2010年浙江省绍兴市中考数学试题
浙江省绍兴市2023年中考数学真题及参考答案

浙江省绍兴市2023年中考数学真题一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1.计算2-3的结果是()A.-1B.-3C.1D.32.据报道,2023年“五一”假期全国国内旅游出游合计274,000,000人次。
数字274,000,000用科学记数法表示是()A.27.4×107B.2.74×108C.0.274×109D.2.74×1093.由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B.C. D.4.下列计算正确的是()A.a6÷a2=a3B.-a25=-aC.a+1a-1=a2-1 D.(a+1)2=a2+15.在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.576.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛。
问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛。
问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是()A.x +5y =35x +y =2 B.5x +y =3x +5y =2 C.5x =y +3x =5y +2D.5x =y +2x =5y +37.在平面直角坐标系中,将点m ,n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.m -2,n -1B.m -2,n +1C.m +2,n -1D.m +2,n +18.如图,在矩形ABCD 中,O 为对角线BD 的中点,∠ABD =60°。
动点E 在线段OB 上,动点F 在线段OD 上,点E ,F 同时从点O 出发,分别向终点B ,D 运动,且始终保持OE =OF 。
2010年浙江省舟山中考数学试题及答案

(第2题) C AED B浙江省2010年初中毕业生学业考试(舟山卷)数 学 试 题 卷考生须知:1.本卷共三大题,24小题.全卷满分为120分,考试时间为120分钟.2.将试卷Ⅰ的答案做在答题卡上,将试卷Ⅱ的答案做在答题卷的相应位置上,做在试题卷上无效. 3.请用钢笔或圆珠笔将姓名、准考证号分别填写在答题卡和答题卷的相应位置上. 4. 考试时不能使用计算器.温馨提示:用心思考,细心答题,相信你一定会有出色的表现!参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标是(2b a -,244ac b a-).试 卷 Ⅰ请用铅笔将答题卡上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,将答题卡上相应的位置涂黑.不选、多选、错选均不给分) 1. 下面四个数中,负数是A .-3B .0C .0.2D .3 2. 如图,D ,E 分别是△ABC 的边AC 和BC 的中点,已知DE =2,则AB = A .1 B .2 C .3 D .43. 不等式x <2在数轴上表示正确的是4.某班50这次听力测试成绩的众数是 A .5分B .6分C .9分D .10分5. 已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是A .15B .25C .35D .236. 如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是A .两个相交的圆B .两个内切的圆C .两个外切的圆D .两个外离的圆B . D . A .C .7. 下列四个函数图象中,当x >0时,y 随x 的增大而增大的是8. 如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是A .2m +3B .2m +6C .m +3D .m +69. 小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是A .120πcm 2B .240πcm 2C .260πcm 2D .480πcm 210. 如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是A .2225y x = B .2425y x = C .225y x =D .245y x =试 卷 Ⅱ请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷上. 二、填空题(本大题有6小题,每小题4分,共24分) 11. 分解因式:x 2-9= ▲ . 12. 若点(4,m )在反比例函数8y x=(x ≠0)的图象上,则m 的值是 ▲ . 13.如图,直线DE 交∠ABC 的边BA 于点D ,若DE ∥BC ,∠B =70°, 则∠ADE 的度数是 ▲ .14. 玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有 ▲种.15. 已知a ≠0,12S a=,212S S =,322SS =,…,201020092S S =,则2010S = ▲ (用含a 的代数式表示).16. 如图,△ABC 是⊙O 的内接三角形,点D 是BC 的中点,已知∠AOB =98°,∠COB =120°.则∠ABD 的度数是 ▲ .(第10题)ABCD(第9题) (第16题)(第13题)CAE D B (第8题)三、解答题(本大题有8小题,共66分,请务必写出解答过程)17. (本题6分)计算:012sin302+--︒.18. (本题6分)解方程组23, 37.x yx y-=⎧⎨+=⎩①②19. (本题6分)已知:如图,E,F 分别是ABCD的边AD,BC的中点.求证:AF=CE.20. (本题8分)如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,4 cos5OBH∠=.(1)求⊙O的半径;(2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?请说明理由.A DEB C(第19题)A BOHC(第20题)l21. (本题8分)黄老师退休在家,为选择一个合适的时间参观2010年上海世博会,他查阅了5月10日至16日(星期一至星期日)每天的参观人数,得到图1、图2所示的统计图,其中图1是每天参观人数的统计图,图2是5月15日(星期六)这一天上午、中午、下午和晚上四个时间段参观人数的扇形统计图.请你根据统计图解答下面的问题:(1) 5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天?有多少人?(2) 5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人 (精确到1万人)? (3) 如果黄老师想尽可能选择参观人数较少的时间去参观世博会,你认为他选择什么时间比较合适?(第21题)22. (本题10分)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上.(1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个 点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).23. (本题10分)小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以 110米/分的速度回家,中途没有再停留.问: ① 小刚到家的时间是下午几时?② 小刚回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标,并求出线段 CD 所在直线的函数解析式.A CB FE D P 1P 2P 3P 4(第22题)P 5 )24. (本题12分)△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.(1)当点BB的横坐标;(2)如果抛物线2y ax bx c=++(a≠0)的对称轴经过点C①当a=,12b=-,c=A,B两点是否都在这条抛物线上?并说明理由;②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m若不存在,请说明理由.(第24题)浙江省2010年初中毕业生学业考试(舟山卷)数学试题参考答案及评分标准一、二、11. (x +3)(x -3) 12. 2 13. 70° 14. 4 15. 1a16. 101°三.解答题(本题有8小题,共66分) 17. (本题6分)解:原式=111222++-(每项计算1分)……4分 =3.……2分18. (本题6分) 解法1:①+②,得 5x =10. ∴ x =2.……3分 把x =2代入①,得 4-y =3. ∴ y =1. ……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分解法2:由①,得 y =2x -3. ③……1分 把③代入②,得 3x +2x -3=7. ∴ x =2. ……2分 把x =2代入③,得 y =1.……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分19. (本题6分) 证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点,∴ AE = CF . ……2分又 ∵ 四边形ABCD 是平行四边形,∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分∴ AF =CE .……1分方法2:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点, ∴ BF =DE . ……2分 又 ∵ 四边形ABCD 是平行四边形, ∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE . ……3分 ∴ AF =CE . ……1分ADEBC(第19题)20. (本题8分)解:(1) ∵ 直线l 与半径OC 垂直,∴ 1116822HB AB ==⨯=. ……2分∵ 4cos 5HB OBH OB ∠==, ∴ OB =54HB =54×8= 10.……2分(2) 在Rt △OBH 中,6OH . ……2分 ∴ 1064CH =-=.所以将直线l 向下平移到与⊙O 相切的位置时,平移的距离是4cm . ……2分21.(本题8分)解:(1) 参观人数最多的是15日(或周六),有34万人; ……2分参观人数最少的是10日(或周一),有16万人. ……2分 (2) 34×(74%-6%)=23.12≈23.上午参观人数比下午参观人数多23万人. ……2分 (3) 答案不唯一,基本合理即可,如选择星期一下午参观等. ……2分22. (本题10分)解:(1) △ABC 和△DEF 相似. ……2分根据勾股定理,得AB =AC =BC =5 ;DE =,DF =EF = ∵AB AC BC DE DF EF === ……3分 ∴ △ABC ∽△DEF .……1分 (2) 答案不唯一,下面6个三角形中的任意2个均可.……4分△P 2P 5D ,△P 4P 5F ,△P 2P 4D , △P 4P 5D ,△P 2P 4 P 5,△P 1FD .23. (本题10分)解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150=23(米), 所以小刚上学的步行速度是120×23=80(米/分). ……2分 小刚家和少年宫之间的路程是80×10=800(米). ……1分 少年宫和学校之间的路程是80×(25-10)=1200(米).……1分A BO H C (第20题)lACBFEDP 1 P 2P 3P 4(第22题)P 5(2) ①1200300800300306045110-+++=(分钟), 所以小刚到家的时间是下午5:00. ……2分② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,花时9002045=分,此时小刚离家1 100米,所以点B 的坐标是(20,1100). ……2分线段CD 表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s (米)与行走时间t (分)之间的函数关系,由路程与时间的关系得 1100110(50)s t =--, 即线段CD 所在直线的函数解析式是6600110s t =-. ……2分 (线段CD 所在直线的函数解析式也可以通过下面的方法求得: 点C 的坐标是(50,1100),点D 的坐标是(60,0)设线段CD 所在直线的函数解析式是s kt b =+,将点C ,D 的坐标代入,得 501100,600.k b k b +=⎧⎨+=⎩ 解得 110,6600.k b =-⎧⎨=⎩所以线段CD 所在直线的函数解析式是1106600s t =-+) 24. (本题12分)解:(1) ∵ 点O 是AB 的中点, ∴12OB AB == ……1分 设点B 的横坐标是x (x >0),则222x +=,……1分解得1x =2x =舍去). ∴ 点B……2分(2) ①当a =12b =-,c =212y x =-- ……(*)2y x =-. ……1分以下分两种情况讨论.情况1:设点C 在第一象限(如图甲),则点Ctan 301OC OB =⨯︒==. ……1分 由此,可求得点C 的坐标为), ……1分点A 的坐标为(), ∵ A ,B 两点关于原点对称, ∴ 点B 的坐标为,). 将点A 的横坐标代入(*),即等于点A 的纵坐标;(甲)将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标.∴在这种情况下,A,B两点都在抛物线上.……2分情况2:设点C在第四象限(如图乙),则点C的坐标为),点A的坐标为),点B的坐标为(,).经计算,A,B两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)②存在.m的值是1或-1.……2分(22()=--+,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点y a x m am cC在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)。
注重基础 稳中求新 凸显能力——浙江省绍兴市近三年中考数学试题的特点及启示

1 8
轴对称 变换 作图
1 近 三年试 卷的特点
特 点 1 在 命 题 思 路 、 查 内容 、 型 结 构 等 方 面 。 考 题 和 往 年 试 题 保 持 了一 定 的连 续 性 和 稳定 性
试题结 构保 持不 变 , 卷共 2 全 4道 题 , 选择 题 、 分 填 空题 、 解答题 三种题 型. 一大题 ( 择题 ) 0个小题 数学试卷可以看出 , 试题注重对 数学基 础知识和基本技能的考查 , 贴近初 中数学的教学实 际, 没有出现偏 题和 怪题 , 总体 难度适 中, 整体趋 向于平 稳, 在平稳中有效地考查 了学生的数学思维能力和解题 能 力. 另外 , 试题注重对数学学科核心 内容的考查 , 内容涉及
“ 数与代数” “ 、 空间与 图形” “ 、统计与概率 ” “ 、实践与综合
运用( 课题学习) 四个学 习领域. ” 知识点 的考查 既注意全 面, 又突出重点 , 注重知识 内在联系的考查 , 注重对初 中数 学中所蕴涵的数学思想和方法的考查. 比三年的中考试 对 卷, 我们不难发现 , 浙江绍 兴 中考 已经形成 一套相对稳定 的知识点结构 , 如下表所示 :
1 7
零指数幂 , 特殊 角的三 角 函数 值 , 次根 式 的化 简 , 二 负整 数 角的三角 函数值 , 负整 数指 数 值 , 数 的加 减运 算 , 实 分式 的 指 数幂 , 数 的 加 减 运算 , 实 整 幂 , 数 的 加 减运 算 , 式 的 实 整 化简 式 的? 合运算 ( 昆 化简求值 ) 旋 转变换和平移变换作 图 混合运 算( 化简求值 ) 轴对称 变换 和旋转变换作图
・
中 考直通车 ・
中。擞, (l 第0 初 版 7 7 21 1 O 年 期・ 中 )
2010年浙江省湖州市中考真题答案

浙江省2010年初中毕业生学业考试(湖州市)数学试题参考答案与评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C C D A A B D B C A二、填空题(每小题4分,共24分)11.a12.80 13.甲14.22()()a b a b a b+-=-15.(9,0)16. 12三、解答题(共66分)17.(本小题6分)解:原式=411+-………………………………………………….4分=4 . …………………………………………………. 2分18.(本小题6分)解:不等式12x-<的解是3x<,…………………………………….2分不等式23x x+>+的解是1x>-,……………………………….2分∴原不等式组的解为13x-<<. ……………….. ………………2分19.(本小题6分)解:(1)中位数为80;…………………………………….2分平均数为1(40602 10+⨯+⨯+⨯++=. …. 2分(2)从这10天中任选一天,这一天的空气质量为轻微污染的概率P=15.…2分20.(本小题8分)解:(1)∵DC∥AB,AD=BC,∴梯形ABCD是等腰梯形,∴∠ABC=∠A=60º,……. 2分又∵ BD 平分∠ABC ,∴ ∠ABD=∠CBD =12∠ABC=30º. ……. 2分(2)∵ ∠A=60 º, ∠ABD=30 º, ∴ ∠ADB=90 º, ∴AB=2AD=4 . ……………………...………………..….……2分∴ 对角线BD=224223-=. ………...………………..….……2分21.(本小题8分) 解:(1)12;18% . …………4分 (2)图略(注:画图准确给2分). (3)8910900162150++⨯= ,该校喜欢“羽毛球”项目的学生总人数约为162人. ……….2分 22.(本小题10分)(1)证明:连结OD 交AB 于点G .∵ D 是 的中点,OD 为半径,∴ AG=BG . ……………………………2分∵ AO=OC ,∴OG 是△ABC 的中位线.∴OG ∥BC,即OD ∥CE. ………2分又∵ CE ⊥EF,∴ OD ⊥EF ,∴ EF 是⊙O 的切线 . …….………1分(2)解:在Rt C E F ∆中,CE=6,EF=8, ∴ CF=10. …….....….. 1分 设半径OC=OD=r,则OF=10-r,∵ OD ∥CE,∴△FOD ∽△FCE, ∴ F OO D F CC E=, …….....….. 2分 ∴ 10106rr -=,∴ 154r=,即⊙O 的半径为154. …….. 2分23.(本小题10分)解:(1)由题意得直线AB 经过点(1.5,70),(2,0), 设直线AB 的解析式为y =kx +b ,AB G A 0FD E BC则1.570,20,k b k b +=⎧⎨+=⎩ 解得1280.k b =-⎧⎨=⎩ ……….……………………..2分∴ 直线AB 的解析式为y = - 140x +280. ………….……………………..1分∵ 当x=0时,y=280.∴ 甲乙两地之间的距离为280千米.… …………….……………………..1分(2)设快车的速度为m 千米/时,慢车的速度为n 千米/时, 由题意可得22280,2240,m n m n +=⎧⎨-=⎩….……………………..2分 解得80,60.m n =⎧⎨=⎩∴快车的速度为80千米/时. …………………..1分 ∴ 2807802t ==. ……………..1分(3)图象如图所示(注:画图准确给2分).24.(本小题12分) 解:(1)由题意可得A(0,2), B(2,2), C(3,0),设所求抛物线的解析式为2y ax bx c =++,则 2,422,930,c a b c a b c =⎧⎪++=⎨⎪++=⎩解得CB 2ttA1.570y (千米)x (时)22,34,32.a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩. ………………..3分∴抛物线的解析式为224233y x x =-++ . ….……………………..1分(2)设抛物线的顶点为G ,则8(1)3G ,.过点G 作GH ⊥AB ,垂足为H ,则AH=BH=1,GH=82233-=.∵ EA ⊥AB, GH ⊥AB, ∴ EA ∥GH , ∴ GH 是△EBA 的中位线, ∴ 423E AG H ==. ………………2分过点B 作BM ⊥OC ,垂足为M ,则BM=OA=AB.∵ ∠EBF=∠ABM=90 º, ∴ ∠EBA=∠FBM=90 º-∠ABF , ∴ Rt △EBA ≌Rt △FBM ,∴ 43F M E A ==.∵ CM=OC-OM=3-2=1,∴CF=FM+CM=73. …………….2分(3)设CF=a ,则FM=a -1或1- a ,∴BF 2= FM 2+BM 2=(a -1)2+22=a 2-2a +5 . ∵△EBA ≌△FBM,∴BE=BF. 则22111(25)222B E F S B E B F B Fa a ∆=⨯==-+, ….1分又∵11222B FC S F C B M a a ∆=⨯=⨯⨯=, ……….1分 ∴22115(25)2222S a a a a a =-+-=-+,即211(2)22S a =-+, ….1分M HG A DO FCBE yx∴当a =2(在0<a <3范围内)时,∴12S =最小值 . …………….1分四、自选题(共5分) 25.(本小题5分)解:(1)假设存在这样的点Q .∵ PE ⊥PC, ∴ ∠APE+∠DPC=90 º, ∵ ∠D=90 º, ∴ ∠DPC+∠DCP=90 º, ∴ ∠APE=∠DCP ,又 ∵ ∠A=∠D=90 º,∴ △APE ∽△DCP ,∴A P A E D CD P=,A P D P A E D C ⋅=⋅.同理可得A Q D Q A E D C ⋅=⋅.∴ A Q D Q A P D P ⋅=⋅,即(3)(3)A Q A Q A P A P ⋅-=⋅-, ∴ 2233A Q A Q A P A P -=-,∴ 2233A P A Q A P A Q -=-, ∴ ()()3()A P A Q A P A Q A P A Q +-=-,∵ A P A Q≠, ∴3A P A Q +=. ……………2分 ∵ A P A Q ≠, ∴ 32A P ≠,即P 不能是AD 的中点.∴ 当P 是AD 的中点时,满足条件的Q 点不存在.故,当P 不是AD 的中点时,总存在这样的点Q 满足条件, 此时3AP +=. ……………1分(2)设AP=x , AE=y. 由A P D P A E D C ⋅=⋅可得(3)2x x y -=, ∴ 22113139(3)()222228y x x x x x =-=-+=--+. ∴ 当32x =(在0<x <3范围内)时, 98y =最大值, ∴BE的取值范围为78≤BE<Q PEDA B C2. ……………2分试题卷上用图:(第5题)BCA(第8题)ECBODA(第10题)yxFE D B C GAOD Caa-ba-b(第4题)ADBC(第6题)★会博世海上(第7题)BA C(第9题)乙甲 A B CD(第15题)yxACBC 1B 1O1109876543212345678A 191011(第16题)(第22题)CBE DFAEy(第23题)2x (时)y (千米)701.5At 2tBC(第21题)九年级抽查班级“学生最喜欢的挑战项目”人数的扇形统计图16%其他20%羽毛球乒乓球18%踢毽子28%跳绳八年级抽查班级“学生最喜欢的挑战项目”人数的条形统计图99715项目学生人数其他羽毛球乒乓球踢毽子跳绳16841814121062(人)答题卷上用图:(第22题)CBE DF0A y (千米)ACDCBA(第20题)(第21题)八年级抽查班级“学生最喜欢的挑战项目”人数的条形统计图99715项目学生人数其他羽毛球乒乓球踢毽子跳绳16841814121062(人)参考答案上用图:PEDA B C(第25题)(第24题)A DOFCBE yxGAFD E BC(第22题)MHG A DO FCBE yx(第24题)Q PEDA B C(第25题) CB2tt A1.570y (千米)x (时)2(第23题)。
2011年绍兴市中考数学试卷及答案WORD

2011年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,毎小题4分,共40分. 请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1、-3的相反数是()A、B、C、3 D、-32、明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A、1.25×105B、1.25×106C、1.25×107D、1.25×1083、如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A、17°B、34°C、56°D、68°4、由5个相同的正方体搭成的几何体如图所示,则它的左视图是()A、B、C、D、5、如图,AB为⊙O的直径,点C在⊙O上.若∠C=16°,则∠BOC的度数是()A、74°B、48°C、32°D、16°6、一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A、16B、10C、8D、67、在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A、2B、4C、12D、168、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、209、小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A、3km/h和4km/hB、3km/h和3km/hC、4km/h和4km/hD、4km/h和3km/h10、李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=时,求n的值.你解答这个题目得到的n值为()A、4-2B、2-4C、D、二、填空题(本大题有6小题,毎小题5分,共30分. 将答案填在题中横线上)11、分解因式:x2+x= .12、为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成缋较为稳定的是(填“甲”或“乙”).13、若点A(1,y1)、B(2,y2)是双曲线y= 上的点,则y1 y2(填“>”,“<”或“=”).14、一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为.15、取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.16、如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为s.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分. 解答需写出必要的文字说明、演算步骤或证明过程)17、(1)计算:;(2)先化简.再求值:a(a-2b)+2(a+b)(a-b)+(a+b)2,其中a=-,b=1.18、分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19、为调查学生的身体累质,随机抽取了某市的若干所初中学校,根据学校学生的肺活量指标等级绘制了相应的统计图,如图.根据以上统计图,解答下列问题:(1)这次调查共抽取了几所学校?请补全图1;(2)估计该市140所初中学校中,有几所学校的肺活量指标等级为优秀?20、为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档的距离.(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)21、在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b 的值.22、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.23小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).24、抛物线y=- (x-1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.(1)如图1.求点A的坐标及线段OC的长;(2)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.。
浙江省2010年初中毕业生学业考试(衢州卷)中考数学试卷及解析

浙江省2010年初中毕业生学业考试(衢州卷)数 学 试 卷题 号一二三总 分1~1011~16 17 18 19 20 21 22 23 24 得 分考生须知:1.本卷共三大题,24小题.全卷满分为120分,考试时间为120分钟.2.答题前,请用蓝、黑墨水的钢笔或圆珠笔将县(市、区)、学校、姓名、准考证号分别填在密封线内相应的位置上,不要遗漏. 3.本卷不另设答题卡和答题卷,请在本卷相应的位置上直接答题.答题必须用蓝、黑墨水的钢笔或圆珠笔(画图请用铅笔),答题时允 许使用计算器. 参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标是(2b a-,244ac b a -).一、选择题(本题共有10小题,每小题3分,共30分,请选出一个 正确的选项填在各题的括号内,不选、多选、错选均不给分)1. 下面四个数中,负数是( )A .-3B .0C .0.2D .32. 如图,D ,E 分别是△ABC 的边AC 和BC 的中点,已知DE =2,则AB =( ) A .1 B .2 C .3 D .43. 不等式x <2在数轴上表示正确的是( )4.某班成绩(分) 0 1 2 3 4 5 6 7 8 9 10 人数(人)113561519A .5分B .6分C .9分D .10分5. 已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是( )A .15B .25C .35D .23温馨提示: 用心思考细心答题相信你一定会有出色的表现 (第2题) C AED B -1 0 1 2 3 B . -1 0 1 2 3 D . -1 0 1 2 3 A . -1 0 1 2 3 C . 得 分 评卷人6. 如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是( ) A .两个相交的圆 B .两个内切的圆 C .两个外切的圆 D .两个外离的圆7. 下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )8. 如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形 一边长为3,则另一边长是( ) A .2m +3 B .2m +6C .m +3D .m +69. 小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做 成的圆锥形小丑帽子的底面半径为10cm,那么这 张扇形纸板的面积是( )A .120πcm 2B .240πcm 2C .260πcm 2D .480πcm 210. 如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC , 设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =二、填空题(本题共6小题,每小题4分,共24分.将答案填在 题中横线上) 11.分解因式:x 2-9=.12. 若点(4,m )在反比例函数8y x=(x ≠0)的图象上,则m 的值是 . 13.如图,直线DE 交∠ABC 的边BA 于点D ,若DE ∥BC ,∠B =70°,则∠ADE 的度数是 .(第10题)ABCD 24cm (第9题)O y x 1 1 O y x 1 1 C . O y x 1 1 O y x 11 (第13题)CAE D B(第8题) m +3 m 3得 分评卷人14. 玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能有 种. 15. 已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =,则2010S = (用含a 的代数式表示). 16. 如图,△ABC 是⊙O 的内接三角形,点D 是BC 的中点,已知∠AOB =98°,∠COB =120°.则∠ABD 的度数是 .三、解答题(本题有8小题,共66分.务必写出解答过程) 17. (本题6分)计算:012sin 302--︒.18. (本题6分)解方程组23,37.x y x y -=⎧⎨+=⎩①②(第16题)已知:如图,E ,F 分别是ABCD 的边AD ,BC 的中点. 求证:AF =CE .20. (本题8分)如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB =16厘米,4cos 5OBH ∠=.(1) 求⊙O 的半径;(2) 如果要将直线l 向下平移到与⊙O 相切的位置,平移的距离应是多少?请说明理由.A DE B CABO HCl黄老师退休在家,为选择一个合适的时间参观2010年上海世博会,他查阅了5月10日至16日(星期一至星期日)每天 的参观人数,得到图1、图2所示的统计图,其中图1是每天参观人数的统计图,图2是5月15日(星期六)这一天上午、中午、下午和晚上四个时间段参观人数的扇形统计图.请你根据统计图解答下面的问题:(1) 5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天?有多少人?(2) 5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人 (精确到1万人)? (3) 如果黄老师想尽可能选择参观人数较少的时间去参观世博会,你认为他选择什么时间比较合适?22. (本题10分)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF的顶点都在方格纸的格点上.(1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).ACBFEDP 1P 2 P 3P 4P 5用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问: Array①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.)△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点B 在第一象限,,求点B 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究: ①当a =,12b =-,c =,A ,B 两点是否都在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.浙江省2010年初中毕业生学业考试(衢州卷)数学试题参考答案及评分标准一、二、11. (x +3)(x -3) 12. 2 13. 70° 14. 4 15. 1a16. 101°三.解答题(本题有8小题,共66分) 17. (本题6分)解:原式=111222++-(每项计算1分)……4分 =3.……2分18. (本题6分)解法1:①+②,得 5x =10. ∴ x =2.……3分 把x =2代入①,得 4-y =3. ∴ y =1. ……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分解法2:由①,得 y =2x -3. ③……1分把③代入②,得 3x +2x -3=7. ∴ x =2. ……2分 把x =2代入③,得 y =1.……2分 ∴ 方程组的解是2,1.x y =⎧⎨=⎩……1分19. (本题6分) 证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点,∴ AE = CF . ……2分又 ∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分∴ AF =CE .……1分方法2:∵ 四边形ABCD 是平行四边形,且E ,F 分别是AD ,BC 的中点, ∴ BF =DE . ……2分又 ∵ 四边形ABCD 是平行四边形, ∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE .……3分 ∴ AF =CE .……1分ADEBC (第19题)20. (本题8分)解:(1) ∵ 直线l 与半径OC 垂直,∴ 1116822HB AB ==⨯=. ……2分∵ 4cos 5HB OBH OB ∠==, ∴ OB =54HB =54×8= 10.……2分(2) 在Rt △OBH 中, 6OH =. ……2分 ∴ 1064CH =-=.所以将直线l 向下平移到与⊙O 相切的位置时,平移的距离是4cm .……2分21.(本题8分)解:(1) 参观人数最多的是15日(或周六),有34万人; ……2分参观人数最少的是10日(或周一),有16万人. ……2分 (2) 34×(74%-6%)=23.12≈23.上午参观人数比下午参观人数多23万人. ……2分 (3) 答案不唯一,基本合理即可,如选择星期一下午参观等. ……2分22. (本题10分)解:(1) △ABC 和△DEF 相似. ……2分根据勾股定理,得AB =AC =,BC =5 ;DE =DF =EF =∵AB AC BC DE DF EF ===……3分∴ △ABC ∽△DEF . ……1分 (2) 答案不唯一,下面6个三角形中的任意2个均可.……4分△P 2P 5D ,△P 4P 5F ,△P 2P 4D , △P 4P 5D ,△P 2P 4 P 5,△P 1FD .23. (本题10分)解:(1) 小刚每分钟走1200÷10=120(步),每步走100÷150=23(米), 所以小刚上学的步行速度是120×23=80(米/分).……2分 小刚家和少年宫之间的路程是80×10=800(米). ……1分 少年宫和学校之间的路程是80×(25-10)=1200(米).……1分(2) ①1200300800300306045110-+++=(分钟), ABO HC (第20题)lACBFED P 1 P 2P 3P 4(第22题)P 5所以小刚到家的时间是下午5:00. ……2分 ② 小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时9002045=分,此时小刚离家1 100米,所以点B 的坐标是(20,1100). ……2分线段CD 表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s (米)与行走时间t (分)之间的函数关系,由路程与时间的关系得 1100110(50)s t =--, 即线段CD 所在直线的函数解析式是6600110s t =-. ……2分 (线段CD 所在直线的函数解析式也可以通过下面的方法求得: 点C 的坐标是(50,1100),点D 的坐标是(60,0)设线段CD 所在直线的函数解析式是s kt b =+,将点C ,D 的坐标代入,得 501100,600.k b k b +=⎧⎨+=⎩ 解得 110,6600.k b =-⎧⎨=⎩ 所以线段CD 所在直线的函数解析式是1106600s t =-+) 24. (本题12分)解:(1) ∵ 点O 是AB 的中点, ∴12OB AB == ……1分 设点B 的横坐标是x (x >0),则222x +=,……1分解得1x =2x =(舍去). ∴ 点B. ……2分(2) ①当a 12b =-,c =,得212y x =-……(*) 2y x =. ……1分以下分两种情况讨论.情况1:设点C 在第一象限(如图甲),则点C, tan301OC OB =⨯︒==. ……1分由此,可求得点C 的坐标为), ……1分点A 的坐标为(), ∵ A ,B 两点关于原点对称,∴ 点B 的坐标为). 将点A 的横坐标代入(*)式右边,,即等于点A 的纵坐标;(甲)(乙)将点B的横坐标代入(*)式右边,计算得,即等于点B的纵坐标.∴在这种情况下,A,B两点都在抛物线上.……2分情况2:设点C在第四象限(如图乙),则点C的坐标为,),点A的坐标为,),点B的坐标为(,).经计算,A,B两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)②存在.m的值是1或-1.……2分(22()y a x m am c=--+,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)。
【中考12年】浙江省绍兴市2001-2012年中考数学试题分类解析 专题09 三角形
【中考12年】浙江省绍兴市2001-2012年中考数学试题分类解析 专题09三角形选择题1. (2001年浙江绍兴3分)如图,∆ABC 中,D 、E 分别是边BC 、AC 的中点,若ED=3,则AB 等于【 】(A )23 (B )6 (C )9 (D )492. (2001年浙江绍兴3分)∆ABC 中,∠C=900,若BC=4,sin A 23,则AC 的长是【 】(A )6 (B )52 (C )53 (D )1323. (2002年浙江绍兴3分)边长为a 的正六边形的边心距为【 】(A )a (B ) (C (D )2a4. (2003年浙江绍兴4分)已知点G 是△ABC 的重心,GP ∥BC 交AB 边于点P ,BC=33,则GP 等于【 】A .33B .3C .23D .3325. (2003年浙江绍兴4分)身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面交角如过后下表(假设风筝线是拉直的),则三人所放的风筝中【 】A .甲的最高【答案】B 。
【考点】解直角三角形的应用,锐角三角函数定义,特殊角的三角函数值。
【分析】根据正弦函数定义,甲所放风筝的高度为100sin40°;乙所放风筝的高度为100sin45°≈70米;丙所放风筝的高度为90sin60°≈78米。
而 100sin40°<100sin45°,因此可知丙的风筝飞得最高,乙次之,而甲最低。
故选B 。
6. (2008年浙江绍兴4分)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为【】A.11.5米 B.11.75米 C.11.8米 D.12.25米二、填空题1. (2001年浙江绍兴3分)如图,∆ABC中,∠ACB=900,CD⊥AB于点D,若AD=6,BD=2,则BC 的长是▲ 。
2010年浙江宁波市中考数学试卷(WORD 含答案)
宁波市2010年初三毕业生学业考试数 学 试 题一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1、-3的相反数是( ) A 、3 B 、31 C 、-3 D 、31- 2、下列运算正确的是( )A 、22x x x =⋅ B 、22)(xy xy = C 、632)(x x = D 、422x x x =+ 3、下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是( )A 、B 、C 、D 、4、据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为( ) A 、111082.0⨯ B 、10102.8⨯ C 、9102.8⨯ D 、81082⨯ 5、《几何原本》的诞生,标志着几何学已成为一个有着严密理论系统和科学方法的学科,它奠定了现代数学的基础,它是下列哪位数学家的著作( )A 、欧几里得B 、杨辉C 、费马D 、刘徽 6、两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是()A 、内切B 、相交C 、外切D 、外离7、从1-9这九年自然数中任取一个,是2的倍数的概率是( )A 、92 B 、94 C 、95 D 、328、如图,直线AB 与直线CD 相交于点O ,E 是AOD ∠内一点,已知 OE ⊥AB ,︒=∠45BOD ,则COE ∠的度数是( )A 、︒125B 、︒135C 、︒145D 、︒1559、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米) 25 25.5 26 26.5 27 购买量(双)1 2 3 2 2 则这10双运动鞋尺码的众数和中位数分别为( )A 、25.5厘米,26厘米B 、26厘米,25.5厘米C 、25.5厘米,25.5厘米D 、26厘米,26厘米10、如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是 △ABC 、△BCD 的角平分线,则图中的等腰三角形有( )A 、5个B 、4个C 、3个D 、2个 11、已知反比例函数xy 1=,下列结论不正确的是( ) A 、图象经过点(1,1) B 、图象在第一、三象限C 、当1>x 时,10<<yD 、当0<x 时,y 随着x 的增大而增大12、骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A 、B 、C 、D 、 二、填空题(每小题3分,共18分) 13、实数4的算术平方根是_________。
2023年浙江省绍兴市中考数学真题 (解析版)1
数学卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1. 计算23−的结果是( ) A. 1− B. 3−C. 1D. 3【答案】A 【解析】【分析】根据有理数的减法法则进行计算即可. 【详解】解:231−=−, 故选:A .【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( ) A. 727.410× B. 82.7410×C. 90.27410×D. 92.7410×【答案】B 【解析】【分析】科学记数法的表现形式为10n a ×的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,由此进行求解即可得到答案. 【详解】解:8274000000 2.7410=×, 故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 3. 由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】D 【解析】【分析】找到从正面看所得到图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形, 故选:D .【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图. 4. 下列计算正确的是( ) A. 623a a a ÷= B. ()52a a −=−C. ()()2111a a a +−=− D. 22(1)1a a +=+【答案】C 【解析】【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A . 6243a a a a ÷=≠,原计算错误,不符合题意; B . ()5210a a a −=−≠−,原计算错误,不符合题意;C . ()()2111a a a +−=−,原计算正确,符合题意;D . 222(1)211a a a a +=++≠+,原计算错误,不符合题意; 故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( ) A.25B.35C.27D.57【答案】C 【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出的1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27, 故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( ) A. 5352x y x y +=+=B. 5352x y x y +=+=C. 5352x y x y =+=+D. 5253x y x y =+=+【答案】B 【解析】【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组. 【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=+=. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.7. 在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( ) A. ()2,1m n −− B. ()2,1m n −+C. ()2,1m n +−D. ()2,1m n ++【答案】D 【解析】【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++. 故选:D .【点睛】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.8. 如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=°.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B. 菱形→正方形→平行四边形→菱形→平行四边形C. 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形 【答案】A 【解析】【分析】根据题意,分别证明四边形1212E E F F 菱形,平行四边形,矩形,即可求解. 【详解】∵四边形ABCD 是矩形, ∴AB CD ∥,90BAD ABC ∠=∠=°, ∴60BDC ABD ∠=∠=°,906030ADB CBD ∠=∠=°−°=°, �OE OF =、OB OD =, ∴DF EB = ∵对称,∴21DF DF BF BF ==,,21,BE BE DEDE == ∴1221E F E F = ∵对称,∴260F DC CDF ∠=∠=°,130EDA E DA ∠=∠=° ∴160E DB ∠=°,是同理160F BD ∠=°, ∴11DE BF ∥ ∴1221E F E F ∥∴四边形1212E E F F 是平行四边形, 如图所示,当,,E F O 三点重合时,DO BO =,�1212DE DF AE AE === 即1212E E E F =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==, 在Rt △ABD中,2,AB AD ==, 连接AE ,AO ,∵602ABO BO AB ∠=°==,, ∴ABO 等边三角形, ∵E 为OB 中点, ∴AE OB ⊥,1BE =,∴AE =,是根据对称性可得1AE AE ==�2221112,9,3AD DE AE ===,∴22211ADAE DE =+, ∴1DE A 是直角三角形,且190E ∠=°, ∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形�在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形, 故选:A .【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键. 9. 已知点()()()4,2,2,,2,M a N a P a −−−在同一个函数图象上,则这个函数图象可能是( )A. B. C.D.【答案】B 【解析】【分析】点()()()4,2,2,,2,M a N a P a −−−在同一个函数图象上,可得N 、P 关于y 轴对称,当0x <时,y 随x 的增大而增大,即可得出答案. 【详解】解:∵()()2,,2,N a P a −, ∴得N 、P 关于y 轴对称, ∴选项A 、C 错误,∵()()4,2,2,M a N a −−−在同一个函数图象上, ∴当0x <时,y 随x 的增大而增大, ∴选项D 错误,选项B 正确. 故选:B .【点睛】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.10. 如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出( )A. AFE △的面积B. BDF V 的面积C. BCN △的面积D. DCE △的面积【答案】D 【解析】【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FDED EC=,由已知得出NF BF ME DE =,则FD NFEC ME=,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S == ,即可求解. 【详解】解:如图所示,连接ND , �DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=. ∴FBD EDC ∽,NFD MEC ∠=∠. ∴FB FDED EC=. ∵2DM ME =,2BN NF =,∴11,33NFBF ME DE ==, ∴NF BFME DE =. ∴FD NFEC ME=. 又∵NFD MEC ∠=∠, ∴NFD MEC ∽. ∴ECM FDN ∠=∠. ∵FDB ECD ∠=∠ ∴MCD NDB ∠=∠. ∴MC ND ∥. ∴MNC MDC S S = . ∵2DMME =,∴1122EMC DMC MNC S S S == . 故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:m 2﹣3m =__________. 【答案】()3m m − 【解析】【分析】题中二项式中各项都含有公因式m ,利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m −=−,故答案为:()3m m −.【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键. 12. 如图,四边形ABCD 内接于圆O ,若100D ∠=°,则B ∠的度数是________.【答案】80°##80度 【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答. 【详解】解:�四边形ABCD 内接于O , �180BD 邪=,�100D ∠=°,�18080B D ∠°∠°=﹣=. 故答案为:80°.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键. 13. 方程3911x x x =++的解是________. 【答案】3x = 【解析】【分析】先去分母,左右两边同时乘以()1x +,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:39x =, 化系数为1,得:3x =. 检验:当3x =时,10x +≠, �3x =是原分式方程的解. 故答案为:3x =.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14. 如图,在菱形ABCD 中,40DAB ∠=°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.【答案】10°或80° 【解析】【分析】根据题意画出图形,结合菱形的性质可得1202CAD DAB ∠=∠=°,再进行分类讨论:当点E 在点A 上方时,当点E 在点A 下方时,即可进行解答. 【详解】解:�四边形ABCD 为菱形,40DAB ∠=°, �1202CAD DAB ∠=∠=°, 连接CE ,①当点E 在点A 上方时,如图1E ,�1AC AE =,120CAE ∠=°, ∴()1118020802AE C∠=°−°=°, ②当点E 在点A 下方时,如图2E ,�1AC AE =,120CAE ∠=°, ∴211102AE C CAE ∠=∠=°, 故答案为:10°或80°.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为180°;三角形的一个外角等于与它不相邻的两个内角之和. 15. 如图,在平面直角坐标系xOy 中,函数ky x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.【答案】2 【解析】【分析】过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,利用6AFO ABO BOE FABEO S S S S k =++=+ 五边形,AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形,得到6ADEB S =梯形,结合梯形的面积公式解得11=8x y ,再由三角形面积公式计算2112111111111()()22224ABC S AC BCx x y y x y x y =?-?=?,即可解答. 【详解】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形 AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形 6ADEB S ∴=梯形 2121()()62y y x x +−∴=212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +−+−∴= 11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BCx x y y x y x y =?-?=?=?故答案为:2.【点睛】本题考查反比例函数中k 的几何意义,是重要考点,掌握相关知识是解题关键.16. 在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =−≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034yx bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.【答案】712或2512−【解析】【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C ,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =−≤≤,当0x =时,4y =,�()0,4C,�()3,0A ,四边形ABCO 是矩形, ∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034yx bx c x =++≤≤, �019344c b c = ×++=解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C代入()21034yx bx c x =++≤≤, �419304c b c = ×++=解得:2512b =−综上所述,712b =或2512b =−,故答案为:712或2512−. 【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)计算:0(1)2π−−+−(2)解不等式:324x x −>+. 【答案】(1)1;(2)3x > 【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答; (2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式1=−+1=. (2)移项得36x x −>, 即26x >, �3x >.�原不等式的解是3x >.【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18. 某校兴趣小组通过调查,形成了如下调查报告(不完整).调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式 随机抽样调查调查对象部分初中生调查内容你最喜爱的一个球类运动项目(必选)A .篮球B .乒乓球C .足球D .排球E .羽毛球调查结果建议 ……结合调查信息,回答下列问题: (1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数. (3)假如你是小组成员,请你向该校提一条合理建议. 【答案】(1)100 (2)360 (3)答案不唯一,见解析 【解析】【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数; (2)先求出喜爱篮球学生比例,再乘以总数即可; (3)从图中观察或计算得出,合理即可. 【小问1详解】被抽查学生数:3030%100÷=, 答:本次调查共抽查了100名学生. 【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:1005%5×=,∴被抽查的100人中最喜爱篮球的人数为:100301015540−−−−=, ∴40900360100×=(人). 答:估计该校900名初中生中最喜爱篮球项目的人数为360. 【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等. 【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题. 19. 图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=°.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos320.85,tan 320.62°≈°≈°≈) 【答案】(1)58°(2)该运动员能挂上篮网,理由见解析 【解析】【分析】(1)根据直角三角形的两个锐角互余即可求解;(2)延长,OA ED 交于点M ,根据题意得出32ADM ∠=°,解Rt ADM △,求得AM ,根据OM OA AM =+与3比较即可求解.【小问1详解】 解:∵CG CD ⊥, ∴90ACG ∠=°, ∵32AGC ∠=°,∴903258GAC ∠=°−°=°. 【小问2详解】该运动员能挂上篮网,理由如下. 如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥, ∴90DMA ∠=°,又∵58DAM GAC ∠=∠=°, ∴32ADM ∠=°,在Rt ADM △中,sin 320.80.530.424AM AD =°≈×=, ∴ 2.50.424 2.9243OM OA AM =+=+=<, ∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20. 一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离. 【答案】(1)200y x = (2)出发后甲机器人行走103分钟,与乙机器人相遇 (3),P M 两地间的距离为600米 【解析】【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求出BC 所在直线的表达式,再列方程组求出交点坐标,即可; (3)列出方程即可解决. 【小问1详解】∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =. 【小问2详解】设BC 所在直线的表达式为y kx b =+, ∵()()0,1000,10,0B C ,∴10000,010,b k b =+ =+ 解得100,1000k b =−=. ∴1001000y x =−+.甲、乙机器人相遇时,即2001001000x x =−+,解得103x =, ∴出发后甲机器人行走103分钟,与乙机器人相遇. 【小问3详解】设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =−++, 由()20010011000t t =−++,得3t =. ∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21. 如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=°,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长. 【答案】(1)115°(2)CE = 【解析】【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=°,在Rt OCD △中,勾股定理求得CD =,根据OC AE ∥,可得CD ODCE OA=,进而即可求解. 【小问1详解】解:∵AE CD ⊥于点E , ∴90AEC ∠=°,∴9025115ACD AEC EAC ∠=∠+∠=°+°=°.【小问2详解】∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=°. 在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD ==.∵90OCD AEC ∠=∠=°, ∴OC AE ∥∴CD OD CE OA =32=,∴CE =. 【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22. 如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.【答案】(1)见解析 (2)AH 与EF 垂直,理由见解析 【解析】【分析】(1)由正方形的性质,得到AD CD ⊥,结合垂直于同一条直线的两条直线平行,可得AD GE ∥,再根据平行线的性质解答即可;(2)连接GC 交EF 于点O ,由SAS 证明ADG CDG ≌,再根据全等三角形对应角相等得到DAG DCG ∠=∠,继而证明四边形FCEG 为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形ABCD 中,AD CD ⊥GE CD ⊥�AD GE ∥, �DAG EGH ∠=∠.【小问2详解】AH 与EF 垂直,理由如下.连接GC 交EF 于点O . �BD 为正方形ABCD 的对角线, �45ADG CDG ∠=∠=°,又�,DG DG AD CD ==, �ADG CDG ≌, �DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=°, 又�,GE CD GF BC ⊥⊥, �四边形FCEG 为矩形, �OE OC =, �OEC OCE ∠=∠, �DAG OEC ∠=∠. 又∵DAG EGH ∠=∠,�90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=°, �90GHE ∠=°,�AH EF ⊥.【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键. 23. 已知二次函数2y x bx c =−++.(1)当4,3b c ==时, ①求该函数图象顶点坐标. ②当13x −≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式. 【答案】(1)①()2,7;②当13x −≤≤时,27y −≤≤(2)222y x x =−++ 【解析】【分析】(1)①将4,3b c ==代入解析式,化为顶点式,即可求解; ②已知顶点()2,7,根据二次函数的增减性,得出当2x =时,y 有最大值7,当=1x −时取得最小值,即可求解;的(2)根据题意0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,得出抛物线的对称轴2b x =在y轴的右侧,即0b >,由抛物线开口向下,0x ≤时,y 的最大值为2,可知2c =,根据顶点坐标的纵坐标为3,求出2b =,即可得解.小问1详解】解:①当4,3b c ==时,2243(2)7y x x x =−++=−−+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下, 当12x −≤≤时,y 随x 增大而增大, 当23x ≤≤时,y 随x 增大而减小, ∴当2x =时,y 有最大值7. 又()2132−−>−∴当=1x −时取得最小值,最小值=2y −; ∴当13x −≤≤时,27y −≤≤. 【小问2详解】∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3, ∴抛物线的对称轴2b x =在y轴的右侧, ∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2, ∴2c =,又∵()()241341c b ×−×−=×−, ∴2b =±, ∵0b >, ∴2b =,∴二次函数的表达式为222y x x =−++. 【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24. 在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,ABAD B ==∠为锐角,且【4sin 5B =.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90°得点,C D ′′. ①如图2,当点C ′落在射线CA 上时,求BP 的长. ②当AC D ′′△是直角三角形时,求BP 的长.【答案】(1)8 (2)①347BP =;②6BP =或8±【解析】【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP ′△≌△,再证明AQC AHC ′△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C ′为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案. 【小问1详解】在ABCD Y 中,10BCAD ==, 在Rt BCH 中,4sin 1085CH BC B ==×=. 【小问2详解】①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =−=,作C Q BA ′⊥交BA 延长线于点Q ,则90CHP PQC ∠′=∠=°,∴90C PQ PC Q ′∠+∠=′°.∵90C PQ CPH ∠+∠=′°∴PC Q CPH ∠=∠′. 由旋转知PC PC ′=, ∴PQC CHP ′△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====−=−=−′. ∵,C Q AB CH AB ′⊥⊥, ∴C Q CH ′∥, ∴AQC AHC ′△∽△,∴C Q QA CH HA =′,即6486x x −−=, ∴347x =, ∴347BP =. ②由旋转得,PCD PC D CD C D ′′′=′△≌△,CD C D ⊥′′, 又因为AB CD ,所以C D AB ′′⊥. 情况一:当以C ′为直角顶点时,如图2.∵C D AB ′′⊥,∴C ′落在线段BA 延长线上. ∵PC PC ⊥′,∴PC AB ⊥, 由(1)知,8PC =, ∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ′′与射线BA 的交点为T , 作CH AB ⊥于点H . ∵PC PC ⊥′,∴90CPH TPC ∠′+∠=°, ∵C D AT ′′⊥,∴90PC T TPC ∠′+∠=′°, ∴CPH PC T ∠=∠′.又∵90,CHP PTC PC C P ∠=∠==′°′, ∴CPH PC T ′△≌△,∴,8CT PH PT CH ′===. 设C T PH t ′==,则6AP t =−,∴2AT PT PA t =−=+∵90,C AD C D AB ∠=°′′⊥′′, ∴ATD C TA ′′ ∽,∴AT C TTD TA=′′, ∴2AT C T TD ′=⋅′,∴()2(2)12t t ι+−,化简得2420t t −+=,解得2t =±∴8BP BH HP =+=± 情况三:当以D ¢为直角顶点时, 点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.。
(中考精品)浙江省绍兴市中考数学真题(解析版)
2022年浙江省绍兴市中考数学真题一、选择题1. 实数-6的相反数是( ) A. 16- B. 16 C. -6 D. 6【答案】D【解析】【分析】根据只有符号不同的两个数是互为相反数求解即可.【详解】解:-6的相反数是6,故选:D .【点睛】本题考查相反数,掌握相反数的定义是解题的关键.2. 2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )A. 63.210⨯B. 53.210⨯C. 43.210⨯D. 43210⨯【答案】B【解析】【分析】根据科学记数法“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫科学记数法”即可得.【详解】解:5320000 3.210=⨯,故选B .【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法.3. 由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】B【解析】【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B .【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.4. 在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( ) A. 34 B. 12 C. 13 D. 14【答案】A【解析】【分析】根据概率公式计算,即可求解. 【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是33314=+. 故选:A【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.5. 下列计算正确的是( )A. 2()a ab a a b +÷=+B. 22a a a ⋅=C. 222()a b a b +=+D. 325()a a = 【答案】A【解析】【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.6. 如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A. 30°B. 45°C. 60°D. 75°【答案】C【解析】 【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解.【详解】解: 30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可.【详解】 抛物线2y x mx =+的对称轴为直线2x =, 221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ;②存在无数个矩形MENF ;③存在无数个菱形MENF ;④存在无数个正方形MENF .其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.9. 已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A. 若120x x >,则130y y >B. 若130x x <,则120y y >C. 若230x x >,则130y y >D. 若230x x <,则120y y >【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.10. 将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中90A ∠=︒,9AB =,7BC =,6CD =,2AD =,则剪掉的两个直角三角形的斜边长不可能是( )A. 252B. 454C. 10D. 354【答案】A【解析】【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【详解】解:当△DFE ∽△ECB 时,如图,∴DF FE DE EC CB EB==, 设DF =x ,CE =y , ∴9672x y y x +==+,解得:274214x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴2145644DE CD CE =+=+=,故B 选项不符合题意; ∴2735244EB DF AD =+=+=,故选项D 不符合题意;如图,当△DCF ∽△FEB 时,∴DC CF DF FE EB FB==, 设FC =m ,FD =n , ∴6927m n n m ==++,解得:810m n =⎧⎨=⎩, ∴FD =10,故选项C 不符合题意;8614BF FC BC =+=+=,故选项A 符合题意;故选:A【点睛】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题11. 分解因式:2x x + = ______【答案】(1)x x +【解析】【分析】利用提公因式法即可分解.【详解】2(1)x x x x +=+,故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.12. 关于x 的不等式32x x ->的解是______.【答案】1x >【解析】【分析】将不等式移项,系数化为1即可得.【详解】解:32x x ->32x x ->22x >1x >,故答案为:1x >.【点睛】本题考查了解一元一次不等式,解题的关键是掌握解一元一次不等式的方法. 13. 元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.【答案】20【解析】【分析】设良马x 天追上劣马,根据良马追上劣马所走路程相同可得:240x =150(x +12),即可解得良马20天追上劣马.【详解】解:设良马x 天追上劣马,根据题意得:240x =150(x +12),解得x =20,答:良马20天追上劣马;故答案为:20.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14. 如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD BCD ∠的度数是______.【答案】10°或100°【解析】【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒, 605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =',ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒ ,40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒.故答案为:10︒或100︒.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.15. 如图,在平面直角坐标系xOy 中,点A (0,4),B (3,4),将ABO 向右平移到CDE △位置,A 的对应点是C ,O 的对应点是E ,函数(0)k y k x=≠的图象经过点C 和DE 的中点F ,则k 的值是______.【答案】6【解析】【分析】作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,设AC=EO=BD =a ,表示出四边形ACEO 的面积,再根据三角形中位线的性质得出FG ,EG ,即可表示出四边形HFGO 的面积,然后根据k 的几何意义得出方程,求出a ,可得答案.【详解】过点F 作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,根据题意,得AC=EO=BD ,设AC=EO=BD =a ,∴四边形ACEO 的面积是4a .∵F 是DE 的中点,FG ⊥x 轴,DQ ⊥x 轴,∴FG 是△EDQ 的中位线, ∴122FG D Q ==,1322E G E Q ==, ∴四边形HFGO 的面积为32()2a +, ∴342()2k a a ==+, 解得32a =, ∴k=6.故答案为:6.【点睛】本题主要考查了反比例函数中k 的几何意义,正确的作出辅助线构造矩形是解题的关键.16. 如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】 【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.三、解答题17. 计算(1)计算:6tan30°+(π+1)0(2)解方程组242.x y x y -=⎧⎨+=⎩, 【答案】(1)1(2)20x y =⎧⎨=⎩【解析】 【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;(2)利用加减消元法解二元一次方程组即可.【小问1详解】解:原式611=-=+-1; 【小问2详解】242x y x y -=⎧⎨+=⎩①②, ①+②得3x =6,∴x =2,把x =2代入②,得y =0,∴原方程组的解是20x y =⎧⎨=⎩. 【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18. 双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x (单位:小时)情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题..的八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时) 学生人数(人)A 00.5x <≤ 15B 0.51x <≤ mC 1 1.5x <≤ nD 1.52x <≤5(1)求统计表中m ,n 的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5 1.5x <≤的共有多少人.【答案】(1)m 为60,n 为20(2)640人【解析】【分析】(1)先求出被调查总人数,再根据扇形统计图求出m ,用总人数减去A 、B 、D 的人数,即可得n 的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【小问1详解】解:被调查总人数:1515%100÷=(人), 10060%60m ∴=⨯=(人),1001560520n =---=(人),答:m 为60,n 为20;【小问2详解】解: 当0.5 1.5x <…时,在被调查的100人中有602080+=(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5 1.5x <…的共有80800640100⨯=(人), 答:估计共有640人.【点睛】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19. 一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米). x0 0.5 1 1.5 2 y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析(2)4小时【解析】【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.小问1详解】(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∴y =x +1(0≤x ≤5).【小问2详解】当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键.20. 圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” )和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即)ABC ∠为37︒,夏至正午太阳高度角(即)ADC ∠为84︒,圭面上冬至线与夏至线之间的距离(即DB 的【长)为4米.(1)求∠BAD 度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192) 【答案】(1)47°(2)3.3米 【解析】【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出ADC ∠和ABC ∠的正切值,用AC 表示出CD 和CB ,得到一个只含有AC 的关系式,再解答即可.【小问1详解】解:84ADC ∠=︒ ,37ABC ∠=︒,47BAD ADC ABC ∴∠=∠-∠=︒,答:BAD ∠的度数是47︒.【小问2详解】解:在Rt △ABC 中,tan 37AC BC ︒=, ∴tan 37AC BC =︒. 同理,在Rt △ADC 中,有tan84AC DC =︒. ∵4BD =, ∴4tan 37tan84AC AC BC DC BD -=-==︒︒. ∴424319AC AC -≈,的∴ 3.3AC ≈(米).答:表AC 的长是3.3米.【点睛】本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.21. 如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求 AD 的长(结果保留π). (2)求证:AD 平分∠BDO .【答案】(1)43π (2)见解析【解析】【分析】(1)连接OA ,由20ACB ∠=︒,得40AOD ∠=︒,由弧长公式即得 AD 的长为43π; (2)根据AB 切O 于点A ,90B ∠=︒,可得//OA BC ,有OAD ADB ∠=∠,而OA OD =,即可得ADB ODA ∠=∠,从而AD 平分BDO ∠.【小问1详解】解:连接OA ,∵∠ACB =20°,∴∠AOD =40°,∴ 180n rAD π=,18040⨯π⨯6=43π=. 【小问2详解】证明:OA OD = ,OAD ODA ∠=∠∴,AB Q 切O 于点A ,OA AB ∴⊥,90B ∠=︒ ,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.【点睛】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22. 如图,在△ABC 中,∠ABC=40°, ∠ACB=90°,AE 平分∠BAC 交BC 于点E .P 是边BC 上的动点(不与B ,C 重合),连结AP ,将△APC 沿AP 翻折得△APD ,连结DC ,记∠BCD=α.(1)如图,当P 与E 重合时,求α的度数.(2)当P 与E 不重合时,记∠BAD=β,探究α与β的数量关系.【答案】(1)25° (2)①当点P 在线段BE 上时,2α-β=50°;②当点P 在线段CE 上时,2α+β=50°【解析】【分析】(1)由∠B =40°,∠ACB =90°,得∠BAC =50°,根据AE 平分∠BAC ,P 与E 重合,可得∠ACD ,从而α=∠ACB −∠ACD ;(2)分两种情况:①当点P 在线段BE 上时,可得∠ADC =∠ACD =90°−α,根据∠ADC +∠BAD =∠B +∠BCD ,即可得2α−β=50°;②当点P 在线段CE 上时,延长AD 交BC于点F,由∠ADC=∠ACD=90°−α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°−α=40°+α+β,即2α+β=50°.【小问1详解】解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=1∠BAC=25°,2∵P与E重合,∴D在AB边上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;【小问2详解】①如图1,当点P在线段BE上时,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如图2,当点P在线段CE上时,延长AD交BC于点F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【点睛】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质. 23. 已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.【答案】(1)b =-6,c =-3(2)x =-3时,y 有最大值为6(3)m =-2或3--【解析】【分析】(1)把(0,-3),(-6,-3)代入y =2x bx c -++,即可求解;(2)先求出抛物线的顶点坐标为(-3,6),再由-4≤x ≤0,可得当x =-3时,y 有最大值,即可求解;(3)由(2)得当x >-3时,y 随x 增大而减小;当x ≤-3时,y 随x 的增大而增大,然后分两种情况:当-3<m≤0时,当m≤-3时,即可求解.【小问1详解】解:把(0,-3),(-6,-3)代入y =2x bx c -++,得∶33663c b c =-⎧⎨--+=-⎩,解得:63b c =-⎧⎨=-⎩; 【小问2详解】解:由(1)得:该函数解析式为y =263x x ---=2(3)6x -++,∴抛物线的顶点坐标为(-3,6),∵-1<0∴抛物线开口向下,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.【小问3详解】解:由(2)得:抛物线的对称轴为直线x =-3,∴当x >-3时,y 随x 的增大而减小;当x ≤-3时,y 随x 的增大而增大,①当-3<m≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为263m m ---,∴263m m ---+(-3)=2, 的∴m =-2或m =-4(舍去).②当m≤-3时,当x =-3时,y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴2(3)6m -++=-4,∴m =3-或m =3-+(舍去).综上所述,m =-2或3--.【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用分类讨论思想解答是解题的关键.24. 如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2=时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90°;(2)DE =103;MN ∥BD ,证明见解析;(3)DE 的长为 【解析】 【分析】(1)由DE =2知,AE =AB =6,可知∠AEB =∠MEB =45°,从而得出答案; (2)根据对称性得,∠ENC =∠BDC ,则cos ∠ENC =2610EN =,得EN =103,利用SSS 证明△BMN ≌△DCB ,得∠DBC =∠BNM ,则MN ∥BD ;(3)当点E 在边AD 上时,若直线MN 过点C ,利用AAS 证明△BCM ≌△CED ,得DE =MC;当点E在边CD上时,证明△BMC∽△CNE,可得BM MCCN EN=,从而解决问题.【小问1详解】解:∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°,由对称性知∠BEM=45°,∴∠AEM=∠AEB+∠BEM=90°;【小问2详解】如图1,∵AB=6,AD=8,∴由勾股定理得BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=2610 EN=,∴EN=10 3,∴DE=EN=10 3;直线MN与直线BD的位置关系是MN∥BD.由对称性知BM=AB=CD,MN=AD=BC,又∵BN=BD,∴△BMN≌△DCB(SSS),∴∠DBC=∠BNM,所以MN∥BD;【小问3详解】①情况1:如图2,当E在边AD上时,直线MN过点C,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∠BMC=∠EDC=90°,∴△BCM≌△CED(AAS),∴DE=MC=;②情况2:如图3,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8-,∵∠BMC=∠CNE=∠BCD=90°,∴∠BCM+∠ECN=90°,∵∠BCM+∠MBC=90°,∴∠ECN=∠MBC,∴△BMC∽△CNE,∴BM MC CN EN=,∴ENMC CNBM⋅==∴DE=EN.综上所述,DE的长为【点睛】本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新! 3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! 2010年浙江省绍兴市初中毕业生学业考试数学试卷 一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.21的相反数是( ) A.2 B.-2 C.21 D.21 2.如图,是由四个相同的小正方体组成的立体图形,它的俯视图是( )
3.已知⊙O的半径为5,弦AB的弦心距为3,则AB的长是( ) A.3 B.4 C.6 D.8 4.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 ( )
A.61049.1 B.810149.0 C.7109.14 D.71049.1 5.化简1111xx,可得( ) A.122x B.122x C.122xx D.122xx 6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表: 则这四人中成绩发挥最稳定的是( ) A.甲 B.乙 C.丙 D.丁 7.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误..的是( )
选 手 甲 乙 丙 丁 平均数(环) 9.2 9.2 9.2 9.2 方差(环2) 0.035 0.015 0.025 0.027
第4题图 A. B.
C.
D.
第2题图 主视方向 3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! A.摩托车比汽车晚到1 h B. A,B两地的路程为20 km C.摩托车的速度为45 km/h D.汽车的速度为60 km/h 8.如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连结AD,CD.则有( ) A.∠ADC与∠BAD相等 B.∠ADC与∠BAD互补 C.∠ADC与∠ABC互补 D.∠ADC与∠ABC互余 9.已知(x1, y1),(x2, y2),(x3, y3)是反比例函数xy4的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是( )
A. y3<y1<y2 B. y2<y1<y3 C. y1<y2<y3 D. y3<y2<y1 10.如图为某机械装置的截面图,相切的两圆⊙O1, ⊙O2均与⊙O的弧AB相切,且O1O2∥l1( l1为水 平线),⊙O1,⊙O2的半径均为30 mm,弧AB的 最低点到l1的距离为30 mm,公切线l2与l1间的 距离为100 mm.则⊙O的半径为( ) A.70 mm B.80 mm C.85 mm D.100 mm
二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中 横线上) 11.因式分解:yyx92=_______________. 12.如图,⊙O是正三角形ABC的外接圆,点P在劣弧AB上,
第12题图
第8题图 B A C
第10题图 A B 单位:mm l1 l2
第7题图 3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! ABP=22°,则BCP的度数为_____________.
13.不等式-032x的解是_______________. 14.根据第六届世界合唱比赛的活动细则,每个参赛的合唱团在比赛时须演唱4首歌曲.爱乐合唱团已确定了2首歌曲,还需在A,B两首歌曲中确定一首,在C,D两首歌曲中确定另一首,则同时确定A,C为参赛歌曲的概率是_______________. 15.做如下操作:在等腰三角形ABC中,AB= AC,AD平分∠BAC, 交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的 像与△ACD重合. 对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线 和高互相重合. 由上述操作可得出的是 (将正确结论的序号都填上).
16.水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度(指缠绕中将部分带子拉成图中所示的平面ABCD时的∠ABC,其中AB为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则的余弦值为 .
三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12 分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(1)计算: |2|o2o12sin30(3)(tan45);
(2)先化简,再求值: 6)6()3)(3(2aaaa,其中12a.
第15题图 第16题图 3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! 18.分别按下列要求解答: (1)在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1 C1.画出△A1B1C1; (2)在图2中,△ABC经变换得到△A2B2C2.描述变换过程.
19.绍兴有许多优秀的旅游景点,某旅行社对5月份本社接待的外地游客来绍旅游的首选景点作了一次抽样调查,调查结果如下图表.
第18题图1 第18题图2
0 1 2 3 4 5 6 7 8 9 10 12 11
12 11 10 9 8 7 6 5 4 3 2 1 A B C A2 B2 C2 0 1 2 3 4 5 6 7 8 9 10 12 11 12 11 10 9 8 7 6 5 4 3 2 1
A B
C 3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! (1)请在上述频数分布表中填写空缺的数据,并补全统计图; (2)该旅行社预计6月份接待外地来绍的游客2 600人,请你估计首选景点是鲁迅故里的人数.
20.如图,小敏、小亮从A,B两地观测空中C处一个气球,分 别测得仰角为30°和60°,A,B两地相距100 m.当气球 沿与BA平行地飘移10秒后到达C′处时,在A处测得气 球的仰角为45°. (1)求气球的高度(结果精确到0.1m); (2)求气球飘移的平均速度(结果保留3个有效数字).
景点 频数 频率 鲁迅故里 650 0.325 柯岩胜景 350 五泄瀑布 300 0.15 大佛寺院 300 0.15 千丈飞瀑 200 0.1 曹娥庙宇 0.075 其 它 50 0.025
650300200503000100200300
400
500600700人数(人)
景点 外地游客来绍旅游首选景点统计图
鲁迅故里 柯岩
胜景 五泄
瀑布 大佛
寺院 千丈飞瀑 曹娥
庙宇 其它
外地游客来绍旅游首选景点的频数分布表
第19题图 第20题图 3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! 21.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与 x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y=43x+3的坐标三角形的三条边长; (2)若函数y=43x+b(b为常数)的坐标三角形周长为16, 求此三角形面积.
22.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年 交各种费用1万元,未租出的商铺每间每年交各种费用5 000元. (1)当每间商铺的年租金定为13万元时,能租出多少间? (2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?
A y O B x 第21题图