SPSS单因素方差分析步骤-单因素显著性分析步骤
SPSS统计分析第五章方差分析

二、方差分析中的术语
因素与处理(Factor and Treament) 水平(Level) 单元(Cell) 因素的主效应和因素间的交互效应 均值比较 协方差分析
1.因素与处理
因素(Factor)是影响因变量变化的客观条件;例如影响农作物产量的因素有气温、降雨量、日照时 间等; 处理(Treatments)是影响因变量变化的人为条件。也可以通称为因素。如研究不同肥料对不同种系 农作物产量的影响时农作物的不同种系可称为因素,所施肥料可视为不同的处理。 一般情况下Factors与Treatments在方差分析中可作相同理解。在要求进行方差分析的数据文件 中均作为分类变量出现。即它们的值只有有限个取值。即使是气温、降雨量等平常看作是连续变 量的,在方差分析中如果作为影响产量的因素进行研究,就应该将其数值用分组定义水平的方法 事先变为具有有限个取值的离散变量
4.因素的主效应和因素间的交互效应
有A、B两种药物治疗缺铁性贫血,患者12例,分为4组。实验方案是:第一组用一 般疗法;第二组在一般疗法基础上加用A药;第三组在一般疗法基础上加用B药,第 四组在一般疗法基础上A、B两药同时使用。一个月后观察红细胞增加数。要求分析 两种药物的疗效(数据下表)。
实验数据
Coefficients:为多项式指定各组均值的系数。 因素变量分为几组,输入几个系数,多出的无意 义。如果多项式中只包括第一组与第四组的均值 的系数,必须把第二个、第三个系数输入为0值。 如果只包括第一组与第二组的均值,则只需要输 入前两个系数,第三、四个系数可以不输入 。 多项式的系数需要由读者自己根据研究的需要输 入。
各组平均值
第一组 0.8 0.9 0.7 0.8
红细胞增加数(百万/m3)
第二组
如何利用SPSS计算平均值,标准差,单因素方差

如何利用SPSS计算平均值,标准差,单因素方差单因素方差用于分析单一控制变量影响下的多组样本的均值是否存在显著差异。
在进行方差分析时要求样本满足以下几个条件:(1)可比性;(2)随机数据;(3)样本为正态分布;(4)方差齐性,要求各组间具有相同的方差,可以通过SPSS中“方差齐性检验”得出。
下面以医学中不同类型脑梗塞与年龄、性别和ApoB/AI值之间的相互关系来进行单因素方差分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS 和NCAS三种,我们将这三组分类转化为数值分类其中ICAS用1表示,ECAS 用2表示,NCAS用3表示。
性别也转化为0、1分类,1为女,0为男。
其他数值变量正常输入。
图1-1第二步:打开“单因素方差(ANOVA)分析”对话框:沿着主菜单的“分析(Analyze)→比较均值→单因素ANOVA”的路径(图1-2)打开单因素方差分析分析选项框(图1-3)。
在“因子”中选入分组,在因变量列表中选入年龄,性别和Apobai。
这里需要注意的是一般“因子”为分类变量,而因变量为数值或分类变量。
第三步:对“对比”、“两两比较”、“选项”进行设置,设置方法参照任意一本SPSS统计书籍中关于单因素方差分析的部分。
图1-2图1-3点击确定后输出数据,这里重点讲输出数据中各项所代表的意思。
我们经常会在其他文献中看到有关平均值(mean),标准差(SD)和标准误差(SE),即mean±SD或SE的情况。
如图1-4所示“描述图”中,在该图中我们很容易找到以上几项。
如图1-4所示“方差齐性检验”中,我们可以找到各组的显著性(即P值),也有软件表示为Sig.。
当该值大于0.05时说明各组间方差是齐性的,既满足前提的第四点。
可以进行后续分析。
一般我们需要的是多重比较的表格,如图1-5所示,该表中给出了年龄、性别和ApoB/AI值中各组间的显著性水平(P值),如年龄组中1、2组间显著性为0.972,差异不显著。
SPSS操作—方差分析

例题进一步分析
析中剔除
实例-单因素方差分析各处理重复数不等的方差分析
用四种饲料喂养19头猪比较,四种饲料是否不同。
饲料 A 133.8 B 151.2 C 193.4 D 225.8
125.3
143.1 128.9 135.7
149.0
162.7 143.8 153.5
185.3
182.8 188.5 198.6
Post Hoc(均数的多重比较选项)
• 进行多重比较是对每两个组的均值进行如下比较:MEAN(i)MEAN(j)≥4.6625×RANGE×SQRT(1/N(i)+1/N(j));其中i、j分 别为组序号, MEAN(i)、MEAN(j)分别为第i、j组均值, N(i)、N(j) 分别为第i、j组中的观测数。各组均值的多重比较方法的算法 不同RANGE值也不同。
• Hochberg’s GT2(霍耶比GT2法):用正态最大系数进行多 重比较
• Gabriet(盖比理法):用正态标准系数进行配对比较,在单元 数较大时,这种方法较自由; • Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。
使用贝耶斯接近;
• Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照 组的均值,默认的对照组是最后一组;选定此方法后,激活 下面的Control Catetory参数框,展开小菜单,选择对照组 • Tamhane‘s T2(塔海尼T2法):t检验进行配对比较; • Dunnett’s T3(邓尼特T3法):正态分布下的配对比较; • Games-Howell(盖门-霍威尔法):各组均值的配对比较,该方 法较灵活;
方差分析-SPSS操作流程

• Duncan(邓肯法) :新复极差测验法,指定一系列的的 Range值,逐步进行计算比较得出结论;
• Hochberg’s GT2(霍耶比GT2法):用正态最大系数进行多 重比较
SPSS操作—方差分析
方差分析由英国统计
学家R.A.Fisher在 1923年提出,为纪念 Fisher,以F命名, 故方差分析又称 F 检 验。
三种变异
• 总变异:全部观察值大小各不相等,其变异就称为总变异 (total variation)。用SST表示
• 组间变异:由于各组处理不同所引起的变异称为组间变异 (variation between groups)。它反应了处理因素对不同 组的影响,同时也包括了随机误差。用SS组间表示
• Gabriet(盖比理法):用正态标准系数进行配对比较,在单元 数较大时,这种方法较自由;
• Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。 使用贝耶斯接近;
• Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照 组的均值,默认的对照组是最后一组;选定此方法后,激活 下面的Control Catetory参数框,展开小菜单,选择对照组
• analyze→compare means→one-way ANVOA
响应变量
因素
Contrasts:线性组合比较。是参数或统计量的线性函数,用于 检验均数间的关系,除了比较差异外,还包括线性趋势检验
Contrasts可以表达为: a1u1+ a2u2 +···+akuk =0;满足a1+ a2+···+ak =0。式中ai为线性组合系数,ui为总体均数,k为分 类变量的水平数
《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。
它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。
在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。
本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。
方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。
方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。
方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。
在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。
在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。
步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。
步骤3:点击“数据视图”页面,输入各组别的数据。
确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。
步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。
步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。
步骤6:点击“选项”按钮,出现选项对话框。
可以选择计算哪些统计量,如均值、标准差、总和平方和等。
步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。
方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。
-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。
-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。
-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。
-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。
spss使用教程 方差分析

多因素方差分析不仅需要分析多个控制变 量独立作用对观察变量的影响,还要分析多个 控制变量交互作用对观察变量的影响,及其他 随机变量对结果的影响。因此,它需要将观察 变量总的离差平方和分解为3个部分:
多个控制变量单独作用引起的平方和; 多个控制变量交互作用引起的离差平 方和; 其他随机因素引起的离差平方和。
5.4.2 SPSS中实现过程
表5-3
人 名 hxh yaju yu shizg hah s watet jess wish 2_new1 2_new2 2_new3 2_new4 2_new5 2_new6 2_new7 2_new8 2_new9
研究问题
三组学生的数学成绩
数 学 99.00 88.00 99.00 89.00 94.00 90.00 79.00 56.00 89.00 99.00 70.00 89.00 55.00 50.00 67.00 67.00 56.00 56.00 入学成绩 98.00 89.00 80.00 78.00 78.00 89.00 87.00 76.00 56.00 76.00 89.00 89.00 99.00 89.00 88.00 98.00 78.00 89.00 组 别 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1
图5-11 “Univariate:Model”对话框
图5-12 “Univariate:Profile Plots”对话框
图5-13 “Univariate:Contrasts”对话框
5.3.3 结果和讨论
(1)SPSS输出结果文件中的第一部分如 下两表所示。
(2)输出的结果文件中第二部分如下表 所示。
实现步骤
利用SPSS进行数据显著性差异分析

利用SPSS进行数据显著性差异分析SPSS是一种统计分析软件,可用于进行数据显著性差异分析。
在数据显著性差异分析中,我们使用统计测试来确定不同组之间的显著差异。
本文将详细介绍利用SPSS进行数据显著性差异分析的步骤。
首先,我们要准备数据。
假设我们有一个实验,其中包含两个或更多组的数据。
每组数据都有一个或多个变量,我们想要确定不同组之间是否存在显著差异。
在SPSS中,我们可以使用两种常见的统计方法来进行数据显著性差异分析:t检验和方差分析(ANOVA)。
选择哪种方法取决于我们的数据类型和实验设计。
对于t检验,如果我们只有两个组的数据,可以选择独立样本t检验或配对样本t检验。
独立样本t检验用于比较两个独立组的平均值是否显著不同,而配对样本t检验用于比较同一组的两个相关条件的平均值是否显著不同。
对于方差分析,我们可以选择一元方差分析(One-Way ANOVA)或多元方差分析(One-Way MANOVA)。
一元方差分析用于比较一个因素下多个独立组的平均值是否显著不同,而多元方差分析用于比较多个相关条件下多个独立组的平均值是否显著不同。
下面,我们将详细介绍如何在SPSS中执行独立样本t检验和一元方差分析。
独立样本t检验:1.打开SPSS并导入数据。
3. 在弹出的对话框中,将要比较的变量移动到“因子(Factor)”栏和“依赖(Dependent)”栏中。
4.点击“OK”按钮执行独立样本t检验,并查看结果。
一元方差分析:1.打开SPSS并导入数据。
3. 在弹出的对话框中,将要比较的变量移动到“因子(Factor)”栏和“依赖(Dependent)”栏中。
4.点击“OK”按钮执行一元方差分析,并查看结果。
在执行以上分析后,SPSS将生成统计数据和显著性测试结果。
重要的结果包括均值、标准差、t值、p值等。
p值表示差异是否显著,值越小说明差异越显著,通常使用0.05为显著性水平。
此外,SPSS还提供了其他的数据显著性差异分析方法,如配对样本t检验、多元方差分析等。
One-Way-ANOVA过程--单因素方差分析

SPSS--One-Way ANOVA过程--单因素方差分析One-Way ANOVA过程该命令用于两组及多组独立样本平均数差异显著性的比较,即成组设计的方差分析。
还可进行随后的两两成对比较。
1 界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(因变量)。
【Factor框】选入需要比较的分组因素,只能选一个。
【Contrast钮】弹出Contrast对话框,用于对精细趋势检验和精确两两比较的选项进行定义,该对话框比较专业,也较少用,这里做简单介绍。
•Polynomial复选框定义是否在方差分析中进行趋势检验。
•Degree下拉列表和Polynomial复选框配合使用,可选则从线性趋势一直到最高五次方曲线来进行检验。
•Coefficients框定义精确两两比较的选项。
按分组变量升序给每组一个系数值,注意最终所有系数值相加应为0。
如果不为0仍可检验,只不过结果是错的。
比如说在下面的例2要对一、三组进行单独比较,则在这里给三组分配系数为1、0、-1,就会在结果中给出相应的检验内容。
【Post Hoc按钮】弹出Post Hoc Multiple Comparisons对话框,用于选择进行各组间两两比较的方法:•EquaL Variances Assumed复选框:当各组数据方差齐性时的两两比较方法,共14种。
其中最常用的为LSD和S-N-K法。
•EquaL Variances Not Assumed复选框:当各组方差不齐性时的两两比较方法,共4种,其中以Dunnetts's C法较常用。
•Significance Level框定义两两比较时的显著性水平,默认为0.05。
【Options按钮】弹出Options对话框,用于定义相关的选项:•Statistics复选框:选择一些附加的统计分析项目,有统计描述(Descriptive)和方差齐性检验(Homogeneity-of-variance)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真诚为您提供优质参考资料,若有不当之处,请指正。
1 / 6
spss教程:单因素方差分析
用来测试某一个控制变量的不同水平是否给观察变量造成显著差异
和变动。
方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。
所以方差分析就是研究不同水平下各个总体的均值是否有显著的差
异。统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,
控制变量引起的离差SSA(Between Group离差平方和),另一部分
随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。
方法/步骤
1. 计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,
如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不
同水平下各总体均值有显著差异,反之,则相反,即没有差异。
真诚为您提供优质参考资料,若有不当之处,请指正。
2 / 6
2. 方差齐性检验:控制变量不同水平下各观察变量总体方差是否
相等进行分析。采用方差同质性检验方法(Homogeneity of
variance),原假设“各水平下观察变量总体的方差无显著差异,
思路同spss两独立样本t检验中的方差分析”。 图中相伴概率
0.515大于显著性水平0.05,故认为总体方差相等。
趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量
值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。趋
势检验可以帮助人们从另一个角度把握控制变量不同水平对观察
真诚为您提供优质参考资料,若有不当之处,请指正。
3 / 6
变量总体作用的程度。图中线性相伴概率为0小于显著性水平
0.05,故不符合线性关系。
真诚为您提供优质参考资料,若有不当之处,请指正。
4 / 6
3. 多重比较检验:单因素方差分析只能够判断控制变量是否对观
察变量产生了显著影响,多重比较检验可以进一步确定控制变量的
不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。
常用LSD、S-N-K方法。LSD方法检测灵敏度是最高的,但也容易导
致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与
广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。
真诚为您提供优质参考资料,若有不当之处,请指正。
5 / 6
真诚为您提供优质参考资料,若有不当之处,请指正。
6 / 6
4. 相似性子集:由图可知,划分的子集结果是一样的。通常在相
似性子集划分时多采用S-N-K方法的结论。其结论可以与上述多重
比较检验结合起来看,验证在LSD项中,报纸与广播没有显著差异
的结论。