透射电子显微镜.ppt
合集下载
透射电镜(TEM)原理详解(课堂PPT)

G t 36
当A、B两区不是由同一种物质组成时,衬
度不仅取决于样品的厚度差,还取决于样品的
原子序数差。
同样的几何厚度,含重原子散射作用强,
相应的明场像暗;反之,由轻原子组成的区域,
散射作用弱,相应的明场像亮.
复型样品的制备中,常采用真空镀膜投影
的方法,由于投影(重)金属或萃取第二相粒
的圆盘,圆盘面垂直于入射电
子束,并且每个入射电子射中
一个圆盘就发生偏转而离开原
入射方向;未射中圆盘的电子
则不受影响直接通过。
27
散射截面的大小
按Rutherford模型,当入射电子经过原子核附近时,
其受到核电场的库仑力-e2Z/rn2作用而发生偏转,其轨
迹是双曲线型。散射角n的大小取决于入射电子和原
0.2~0.3nm
有效放大倍数
103×
106×
物镜孔径角
约700
<10
景深
较小
较大
焦长
较短
较长
像的记录
照相底板
照相底板
正是由于 α很小, TEM的 景深和焦 长都20很大
• TEM成像系统可以实现两种成像操作:一种是将物 镜的像放大成像,即试样形貌观察;另一种是将物 镜背焦面的衍射花样放大成像,即电子衍射分析。
度为ρ和厚度为t的样品上,若入射电子数为n,通过
厚度为dt后不参与成象的电子数为dn,则入射电子散
射率为
单个原子的散射截面
dn N dt A 0
每单位体积样品的散射面积
n
M
单位体积样品中包含的原子个数
厚度为dt的晶体总散射截面
将上式积分,得:
N
N
0
exp
《透射电子显微镜》课件

光阑
限制照明区域,减小成像的视场,提高成像的分辨率 。
光路调节器
调节光路中的光束方向和大小,确保光束正确投射到 样品上。
成像系统
Hale Waihona Puke 物镜将样品上的图像第一次放 大并投影到中间镜上。
中间镜
将物镜放大的图像进一步 放大并投影到投影镜上。
投影镜
将中间镜放大的图像最终 放大并投影到荧光屏或成
像设备上。
真空系统
谢谢您的聆听
THANKS
透射电子显微镜技术不断改进,分辨率和放大倍数得到显著提 高。
透射电子显微镜技术不断创新,出现了许多新型的透射电子显 微镜,如高分辨透射电子显微镜、冷冻透射电子显微镜等。
透射电子显微镜的应用领域
生物学
观察细胞、蛋白质、核酸等生物大分子的 结构和功能。
医学
研究病毒、细菌、癌症等疾病的发生、发 展和治疗。
真空泵
01
通过抽气作用维持透射电子显微镜内部的高真空状态。
真空阀门
02
控制真空泵的工作时间和进气流量,以保持透射电子显微镜内
部真空度的稳定。
真空检测器
03
监测透射电子显微镜内部的真空度,当真空度不足时提醒操作
人员进行处理。
03
透射电子显微镜的操作与维护
透射电子显微镜的操作步骤
打开电源
确保实验室电源稳定,打开透射电子显微镜 的电源开关。
记录
对透射电子显微镜的使用和维护情况进行 记录,方便日后追踪和管理。
04
透射电子显微镜的样品制备技术
金属样品的制备技术
电解抛光
通过电解抛光液对金属样品进行抛光 ,去除表面杂质和氧化层,使样品表 面光滑、平整。
离子减薄
限制照明区域,减小成像的视场,提高成像的分辨率 。
光路调节器
调节光路中的光束方向和大小,确保光束正确投射到 样品上。
成像系统
Hale Waihona Puke 物镜将样品上的图像第一次放 大并投影到中间镜上。
中间镜
将物镜放大的图像进一步 放大并投影到投影镜上。
投影镜
将中间镜放大的图像最终 放大并投影到荧光屏或成
像设备上。
真空系统
谢谢您的聆听
THANKS
透射电子显微镜技术不断改进,分辨率和放大倍数得到显著提 高。
透射电子显微镜技术不断创新,出现了许多新型的透射电子显 微镜,如高分辨透射电子显微镜、冷冻透射电子显微镜等。
透射电子显微镜的应用领域
生物学
观察细胞、蛋白质、核酸等生物大分子的 结构和功能。
医学
研究病毒、细菌、癌症等疾病的发生、发 展和治疗。
真空泵
01
通过抽气作用维持透射电子显微镜内部的高真空状态。
真空阀门
02
控制真空泵的工作时间和进气流量,以保持透射电子显微镜内
部真空度的稳定。
真空检测器
03
监测透射电子显微镜内部的真空度,当真空度不足时提醒操作
人员进行处理。
03
透射电子显微镜的操作与维护
透射电子显微镜的操作步骤
打开电源
确保实验室电源稳定,打开透射电子显微镜 的电源开关。
记录
对透射电子显微镜的使用和维护情况进行 记录,方便日后追踪和管理。
04
透射电子显微镜的样品制备技术
金属样品的制备技术
电解抛光
通过电解抛光液对金属样品进行抛光 ,去除表面杂质和氧化层,使样品表 面光滑、平整。
离子减薄
透射电子显微镜TEM(PPT121页)

透射电子显微镜 (Transmission Electron Microscope, TEM)
TEM是以波长极短的电子束作为照明源,用电磁透 镜聚焦成像的一种高分辨率、高放大倍数的电子光学 仪器。可同时实现微观形貌观察、晶体结构分析和成 分分析(配以能谱或波谱或能量损失 谱)。
为什么采用电子束而不用自然光?
β=±25度
EM420透射电子显微镜
(日本电子) 加速电压20KV、40KV、60KV、 80KV、100KV、120KV 晶格分辨率 2.04Å 点分辨率 3.4Å 最小电子束直径约2nm 倾转角度α=±60度
β=±30度
FEI Titan 80-300 kV S/TEM 世界上功能最强大的商用透射电子显 微镜 (TEM)。已迅速成为全球顶级研 究人员的首选 S/TEM,从而实现了 TEM 及 S/TEM 模式下的亚埃级分辨 率研究及探索。
➢ 电子显微镜发展史
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年,透射电
镜实现了工厂化生产。 20世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和Howie等人
主要技术参数: 1.TEM分辨率 <1 2.STEM分辨率 <1 3.能量分辨率 <0.15eV 或 <0.25eV 4.加速电压 80-300kV
内容
8.1 简介 8.2 结构原理 8.3 样品制备 8.4 透射电子显微镜的电子衍射 8.5 透射电子显微镜图像分析
8.2 透射电子显微镜结构原理
电磁透镜的分辨本领比光学玻璃透镜提高一千 倍左右,可以达到2Å 的水平,使观察物质纳米 级微观结构成为可能。
高分辨透射电子显微术优秀课件.ppt

高分辨透射电子显微术优秀课件
波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。
波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。
第二章透射电子显微镜ppt课件

b.成像/衍射模式选择。 •投影镜:进一步放大中间镜的 像。
透 射 电 镜 主 体 剖 面 图
三级放大成像示意图
2.1.3 观察记录系统
❖ 观察和记录系统包括荧光屏和照相机构。
❖ 荧光屏涂有在暗室操作条件下,人眼较敏感、发绿 光的荧光物质,有利于高放大倍数、低亮度图像的 聚集和观察。
❖ 照相机构是一个装在荧光屏下面,可以自动换片的 照相暗盒。胶片是一种对电子束曝光敏感、颗粒度 很小的溴化物乳胶底片,为红色盲片,曝光时间很 短,一般只需几秒钟。
的导磁体来吸引部分磁场。
❖电磁式:通过电磁极间 的吸引和排斥来校正磁场。 通过改变两组电磁体的励 磁强度和磁场的方向实现 校正磁场。
消像散器一般安装在透镜的上、 下极靴之间
电磁式消像散示意图
聚光镜消像散调整
2.2.4 光阑(Diaphragm holders and choice of diaphragms)
❖ 新型电镜均采用电磁快门,与荧光屏联动。有的装 有自动曝光装置。现代电镜已开始装有电子数码照 相装置,即CCD相机。
真空系统
❖ 在电子显微镜中,凡是电子运行的 区域都要求有尽可能高的真空度。
电源与控制系统
❖ 电子显微镜需要两个独立的电源,即使电 子加速的小电流高压电源和使电子束聚焦 与成像的大电流低压磁透镜电源。
1. 电子枪
❖ 电子枪是透射电子显微镜的电子源。
❖ 常用的是热阴极三极电子枪,由发夹形钨丝阴极、栅
源电子极帽枪和的阳极组成。
,形阴成极自:阴偏 极灯丝通常用0.03和阴0.极1毫之米栅间的极钨:栅丝极作是成控V制形电。子束 电位差形。状电和发射强度的(也称
为控制极、韦氏圆筒)。
阳极间会阳聚极:阳极使从阴极发射 交叉点的形,电成通子 定获 向得 高较 速高电的子动流能,,也
透 射 电 镜 主 体 剖 面 图
三级放大成像示意图
2.1.3 观察记录系统
❖ 观察和记录系统包括荧光屏和照相机构。
❖ 荧光屏涂有在暗室操作条件下,人眼较敏感、发绿 光的荧光物质,有利于高放大倍数、低亮度图像的 聚集和观察。
❖ 照相机构是一个装在荧光屏下面,可以自动换片的 照相暗盒。胶片是一种对电子束曝光敏感、颗粒度 很小的溴化物乳胶底片,为红色盲片,曝光时间很 短,一般只需几秒钟。
的导磁体来吸引部分磁场。
❖电磁式:通过电磁极间 的吸引和排斥来校正磁场。 通过改变两组电磁体的励 磁强度和磁场的方向实现 校正磁场。
消像散器一般安装在透镜的上、 下极靴之间
电磁式消像散示意图
聚光镜消像散调整
2.2.4 光阑(Diaphragm holders and choice of diaphragms)
❖ 新型电镜均采用电磁快门,与荧光屏联动。有的装 有自动曝光装置。现代电镜已开始装有电子数码照 相装置,即CCD相机。
真空系统
❖ 在电子显微镜中,凡是电子运行的 区域都要求有尽可能高的真空度。
电源与控制系统
❖ 电子显微镜需要两个独立的电源,即使电 子加速的小电流高压电源和使电子束聚焦 与成像的大电流低压磁透镜电源。
1. 电子枪
❖ 电子枪是透射电子显微镜的电子源。
❖ 常用的是热阴极三极电子枪,由发夹形钨丝阴极、栅
源电子极帽枪和的阳极组成。
,形阴成极自:阴偏 极灯丝通常用0.03和阴0.极1毫之米栅间的极钨:栅丝极作是成控V制形电。子束 电位差形。状电和发射强度的(也称
为控制极、韦氏圆筒)。
阳极间会阳聚极:阳极使从阴极发射 交叉点的形,电成通子 定获 向得 高较 速高电的子动流能,,也