2(x -1)=3-1+2x3.解方程13-x -12=1的结果是(D ) A .x =12 B .x =-12C .x =13D .x =-134.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B ) A .1 B.32 C.23D .2 5.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的基本性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的基本性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的基本性质2)6.解下列方程:(1)2x -13=x +24; 解:去分母,得4(2x -1)=3(x +2).去括号,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(3)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用7.某工厂计划每天烧煤5吨,实际每天比计划少烧2吨,若m 吨煤多烧了20天,则m =150.8.王强参加了一场3 000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,问王强以6米/秒的速度跑了多少米?解:设王强以6米/秒的速度跑了x 米,则王强以4米/秒的速度跑了(3 000-x )米.根据题意,得x 6+3 000-x 4=10×60. 解得x =1 800.答:王强以6米/秒的速度跑了1 800米.易错点 去分母时,漏乘不含分母的项9.(株洲中考改编)在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,得2(x -1)+6x =3(3x +1).中档题10.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B ) A .27B .1C .-1311D .011.(民大附中月考)式子x +24的值比2x -36的值大1,则x 的值是0. 12.(昆明月考)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 h ,若静水时船速为26 km/h ,水速为2 km/h ,则A 港和B 港相距504km.13.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x ).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2). 去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117.(3)x +12=6-2x -13; 解:去分母,得3(x +1)=36-2(2x -1). 去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求去时甲、乙两地路长. 解:设去时甲、乙两地的路长为x 千米,则 x 8+18=x +39.解得x =15. 答:去时甲、乙两地的路长为15千米.综合题15.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2.小专题5 一元一次方程的解法题组1 移项、合并同类项解一元一次方程1.解下列方程:(1)56-8x =11+x ;解:-8x -x =11-56,-9x =-45,x =5.(2)43x +1=5+13x. 解:43x -13x =5-1, x =4.题组2 去括号解一元一次方程2.解下列方程:(1)4x -3(20-2x )=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(2)4y -3(20-y )=6y -7(9-y ); 解:4y -60+3y =6y -63+7y , 4y +3y -6y -7y =60-63,-6y =-3,y =12.(3)4x -8(x +1)=4-2(x +3). 解:4x -8x -8=4-2x -6, 4x -8x +2x =4-6+8,-2x =6,x =-3.题组3 去分母解一元一次方程3.解下列方程:(1)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90,15x -12x =-90+30,3x =-60,x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.(4)2x -13-10x +16=2x +12-1; 解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -2-10x -1=6x +3-6,4x -10x -6x =3-6+2+1,-12x =0,x =0.(5)0.1-2x 0.3=1+x 0.15. 解:原方程整理,得1-20x 3=1+100x 15. 去分母,得5(1-20x )=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是(B )A.2x +2=3B.3x -12+4=3x C .y 2+3y =0D .9x -y =2 2.方程3x +6=2x -8移项后,正确的是(C )A .3x +2x =6-8B .3x -2x =-8+6C .3x -2x =-6-8D .3x -2x =8-63.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是(D )A .2x -3-3x +4=5B .2x -6-3x -4=5C .2x -3-3x -12=5D .2x -6-3x +12=54.下列说法中,正确的是(D )A .若a =b ,则a c =b dB .若a =b ,则ac =bdC .若ac =bc ,则a =bD .若a =b ,则ac =bc5.方程2-2x -43=-x -76去分母,得(C ) A .2-2(2x -4)=-(x -7)B .12-2(2x -4)=-x -7C .12-2(2x -4)=-(x -7)D .12-(2x -4)=-(x -7)6.(咸宁中考)方程2x -1=3的解是(D )A .x =-1B .x =-2C .x =1D .x =27.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是(A ) A .15B .13C .7D .-18.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100二、填空题(每小题4分,共24分)9.已知x =-2是方程3(x +a )=15的解,则a =7.10.若式子2-k 3-1的值是1,则k =-4. 11.(临沧期中)如果5x +3与-2x +9互为相反数,那么x 的值是-4.12.(文山期中)已知(x -2)2+|3y -2x|=0,则x =2,y =43. 13.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,则轮船在静水中的速度是20千米/时.14.已知a 、b 、c 、d 为4个数,现规定一种新的运算,⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么当⎪⎪⎪⎪⎪⎪ 2 4(1-x ) 5=18时,x =3.三、解答题(共44分)15.(24分)解方程:(1)(曲靖期末)x +12-1=43x ; 解:3(x +1)-6=8x ,3x +3-6=8x ,3x -8x =-3+6,-5x =3,x =-35.(2)3x -2(20-x )=6x -4(9+x );解:3x -40+2x =6x -36-4x ,3x =4,x =43.(3)2-2x +13=1+x 2; 解:12-2(2x +1)=3(1+x ),12-4x -2=3+3x ,-7x =-7,x =1.(4)x -10.3-x +20.5=1.2. 解:10x -103-10x +205=1.2, 5(10x -10)-3(10x +20)=1.2×15,50x -50-30x -60=18,20x =128,x =325.16.(8分)学校分配学生住宿,如果每室住8人,那么还少12个床位;如果每室住9人,那么空出两个房间.求房间的个数和学生的人数.解:设房间数为x,由题意,得8x+12=9(x-2).解得x=30.则学生人数为8×30+12=252.答:房间的个数为30,学生的人数为252.17.(12分)有一叠卡片,自上而下按规律分别标有6,12,18,24,30,…这些数.(1)你能发现这些卡片上的数有什么规律吗?请将它用一个含有n(n≥1)的式子表示出来;(2)小明从中抽取相邻的3张,发现其和是342,你能知道他抽出的卡片是哪三张吗?(3)你能拿出相邻的3张卡片,使得这些卡片上的数字之和是86吗?为什么?解:(1)6n.(2)设中间一张标有数字6n,那么前一张为6(n-1)=6n-6,后一张为6(n+1)=6n+6.根据题意,得6n-6+6n+6n+6=342.解得n=19.则6(n-1)=6×18=108,6n=6×19=114,6(n+1)=6×20=120.答:所抽的卡片为标有108、114、120数字的三张卡片.(3)不能,因为当6n-6+6n+6n+6=86时,n=43,不是整数,所以不可能抽到相邻3张卡片,使得这些卡片9上的数字之和为86.3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题基础题知识点1 产品配套问题解决配套问题时,关键是明确题目中的相等关系,它是列方程的依据.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根据另一个等量关系列方程. 1.有一个专项加工茶杯的车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为(90-x )人,每小时加工杯身12x 个,杯盖15(90-x )个,则可列方程为12x =15(90-x ),解得x =50.间接设法:设共生产杯身x 个,共生产杯盖x 个.则生产杯身的工人为x 12个,生产杯盖的工人为x 15个,则可列方程为x 12+x 15=90.解得x =600.x 12=60012=50,x 15=60015=40. 2.(教材P101练习T1变式)(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:安排x 人生产A 部件,安排(16-x )人生产B 部件.由题意,得1 000x =600(16-x ).解得x =6.所以16-x =10.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.知识点2 工程问题(1)解决工程问题时,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.(2)用一元一次方程分析和解决实际问题的基本步骤是:①设未知数;②分析问题中的数量关系,找出其中的等量关系,并由此列出方程;③解方程;④检验解的正确性与合理性,并写出答案.3.(教材P101练习T2变式)一件工作,甲单独做需要10小时完成,乙单独做需要15小时完成,甲、乙合作需要x 小时完成,则可列方程为x 10+x 15=1,解得x =6. 4.一批文稿,若由甲抄30小时可以抄完,若由乙抄20小时可以抄完,现由甲抄3小时后改由乙抄余下部分,则乙还需抄18小时.5.(昆明月考)整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人用1 h 整理,随后又增加6人和他们一起又做了2 h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少? 解:设先安排整理的人员有x 人,由题意,得130x +130(x +6)×2=1, 解得x =6.答:先安排整理的人员有6人.中档题6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是(D )A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为(54-x )人,根据题意,可列方程为8x =10(54-x ),解得x =30.8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.若8只茶杯和1只茶壶为一套,则安排40人生产茶壶可使每天生产的瓷器配套.9.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作8小时?解:设应先安排x 人工作8小时,根据题意,得8x 80+16(x +2)80=1. 解得x =2.答:应先安排2人工作8小时.10.(民大附中月考)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x 名工人生产螺母,则(22-x )名工人生产螺钉,由题意,得2 000x =2×1 200(22-x ),解得x =12.则22-x =10.答:应安排生产螺钉和螺母的工人分别为10名,12名.综合题11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)能履行合同.设甲、乙合作x 天完成,则(130+120)x =1,解得x =12. 因为12<15,所以两人能履行合同.(2)调走甲更合适.由(1)知,两人合作完成这项工程的75%需要的时间为12×75%=9(天).剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=124,因为130<124<120,故调走甲合适.。

七年级上册数学 解一元一次方程50道专项练习题(含答案)

七年级上册数学 解一元一次方程50道专项练习题(含答案)

七年级上册数学解一元一次方程50道专项练习题(含答案)5)x=1;(6)x=-12;(7)无解;(8)x=1.2、【答案】(1)x=.5;(2)x=-3;(3)x=-9;(4)x=-2;(5)x=22;(6)x=-2;(7)x=.5;(8)x=4.3、【答案】(1)x=4;(2)x=-1;(3)x=-4;(4)x=-5;(5)x=-1;(6)x=3;(7)无解;(8)x =-3.4、【答案】(1)x=-.5;(2)x=-6;(3)x=-1;(4)x=-2;(5)x=-2;(6)x=2;(7)x=-2;(8)x=-2/3.改写后:1、解一元一次方程50道专项练题(含答案)1.1、基础题解方程:1)2x+6=1;2)10x-3=9;3)5x-2=7x+8;4)1-x=3x;5)4x-2=3-x;6)-7x+2=2x-4;7)-x=-x+1;8)2x-=-+2.2.1、基础题解方程:1)4(x-1)=1;2)-2(x-1)=4;3)5(2x-3)=3x+9;4)2-(1+5)=-(2x+1);5)11x+(320-x)=3.3.1、综合Ⅰ解方程:1)(x+1)/(x-4)=(x-2)/(x+1);2)(x+4)/(x-1)-(x-1)/(x+4)=12;3)(x+5)/(x-3)=(x+1)/(x-5);4)x-7=(x+3)/(x-2);5)1/(x+1)+1/(x-1)=(2x-3)/(x²-1);6)(x-1)/(x+2)+(x+2)/(x-1)=4;7)(2x+14)/(x+1)=4-2x;8)(200+x)-(300-x)=300/(x+2)-x/3.参考答案:1、(1)x=3;(2)x=2;(3)x=4;(4)x=6;(5)x=1;(6)x=-12;(7)无解;(8)x=1.2、(1)x=.5;(2)x=-3;(3)x=-9;(4)x=-2;(5)x=22;(6)x=-2;(7)x=.5;(8)x=4.3、(1)x=4;(2)x=-1;(3)x=-4;(4)x=-5;(5)x=-1;(6)x=3;(7)无解;(8)x=-3.4、(1)x=-.5;(2)x=-6;(3)x=-1;(4)x =-2;(5)x=-2;(6)x=2;(7)x=-2;(8)x=-2/3.1.答案:(1) x=0.(2) x=5.(3) x=-5.(4) x=0.解释:(1) 0乘以任何数都等于0;(2) 5的平方等于25;(3) (-5)的平方也等于25;(4) 0乘以任何数都等于0.2.答案:(1) x=1.(2) x=-1.(3) x=0.(4) x=-3.(5) x=4.(6) x=9.解释:(1) 1的平方等于1;(2) (-1)的平方也等于1;(3) 0乘以任何数都等于0;(4) (-3)的平方等于9;(5) 4的平方等于16;(6) 9的平方等于81.3.答案:(1) x=8.(2) x=0.(3) x=-16.(4) x=7.(5) x=-1.(6)x=3.(7) x=-28.(8) x=-5.解释:(1) 等于64;(2) 0乘以任何数都等于0;(3) (-16)的平方等于256;(4) 7的平方等于49;(5) (-1)的平方等于1;(6)3的平方等于9;(7) (-28)的平方等于784;(8) (-5)的平方等于25.4.答案:(1) x=3.(2) x=-8/7.(3) x=0.(4) x=undefined.解释:(1) 3的平方等于9;(2) -8/7的平方等于64/49;(3) 0乘以任何数都等于0;(4) 不能对负数取平方根,所以该问题无解。

七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)

七年级数学上册第三单元《一元一次方程》-解答题专项复习题(含解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】⨯=解:∵67604020>40203650∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得+-=x x5060(67)3650-=x6730答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.7.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x =﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.9.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13, 解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.10.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =- 解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.11.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.12.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.13.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本.(1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键14.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 15.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x --=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 18.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.19.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.20.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a ab --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .21.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。

七年级上册数学期末复习《一元一次方程》试题


A.15x+3-2x-1=1
B.15x+3-2x+1=1
C.15x+3-2x+1=6
D.15x+3-2x-1=6
5.(曲靖中考)小明所在城市的“阶梯水价”收费办法是:每
户用水不超过 5 吨,每吨水费 x 元;超过 5 吨,超过部分每吨加收
2 元,小明家今年 5 月份用水 9 吨,共交水费为 44 元,根据题意列
【解答】 设乙船到达 C 地时,甲船距离 B 地 x km. ①当 C 地在 A,B 两地之间时,由题意,得 (7.5+2.5)×(4-7.5+x 2.5)-(7.5-2.5)×7.5+x 2.5=10, 解得 x=20. ②当 C 地在 A 地的上游时,由题意,得 (7.5-2.5)×7.5+x 2.5-(7.5+2.5)(4-7.5+x 2.5)=10, 解得 x=1030. 答:乙船到达 C 地时,甲船距离 B 地 20 km 或1030 km.
分类讨论思想:对于实际问题列方程时,若条件中给出的 等量关系表述不明确,则必须进行分类讨论.关键是要分清不明确的 条件中可能产生的情况.
【例 7】 如图,数轴上两个动点 A,B 开始时所对应的数分 别为-8,4,A,B 两点各自以一定速度在数轴上运动,且 A 点运 动的速度为 2 个单位/秒.
(1)A,B 两点同时出发相向而行,在原点处相遇,求 B 点运 动的速度;
一、选择题(每小题 4 分,共 32 分)
1.已知下列方程:①13x=2;②1x=3;③x2=2x-1;④2x2=1;
⑤x=2;⑥2x+y=1.其中一元一次方程的个数是(B)
A.2
B.3
C.4
D.5
2.下列方程中变形正确的是(A)
①3x+6=0 变形为 x+2=0;

一元一次方程50道题七年级

一元一次方程50道题七年级引言在初中数学学习中,一元一次方程是最基础也是最重要的一个知识点。

通过解一元一次方程的练习,可以培养学生的逻辑推理能力和解决问题的能力。

本文将为七年级学生提供50道一元一次方程的练习题,帮助学生巩固和提升他们的解方程能力。

练习题在下面的练习题中,每道题都有一个未知数x,需要求解出x的值。

1.2x = 102.3x - 5 = 163.4x + 6 = 224.5x - 3 = 175.6x + 4 = 346.7x - 2 = 237.8x + 7 = 398.9x - 8 = 259.10x + 3 = 5310.11x - 1 = 4411.12x + 5 = 6512.13x - 4 = 4913.14x + 9 = 7914.15x - 6 = 6915.16x + 2 = 8216.17x - 3 = 7617.18x + 4 = 9418.19x - 7 = 8719.20x + 1 = 10220.21x - 2 = 9721.22x + 6 = 12022.23x - 5 = 11523.24x + 3 = 13224.25x - 1 = 12425.26x + 9 = 15126.27x - 8 = 14327.28x + 2 = 16228.29x - 3 = 15929.30x + 4 = 18030.31x - 6 = 17731.32x + 5 = 20232.33x - 2 = 19933.34x + 7 = 22834.35x - 4 = 22335.36x + 1 = 25236.37x - 9 = 24737.38x + 3 = 27838.39x - 7 = 27339.40x + 8 = 30840.41x - 5 = 30341.42x + 1 = 34242.43x - 4 = 33743.44x + 6 = 38044.45x - 3 = 37545.46x + 5 = 42046.47x - 1 = 41547.48x + 2 = 46248.49x - 6 = 45749.50x + 3 = 50850.51x - 2 = 503 解答下面是练习题的解答:1.x = 52.x = 73.x = 44.x = 45.x = 56.x = 57.x = 48.x = 39.x = 510.x = 411.x = 512.x = 513.x = 514.x = 515.x = 516.x = 517.x = 518.x = 619.x = 520.x = 521.x = 622.x = 523.x = 524.x = 525.x = 526.x = 727.x = 528.x = 629.x = 630.x = 631.x = 732.x = 633.x = 634.x = 735.x = 736.x = 637.x = 738.x = 739.x = 740.x = 841.x = 842.x = 843.x = 844.x = 845.x = 946.x = 947.x = 948.x = 949.x = 950.x = 10结论通过解答以上50道题目,我们可以发现一元一次方程的解为常数。

七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)

七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)一、单选题1.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .52.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为( ) A .6场B .7场C .8场D .9场4.关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( ) A .12B .14C .14-D .12-5.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( ) A .213337x x x ++=B .21133327x x x ++=C .21133327x x x x +++=D .21133372x x x x ++-=7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+= D .3487y y +-= 8.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( ) A .102里 B .126里C .192里D .198里9.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④10.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 11.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .612.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 二、填空题13.《九章算术》是我国古代数学名著,书中记载:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱,问合伙人数、羊价各是多少?”设合伙人数为x 人,根据题意可列一元一次方程为__________________.14.如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__. 15.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是___ ___.16.已知2230m x -+=是关于x 的一元一次方程,则m =________________.17.22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?18.关于x 的方程5m +3x =1+x 的解比方程2x =6的解小2,则m =___ __. 19.已知x =1是方程31322x k x -=-的解,则23k +的值是_________ _____ 20.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 ___ __. 三、解决问题 21.解方程:(1)43(23)12(4)x x x +-=--; (2)121146x x +--=.22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.24.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?25.某市有甲、乙两个工程队,现有-小区需要进行小区改造,甲工程队单独完成这项工程.需要20天,乙工程队单独完成这项工程所需的时间比甲工程队多12(1)求乙工程队单独完成这项工程需要多少天?(2)现在若甲工程队先做5天,剩余部分再由甲、乙两工程队合作,还需要多少天才能完成?(3)已知甲工程队每天施工费用为4000元,乙工程队每天施工费用为2000元,若该工程总费用政府拨款70000元(全部用完),则甲、乙两个工程队各需要施工多少天?26.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点. (1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。

期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册

(人教版)七年级上册数学期末复习重要考点03《一元一次方程》十大重要考点题型【题型1方程的有关概念】1.(2022秋•新城区校级期末)下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④1+2=0;⑤3x﹣2;⑥x﹣y=0;是方程的有()A.3个B.4个C.5个D.6个【分析】含有未知数的等式叫方程,根据方程的定义逐项判断即可得出答案.【解答】解:根据方程的定义可得:①③④⑥是方程,②2x>3是不等式,⑤3x﹣2,不是等式,不是方程,故方程有4个,故选:B.【点评】本题考查了方程的定义,熟练掌握方程的定义是解此题的关键.2.(2023秋•贵州期末)下列各式中是一元一次方程的是()A.x+y=6B.x2+2x=5C.+1=0D.2+3=0【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【解答】解:A.x+y=6,含有两个未知数,不是一元一次方,不符合题意;B.x2+2x=5,未知数的次数为2,不是一元一次方,不符合题意;C.+1=0,分母含有未知数,是分式方程,不是一元一次方,不符合题意;D.2+3=0,含有一个未知数,且未知数的次数为1,为整式方程,符合题意.故选:D.【点评】本题考查了一元一次方程的判断,熟练掌握一元一次方程的定义是解题的关键.3.(2022秋•古冶区期末)方程:①2x﹣1=x﹣7,②12=13−1,③2(x+5)=x﹣4,④23=+2,其中解为x=﹣6的方程的个数为()A.1B.2C.3D.4【分析】分别计算各一元一次方程的解,然后判断作答即可.【解答】解:①2x﹣1=x﹣7,移项合并得,x=﹣6,符合要求;②12=13−1,去分母得,3x=2x﹣6,移项合并得,x=﹣6,符合要求;③2(x+5)=x﹣4,去括号得,2x+10=x﹣4,移项合并得,x=﹣14,不符合要求;④23=+2,去分母得,2x=3x+6,移项合并得,﹣x=6,系数化为1得,x=﹣6,符合要求;综上分析可知,解为x=﹣6的方程有3个,故选:C.【点评】本题考查了解一元一次方程.解题的关键在于正确的解方程.4.(2022秋•琼海期末)已知方程(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则m的值是()A.2B.3C.±3D.﹣3【分析】根据一元一次方程的定义,只含有一个未知数,并且未知数的最高次数是1的整式方程,进行计算即可解答.【解答】解:由题意得:|m|﹣2=1且m﹣3≠0,∴m=﹣3,故选:D.【点评】本题考查了绝对值,一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.5.(2022秋•花山区期末)当m=时,方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,据此可得结论.【解答】解:∵方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程,∴|m﹣2|=1,且m﹣3≠0,解得m=1,故答案为:1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.(2023秋•曾都区期中)若方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,则代数式|m ﹣1|的值为.【分析】利用一元一次方程的定义,可列出关于m的一元二次方程及一元一次不等式,解之可得出m的值,再将其代入|m﹣1|中,即可求出结论.【解答】解:∵方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,∴2−1=0−(−1)≠0,解得:m=﹣1,∴|m﹣1|=|﹣1﹣1|=2.故答案为:2.【点评】本题考查了一元一次方程的定义以及绝对值,牢记“只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程”是解题的关键.7.(2023春•黄浦区期中)已知:(a +2b )y 2−13K 13=3是关于y 的一元一次方程.(1)求a 、b 的值;(2)若x =a 是方程r26−K12+3=x −K 3的解,求|a ﹣b ﹣2|﹣|b ﹣m |的值.【分析】(1)先根据一元一次方程的定义列出关于a ,b 的方程组,求出a ,b 的值即可;(2)把x =a 代入方程求出m 的值,再代入代数式求解即可.【解答】解:(1)∵(a +2b )y 2−13K 13=3是关于y 的一元一次方程,2=0−13=1,解得=4=−2;(2)∵a =4,x =a 是方程r26−K12+3=x −K 3的解,∴1−32+3=4−4−3,解得m =−12,∴|a ﹣b ﹣2|﹣|b ﹣m |=|4+2﹣2|﹣|﹣2+12|=52.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.【题型2等式的基本性质】1.(2023秋•洮北区期末)将等式m =n 变形错误的是()A .m +5=n +5B .−7=−7C .m −12=n −12D .﹣2m =2n【分析】根据等式的性质可得答案.【解答】解:A 、若m =n ,则m +5=n +5,原变形正确,故此选项不符合题意;B 、若m =n ,则−7=−7,原变形正确,故此选项不符合题意;C 、若m =n ,则m −12=n −12,原变形正确,故此选项不符合题意;D 、若m =n ,则﹣2m =﹣2n ,原变形错误,故此选项符合题意.故选:D .【点评】本题考查了等式的性质,解题的关键是掌握等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.2.(2022秋•琼海期末)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若x=y,则=D.若=(c≠0),则a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.【解答】解:A、若x=y,则x+5=y+5,此选项正确;B、若a=b,则ac=bc,此选项正确;C、若x=y,当a≠0时=,此选项错误;D、若=(c≠0),则a=b,此选项正确;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.3.(2023秋•新民市校级月考)下列等式变形不正确的是()A.由x=y,得到x+3=y+3B.由3a=b,得到2a=b﹣aC.由m=n,得到4m=4n D.由bm=bn,得到m=n【分析】根据等式的性质进行判断即可.【解答】解:A.将等式x=y的两边都加上3得到的仍是等式,即x+3=y+3,因此选项A不符合题意;B.将3a=b的两边都减去a得到的仍是等式,即3a﹣a=b﹣a,也就是2a=b﹣a,因此选项B不符合题意;C.将m=n的两边都乘以4仍是等式,即4m=4n,因此选项C不符合题意;D.将bm=bn的两边都除以b,当b=0时就不能得到m=n,因此选项D符合题意.故选:D.【点评】本题考查等式的性质,理解等式的基本性质是正确判断的关键.4.(2022秋•五华县期末)下列等式变形中,结果正确的是()A.如果a=b,那么a﹣m=b+mB.由﹣3x=2得x=−32D.如果=,那么a=b【分析】根据等式性质1对A选项进行判断;根据等式性质2对B、D选项进行判断;根据绝对值的意义对C选项进行判断.【解答】解:A.如果a=b,那么a﹣m=b﹣m,所以A选项不符合题意;B.由﹣3x=2,则x=−23,所以B选项不符合题意;C.如果|a|=|b|,那么a=b或a=﹣b,所以C选项不符合题意;D.如果=,则a=b,所以D选项符合题意.故选:D.【点评】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.也考查了绝对值.5.(2022秋•保亭县期末)下列式子变形中,正确的是()A.由6+x=10得x=10+6B.由3x+5=4x得3x﹣4x=﹣5C.由5x=5得x=5D.由2(x﹣1)=3得2x﹣1=3【分析】根据等式的性质,逐项分析判断即可求解.【解答】解:A.由6+x=10得x=10﹣6,故该选项不正确,不符合题意;B.由3x+5=4x得3x﹣4x=﹣5,故该选项正确,符合题意;C.由5x=5得x=1,故该选项不正确,不符合题意;D.由2(x﹣1)=3得−1=32,故该选项不正确,不符合题意;故选:B.【点评】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.6.(2022秋•广平县期末)等式就像平衡的天平,能与如图的事实具有相同性质的是()B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+cD.如果a=b,那么a2=b2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.【点评】本题考查了等式的基本性质,解题的关键是掌握等式的基本性质:等式性质:1、等式两边加同一个数(或式子)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.(2022秋•颍州区期末)若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=;④a2=b2;⑤=1.其中正确的有.(填序号)【分析】根据等式的基本性质,解答即可.【解答】解:若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=,当m=0时,分式不成立;④a2=b2;⑤=1,当b=0时,分式不成立其中正确的有①②④.故答案为:①②④.【点评】本题考查了等式的基本性质,掌握等式的基本性质是解题的关键,【题型3一元一次方程的解法】1.(2023春•蒸湘区校级期末)解方程3=1−K15时,去分母正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1)D.5x=3﹣3(x﹣1)【分析】按照解一元一次方程的步骤进行计算即可解答.【解答】解:3=1−K15,去分母,方程两边同乘15得:5x=15﹣3(x﹣1),故选:C.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.2.(2022秋•唐县期末)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由16x=﹣1,可得x=−16D.由K12=4−3,可得2(x﹣1)=x﹣3【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由16x=﹣1,可得x=﹣6,不符合题意;D、由K12=4−3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.(2022秋•广州期末)将方程0.3=1+1.2−0.30.2中分母化为整数,正确的是()A.103=10+12−32B.3=10+1.2−0.30.2C.103=1+12−32D.3=1+1.2−0.32【分析】方程各项分子分母扩大相应的倍数,使其小数化为整数得到结果,即可作出判断.【解答】解:方程整理得:103=1+12−32.故选:C.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.4.(2022秋•丹阳市期末)关于x的一元一次方程2021−2022=2023的解为x=2,那么关于y的一元一次方程K20212021+2023(2021−p=2022的解为.【分析】将关于y的一元一次方程变形,然后根据一元一次方程解的定义得到y﹣2021=2,进而可得y 的值.【解答】解:将关于y的一元一次方程K20212021+2023(2021−p=2022变形为K20212021−2022=2023(−2021),∵关于x的一元一次方程2021−2022=2023的解为x=2,∴y﹣2021=2,∴y=2023,故答案为:2023.【点评】本题考查了解一元一次方程,一元一次方程的解,熟练掌握整体思想的应用是解题的关键.5.(2022秋•张湾区期末)解方程:(1)1−2K16=2r13;(2)3x﹣7(x﹣1)=3﹣2(x﹣1).【分析】(1)方程去分母,去括号,移项合并,将x系数化为1,即可求出解;(2)方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项合并得:﹣6x=﹣5,解得:=56;(2)去括号得:3x﹣7x+7=3﹣2x+2,移项合并得:﹣2x=﹣2,解得:x=1.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.6.(2023秋•鼓楼区校级月考)解方程:(1)4x+1=﹣5x+10;(2)K12=r76+1.【分析】(1)直接移项、合并同类项,进而解方程得出答案;(2)直接去分母,再移项、合并同类项,进而解方程得出答案.【解答】解:(1)4x+1=﹣5x+104x+5x=10﹣1,合并同类项得:9x=9,解得:x=1;(2)K12=r76+1去分母得:6(x﹣1)=2(x+7)+12,去括号得:6x﹣6=2x+14+12,移项、合并同类项得:4x=32,解得:x=8.【点评】此题主要考查了解一元一次方程,正确掌握解方程的方法是解题关键.7.(2023秋•姑苏区校级月考)解方程:(1)2(x+3)=5x;(2)K30.5−r40.2=1.6.【分析】(1)按去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)按去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可.【解答】解:(1)2(x+3)=5x,去括号得:2x+6=5x,移项合并同类项得:﹣3x=﹣6,系数化为1得:x=2;(2)K30.5−r40.2=1.6,化简得:10K305−10r402=1.6,2x﹣6﹣5x﹣20=1.6,移项合并同类项得:﹣3x=27.6,系数化为1得:x=﹣9.2.【点评】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.8.(2022秋•中宁县期末)解方程:2K15−r12=1解:去分母,得2(2x﹣1)﹣5(x+1)=10……①去括号,得4x﹣2﹣5x+5=10……②移项,合并同类项,得﹣x=13……③系数化为1,得x=﹣13……④(1)步骤①去分母的依据是;(2)上面计算步骤出错的是第步,错误的原因是;(3)请你写出这个方程正确的解法.【分析】(1)利用等式的基本性质判断即可;(2)找出出错的步骤,分析其原因即可;(3)写出正确的解答过程即可.【解答】解:(1)步骤①去分母的依据是等式的基本性质;故答案为:等式的基本性质;(2)上面计算步骤出错的是第二步,错误的原因是去第二个括号时,括号中第二项没有变号;故答案为:二,去第二个括号时,括号中第二项没有变号;(3)去分母得:2(2x﹣1)﹣5(x+1)=10,去括号得:4x﹣2﹣5x﹣5=10,移项得:4x﹣5x=10+2+5,合并同类项得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.【题型4方程解中的遮挡问题】1.有一方程=﹣1,其中一个数字被污渍盖住了.已知该方程的解为x=﹣1,那么处的数字应是()A.5B.﹣5C.12D.−12【分析】根据方程的解的定义(使得方程成立的未知数的值)解决此题.【解答】解:设处的数字是a.∴2−3=−1.∴a=5.故选:A.【点评】本题主要考查方程的解,熟练掌握方程的解的定义是解决本题的关键.2.(2023秋•洮北区期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(2022秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.(2022秋•馆陶县期末)方程5y﹣7=2y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣1.这个常数应是()A.10B.4C.﹣4D.﹣10【分析】将y=﹣1代入方程计算可求解这个常数.【解答】解:将y=﹣1代入方程5y﹣7=2y﹣中,5×(﹣1)﹣7=2×(﹣1)﹣,解得=10,故选:A.【点评】本题主要考查一元一次方程的解,理解一元一次方程解的概念是解题的关键.5.(2022秋•隆化县期末)小马虎在做作业,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了.怎么办?他翻开书后的答案,发现方程的解是x=9.请问这个被污染的常数是()A.1B.2C.3D.4【分析】设被污染的数字为y,将x=9代入,得到关于y的方程,从而可求得y的值.【解答】解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.【点评】本题主要考查的是一元一次方程的解得定义以及一元一次方程的解法,掌握方程的解得定义是解题的关键.6.(2022秋•临猗县期末)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y−12=12y﹣■,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=3,他很快便补好了这个常数,你能补出这个常数吗?它应是()A.﹣2B.3C.﹣4D.5【分析】设这个常数为x,已知此方程的解是y=3,将之代入二元一次方程2y−12=12y﹣x,即可得这个常数的值.【解答】解:能,设被污染的常数为a,则2y−12=12y﹣a,∵此方程的解是y=3,∴将此解代入方程,方程成立,∴2×3−12=12×3﹣a,解得a=﹣4,故选:C.【点评】本题主要考查了一元一次方程的应用以及它的解的意义.知道一元一次方程的解,求方程中的常数项,可把方程的解代入方程求得常数项的值.(把■作为一个未知数来看即可).7.(2022秋•威县期末)嘉淇在解关于x的一元二次方程2K13+■=r34时,发现常数■被污染了;(1)嘉淇猜■是﹣1,请解一元一次方程2K13−1=r34.(2)老师告诉嘉淇这个方程的解为x=﹣7,求被污染的常数.【分析】(1)利用去分母,移项,合并同类项,系数化1,可得答案;(2)设被污染的正整数为m,则有2×(−7)−13+=−7+34,求解可得答案.【解答】解:(1)2K13−1=r34,去分母得:4(2x﹣1)﹣12=3(x+3),去括号得:8x﹣4﹣12=3x+9,移项合并得:5x=25,系数化为1得:x=5;(2)设“■”的常数为m,由于x=﹣7是方程的解,则2×(−7)−13+=−7+34,解之得,m=4,所以被污染的常数是4.【点评】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.8.(2022春•西峡县期中)同学们在做解方程的练习时,卷子上有一个方程“2x−12=18x+□”中“□”没印清晰,小梅问老师,老师只说:“□是一个常数;该方程的解与当y=3时代数式5(y﹣1)﹣2(y﹣2)﹣4的值相同”.聪明的小梅很快补上了这个常数.求小梅补上的这个常数是多少?【分析】把y=3代入代数式5(y﹣1)﹣2(y﹣2)﹣4中进行计算,然后设小梅补上的这个常数是a,再把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,最后进行计算即可解答.【解答】解:当y=3时,5(y﹣1)﹣2(y﹣2)﹣4=5×(3﹣1)﹣2×(3﹣2)﹣4=5×2﹣2×1﹣4=10﹣2﹣4=4,设小梅补上的这个常数是a,由题意得:把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,8−12=12+a,a=8−12−12=7,∴小梅补上的这个常数是7.【点评】本题考查了一元一次方程的解,熟练掌握一元一次方程的解的意义是解题的关键.【题型5求一元一次方程含参问题】1.(2022秋•洪山区校级期末)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为()A.a=3B.a=1C.a=2D.a=﹣1【分析】将x=2代入原方程即可求出答案.【解答】解:将x=2代入2x+a﹣5=0,∴2×2+a﹣5=0,∴a=1,故选:B.【点评】本题考查一元一次方程的解,解题的关键是将x=2代入原方程,本题属于基础题型.2.(2022秋•庆阳期末)小磊在解关于x的方程r43−r4=2时,求得的解为x=﹣1,则k的值为()A.﹣1B.﹣3C.1D.5【分析】把x=﹣1代入方程r43−r4=2,解关于k的方程即可.【解答】解:把x=﹣1代入方程r43−r4=2得,−1+43−−1+4=2,方程两边都乘以12得,4(﹣1+4)﹣3(﹣1+k)=24,解得:k=﹣3,故选:B.【点评】此题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022春•镇平县期中)若关于x的方程3(x+4)=2a+5的解大于关于x的方程(4r1)4=o3K4)3的解,试确定a的取值范围.【分析】先求出两个方程的解,即可得出不等式,求出不等式的解集即可.【解答】解:∵3(x+4)=2a+5,∴x=2K73,∵(4r1)4=o3K4)3,∴x=−163a,∴2K73>−163a,解得a>718.【点评】本题考查了解一元一次方程和解一元一次不等式,能得出关于a的不等式是解此题的关键.4.(2023秋•椒江区校级期中)若不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,求m+n的值.【分析】把x=1代入方程计算,求出m与n的值,即可求出m+n的值.【解答】解:把x=1代入方程得:2r3=2+1−B6,去分母得:2(2k+m)=12+1﹣nk,整理得:(4+n)k=13﹣2m,∵不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,∴4+n=0,13﹣2m=0,解得:n=﹣4,m=6.5,则m+n=2.5.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2022秋•秦都区校级期末)若方程2(3x+1)=1+2x的解与关于x的方程6−23=2(x+3)的解互为倒数,求k的值.【分析】解方程2(3x+1)=1+2x得出x的值,根据方程的解互为倒数知另一方程的解,代入可得关于k的方程,解之可得.【解答】解:2(3x+1)=1+2x,去括号,得6x+2=1+2x,移项、合并同类项,得4x=﹣1,化系数为1,得=−14.∵−14的倒数是﹣4,∴将x=﹣4代入方程6−23=2(+3),则6−23=−2,∴6﹣2k=﹣6.解得k=6.【点评】本题考查了方程的解的定义,就是能够使方程左右两边相等的未知数的值.解题的关键是正确解一元一次方程.6.(2022秋•游仙区校级月考)如果关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求2a2﹣a的值.【分析】求出第一个方程的解,根据两方程解互为相反数得出关于a的一元一次方程,求出a的值,然后代入2a2﹣a计算即可.【解答】解:解方程2(x﹣4)﹣48=﹣3(x+2),得x=10,∵关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,∴方程4x﹣(3a+1)=6x+2a﹣1的解为x=﹣10,把x=﹣10代入得,﹣40﹣(3a+1)=﹣60+2a﹣1,解得,a=4,∴2a2﹣a=2×42﹣4=2×16﹣4=32﹣4=28.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.7.(2022秋•如东县期中)已知关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,求k的值.【分析】根据同解方程的定义可得出关于x与k的方程组,再求解即可.【解答】解:∵关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,∴x=2k﹣1,把x=2k﹣1代入3r4−5K18=1,得2k﹣1+2k=7,解得k=2,∴k的值为2.【点评】本题考查了同解方程的定义,掌握同解方程的定义,得出k的值是解题的关键.8.(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【题型6利用一元一次方程解决错解问题】1.(2023春•叙州区期末)小红在解关于x的方程:﹣3x+1=3a﹣2时,误将方程中的“﹣3”看成了“3”,求得方程的解为x=1,则原方程的解为.【分析】把x=1代入3x+1=3a﹣2,求出a的值,再把a的值代入原方程求解即可.【解答】解:把x=1代入3x+1=3a﹣2,得3+1=3a﹣2,解得a=2,故原方程为﹣3x+1=6﹣2,﹣3x=3,解得x=﹣1.故答案为:x=﹣1.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(2022秋•献县期末)小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.【分析】把x=3代入2a+5x=21得出方程2a+15=21,求出a=3,得出原方程为6﹣5x=21,求出方程的解即可.【解答】解:∵小马虎在解关于x的方程2﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x =3,∴把x=3代入2a+5x=21得出方程2a+15=21,解得:a=3,即原方程为6﹣5x=21,解得x=﹣3.故答案为:x=﹣3.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022秋•陇县期末)小明在解方程2K13=r3−1去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a ﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:2K13=r23−1,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.【点评】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.4.(2023秋•道里区校级期中)某同学在解方程2K13=r2−1去分母时,方程右边的﹣1没有乘以6,因而求得方程的解为x=2,求a的值和方程正确的解.【分析】把x=2代入看错的方程求出a的值,确定出所求方程,求出解即可.【解答】解:把x=2代入4x﹣2=3x+3a﹣1得:a=13,∴原方程为2K13=r132−1,去分母得2(2x﹣1)=3(x+13)﹣6,去括号得4x﹣2=3x+1﹣6,移项得4x﹣3x=1+2﹣6,合并同类项得x=﹣3.【点评】此题考查了一元一次方程的解,熟练掌握运算法则是解本题的关键.5.(2022秋•丰顺县校级月考)(1)已知关于x的方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,求a2020的值.(2)小马虎在解关于x的方程2x=ax﹣21时,出现了一个失误:“在将ax移到方程的左边时,忘记了变号.”结果他得到方程的解为x=﹣3,求a的值和原方程的解.【分析】(1)根据方程的解互为倒数,可得关于a的方程,根据解方程,可得a的值,再根据乘方的性质,可得答案;(2)根据解方程,可得答案.【解答】解:(1)∵2x+3=﹣1,∴x=﹣2,∵方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,∴2(x﹣1)=﹣3a﹣6的解为−12,∴2(−12−1)=−3−6,解得,a=﹣1,∴a2020=(﹣1)2020=1.(2)由题意得2x+ax=﹣21,x=﹣3为此方程的解,∴﹣6﹣3a=﹣21,∴a=5,∴原方程为2x=5x﹣21,∴x=7,原方程的解是7.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.6.小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【题型7一元一次方程的整数解问题】1.(2023秋•西城区校级期中)若关于x的一元一次方程kx=x+3的解为正整数,则整数k的值为()A.2B.4C.0或2D.2或4【分析】先求出方程的解,再根据关于x的一元一次方程kx=x+3的解为正整数和k为整数得出k﹣1=1或k﹣1=3,再求出k即可.【解答】解:解方程kx=x+3得:x=3K1,∵关于x的一元一次方程kx=x+3的解为正整数,k为整数,∴k﹣1=1或k﹣1=3,∴k=2或4.故选:D.【点评】本题考查了一元一次方程的解,能根据题意得出关于k的方程是解此题的关键.2.(2022秋•南充期末)已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个【分析】解此题可先将一元一次方程进行移项、合并同类项等转换,得出x的解,再根据题意判断a的值.【解答】解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=66−,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.【点评】此题考查了自然数的定义,以及一元一次方程的解法,熟练掌握即可解答.3.(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.4.(2022秋•九龙坡区校级期末)已知关于x的方程a(x+1)=a﹣2(x﹣2)的解都是正整数,则整数a 的所有可能的取值的积为()A.﹣12B.1C.8D.0【分析】根据一元一次方程的解法求出x的表达式,然后根据题该方程的解都是正整数即可求出a的值.【解答】解:a(x+1)=a﹣2(x﹣2),ax+a=a﹣2x+4,ax=﹣2x+4,(a+2)x=4,由于x是正整数,故a+2=1或2或4,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲义(1):一元一次方程的基本概念1、方程:含 的等式..叫做方程. 2、方程的解:使方程...的等号左右两边相等....的 ,就是方程的解....。

3、解 方 程:求. 的过程叫做解方程...。

4、一元一次方程...未知数(元),未知数的最高次数是.....1.的整式方程叫做一元一次方程。

5、▲等式的基本性质·等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。

即:如果a =b ,那么a ±c =b 。

·等式的性质2:等式的两边同时乘 ,或除以 数,结果仍相等。

即:如果a =b ,那么ac =bc ; 或 如果a =b ( ),那么a/c =b/c6、△分数的基本的性质分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:ba =bmam =mb m a ÷÷(其中m ≠0)求解:5.03-x -2.04+x =1.61、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。

2、当x=___时,单项式5a 2x+1b 2 与8a x+3b 2是同类项。

3、若()022=-+-y y x ,则x+y=___________1.若=-=+++y x x y 则,0)5(22。

2.若31392b aba nm n ++-与是同类项,则m= ,n= 。

3.若213y nxy mx m p+与的和为0,则m -n+3p = 。

4.代数式x+6与3(x+2)的值互为相反数,则x 的值为 。

5.若34+x 与56 互为倒数,则x= 。

6.方程5x 4x123-+-=,去分母可变形为______。

7.代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。

8.如果x=5是方程ax+5=10-4a 的解,那么a=______ 9.方程434x x =-的解是x =_______. 10当x = 时,代数式2+x 与代数式28x -的值相等.11.代数式12+a 与a 21+互为相反数,则=a .讲义(2): 一元一次方程的解法【解一元一次方程的一般步骤】图示 1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解。

1、14126110312-+=---x x x2、8(3x -1)-9(5x -11)-2(2x -7)=303、2(x+1)5(x+1)=136- 4、4x 1.55x 0.8 1.2x0.50.20.1----=5、1122(1)(1)223x x x x⎡⎤---=-⎢⎥⎣⎦讲义(3): 一元一次方程的应用1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息×100% 利息=本金×利率×期数本金1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.解:设甲、乙一起做还需x 小时才能完成工作. 根据题意,得16×12+(16+14)x=1解这个方程,得x=115115=2小时12分答:甲、乙一起做还需2小时12分才能完成工作. 2.解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x . 由题意,得2×(9+x )=15+x 18+2x=15+x ,2x-x=15-18 ∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.解:设圆柱形水桶的高为x 毫米,依题意,得π ·(2002)2x=300×300×80x ≈229.3答:圆柱形水桶的高约为229.3毫米.4.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x 分.过完第二铁桥所需的时间为250600x -分.依题意,可列出方程600x +560=250600x -解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米. 5.解:设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750 故为了获利最多,选择第二种方案.。

相关文档
最新文档