基因工程的诞生和发展

基因工程的诞生和发展
基因工程的诞生和发展

第一章基因工程概述

第一节基因工程的诞生和发展

一、基因

1.Mendel的遗传因子阶段

Mendel . (1822-1884). 1856-1864豌豆杂交实验。

1866年发表论文,提出分离规律和独立分配规律

1900年Mendel遗传规律被重新发现遗传学的元年

Mendel提出:生物的某种性状是由遗传因子负责传递的。是颗粒性的,体细胞内成双存在,生殖细胞内成单存在。遗传因子是决定性状的抽象符号。

2.Morgan的基因阶段

1909年丹麦遗传学家Yohannsen (1859-1927)

发表了“纯系学说”首先提出了“基因”的概念,代替了Mendel “遗传因子”的概念。但没有提出基因的物质概念。

1910年以后,Morgan .等提出了基因的连锁遗传规律。说明了基因是在染色体上占有一定空间的实体。基因不再是抽象符号,被赋予物质内涵。

3.顺反子阶段

1957年,本泽尔(Seymour Benzer)以T4噬菌体为材料,在DNA分子水平上研究基因内部的精细结构,提出了顺反子(cistron)概念:顺反子是1个遗传功能单位,1个顺反子决定1条多肽链。

4.现代基因阶段

(1)操纵子

启动基因+操纵基因+结构基因

(2)跳跃基因

指DNA能在有机体的染色体组内从1个地方跳到另一个地方,它们能从1个位点切除,然后插入同一或不同染色体上的另一个位置。

(3)断裂基因

1个基因被间隔区分成不连续的若干区段,这种编码序列不连续的间断基因被称为断裂基因。

(4)假基因

不能合成出功能蛋白质的失活基因。

(5)重叠基因

不同基因的核苷酸序列有时是可以共用的即重叠的。

现代对基因的定义是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。

二、基因工程的诞生

一般认为1973年是基因工程诞生的元年

(S. Cohen等获得了卡那霉素和四环素双抗性的转化子菌落)

理论上的三大发现和技术上的三大发明

对于基因工程的诞生起到了决定性的作用。

(一)DNA是遗传物质被证实

1944年,Avery .利用肺炎双球菌转化实验

1944年,美国洛克菲勒研究所的Oswald Avery等公开发表了改进的肺炎双球菌实验结果。

(1) S型菌细胞提取物及其纯化的DNA都可使R型菌转变成S型菌;

(2)经DNase 处理的S型菌细胞提取物失去了转化作用。

(3)经胰蛋白酶处理的S型菌细胞提取物仍有转化作用。

不仅证实了DNA是遗传物质,而且证明了DNA可以将一个细菌的性状转给另一个细菌,他的工作被称为是现代生物科学的革命性开端。

(二)DNA双螺旋模型的提出

DNA是遗传物质已被证实,但是DNA是怎样携带并传递遗传信息的在细胞增殖过程中,DNA是怎样复制的因此,对于DNA结构的研究成为了当时生物学家研究的热点。

1953年,Francis Crick和James Watson搜集了力所能及的资料,提出了DNA的双螺旋模型。随后,DNA的半保留复制和半不连续复制机理也被阐明,为基因工程的诞生奠定了坚实的理论基础。

(三)“中心法则”和“操纵子学说”的提出

既然,DNA是遗传信息的载体,那么它是如何传递遗传信息的呢遗传信息又是如何控制生物的表型性状的呢

以Nireberg等为代表的一批科学家经过艰苦的努力,确定了遗传信息以密码方式传递,每三个核苷酸组成一个密码子,代表一个氨基酸,到1966年,全部破译了64个密码子,并提出了遗传信息传递的“中心法则”。

1961年,Jacques Monod和 Fancois Jacob提出了原核基因调控的

操纵子模型(operon model)。

(四)工具酶的发现和应用

1970年Smith等分离并纯化了限制性核酸内切酶Hin d II, 1972年,等相继发现了Eco R I 一类重要的限制性内切酶。

1967年,世界上有五个实验室几乎同时发现DNA连接酶,特别是1970年等发现的T4 DNA 连接酶具有更高的连接活性。

1970年,Baltimore等和Temin等在RNA肿瘤病毒中各自发现了反转录酶,完善了中心法则,用于构建cDNA 文库。

(五)载体的发现及其应用

载体主要是小分子量的复制子如:病毒、噬菌体、质粒。

1972年,美国Stanford大学的P. Berg 等首次成功地实现了DNA的体外重组;

6、重组子导入受体细胞技术

1944年,肺炎链球菌被成功转化。

1970年,大肠杆菌才被成功转化,得益于CaCl2的应用

基因工程诞生

1973年,Stanford大学的Cohen等成功地利用体外重组实现了细菌间性状的转移。

1973年被定为基因工程诞生的元年。

第二节基因工程的研究内容

一、基因工程的概念

在分子水平上,提取或合成不同生物的遗传物质,在体外进行切割、再和某一载体进行拼接重组,然后再将重组的DNA导入宿主细胞内,最后实现目的基因稳定复制和表达的过程。

二、基因工程研究的基本步骤

1、从生物体中分离得到目的基因(或DNA片段)

2、在体外,将目的基因插入能自我复制的载体中得到

重组DNA分子。

3、将重组DNA分子导入受体细胞中,并进行繁殖。

4、选择得到含有重组DNA分子的细胞克隆,并进行大量

繁殖,从而使得目的基因得到扩增。

5、进一步对获得的目的基因进行研究和利用。比如,

序列分析、表达载体构建、原核表达以及转基因研究

和利用等。

第三节基因工程的成就和前景展望

一、成就

1.医药领域

1977年,激素抑制素的发酵生产成功。Itakara等,化学合成的激素抑制素基因和大肠杆菌-半乳糖(苷)激酶基因插入到PBR322中得到重组质粒,并通过大肠杆菌生产出含有激素抑制素的嵌合型蛋白,经溴化氰处理后释放出了有生物活性的激素抑制素。首次实现了真核基因的原核表达。用价值几美元的9升培养液生产出50毫克的生物活性物质,这相当于50万头羊脑的提取量。

1978年, Goeddel等,人胰岛素的发酵生产成功。

1979年, Goeddel等,又在大肠杆菌中成功表达了人生长激素基因。

1980年, Nagata等,遗传工程菌生产干扰素获得成功。

1981年,用遗传工程菌生产的生物制剂包括动物口蹄疫疫苗、乙型肝炎病毒表面抗原及核心抗原、牛生长激素等。

1982年,重组DNA技术生产的药物-人胰岛素进入商品化生产。

1983年,基因工程生产狂犬病疫苗取得突破型进展。

2.植物基因工程的发展迅速

植物转基因育种的发展优势

(1)扩大了作物育种的基因库

转基因育种打破了常规育种的物种界限,来源于动植物和微生物的有用基因都

可以导入作物,培育成具有某些特殊性状的新型作物品种。

(2)提高了作物育种的效率

作物转基因育种不仅大大缩短育种年限,而且可成功地改良某些单一性状却不

影响改良品种的原有优良特性。

(3)减轻了农业生产对环境的污染

转基因抗虫棉花的大面积种植和推广,不仅可以减少化学杀虫剂对棉农及天敌

的伤害,而且可以大幅度降低用于购买农药和虫害防治的费用。另外,随着高

效固氮转基因作物及高效吸收土壤中磷元素等营养元素的转基因作物不断问世

和推广,农用化肥的利用率将极大地提高,这对减少农田污染具有重要意义。

(4)拓宽了作物生产的范畴

各种有价值的蛋白产品都可以利用植物反应器进行高效生产,番茄、马铃薯、

莴苣和香蕉等作物已被成功用于生产口服疫苗。另外,各种工业原料,比如纤

维素、海藻糖和可降解塑料等也可以用植物来生产。有人甚至预言,除了钢筋

混凝土之外,未来的转基因作物将可能生产出人类所需要的一切产品。

植物基因组计划

水稻、玉米、棉花、大豆、高粱和番茄

植物分子育种

高产、优质、高效和多抗性

植物作为反应器

香蕉、马铃薯、番茄等

酒精、石油、工业酶等

3.工业领域

环保工业

能降解工业废品、农药残留等基因工程菌的构建

酶制剂工业

耐热、耐压、耐盐、耐溶剂的酶基因转化构建的工程菌

食品工业

改善食品品质的转基因作物

化学与能源工业

生产乙醇、甘油、丙酮等的转基因生物

二、我国基因工程部分研究进展

1.转基因抗病虫植物

我国科学家将抗虫基因导入棉花,获得了抗虫植株,对棉蛉虫的抗虫效果十分显著。抗黄矮病、赤霉病、白粉病转基因小麦和抗青枯病马铃薯也已研究成功,开始田间加代繁殖。

2.基因工程疫苗

乙型肝炎是危害我国人民健康的严重疾病,我国乙肝病毒携带者1亿 1千万人,其中40%左右的慢性肝炎可能发展成为肝硬化和原发肝癌。以往乙肝疫苗是从人血清中提取,基因工程乙肝疫苗的研制成功,不仅有巨大的经济效益,而且有巨大的社会效益。基因工程乙肝疫苗是我国正式批准投放市场的第一种高技术疫苗,在20多项指标上达到国际先进水平,获国家科技进步一等奖。继乙肝疫苗之后,我国又研制成功了痢疾、霍乱等数种基因工程疫苗,并经国家批准进入临床试验。

3.基因工程药物

干扰素是一种广谱的抗病毒和抗肿瘤高技术药物,对防治病毒性肝炎和恶性肿瘤有重要的作用。现已有了3个品种的基因工程干扰素获得国家新药证书,开始大批量生产。除此之外,我国还研制成功了肝癌导向药物(生物炸弹)、系列恶性肿瘤辅助治疗药物等十余种基因工程药物,有些已获试生产文号或进入中试开发阶段。

4.动物克隆和转基因研究

在“神舟”五号成功着陆的同一天,包括两头转基因体细胞克隆牛在内的10头体细胞克隆牛现身山东梁山县。我国转基因体细胞克隆技术及体细胞克隆技术的研究与应用达到国际前沿水平。

体细胞克隆牛“乐娃”,由于成功地转入了绿色荧光蛋白基因,成为我国首例转基因体细胞克隆牛,标志着我国在转基因体细胞克隆技术方面的新突破。

基因工程习题及答案

第二章习题 一、单选题 1.在基因操作中所用的限制性核酸内切酶是指( B ) A.I类限制酶 B. II类限制酶 C. III类限制酶 D.核酸内切酶 E. RNAase 2.下列关于同裂酶的叙述错误的是( B ) A. 是从不同菌种分离到的不同的酶,也称异源同工酶。 B. 它们的识别序列完全相同。 C. 它们的切割方式可以相同,也可以不同。 D. 有些同裂酶识别的完整序列不完全一样,但切割位点间的序列一样。 E. 两种同裂酶的切割产物连接后,可能会丢失这两个同裂酶的识别位点。 3. 多数限制酶消化DNA的最佳温度是( A ) A. 37℃ B.30℃ C.25℃ D.16℃ E.33℃ 4. 下列关于限制酶的叙述错误的是( B ) A. I类限制酶反应需要 Mg2+、ATP和S-腺苷蛋氨酸。 B. II类限制酶反应需要Mg2+、ATP。 C. III类限制酶反应需要Mg2+、ATP,S-腺苷蛋氨酸能促进反应,但不是绝对需要。 D. I、III类限制酶对DNA有切割和甲基化活性,II类限制酶对DNA只有切割活性而无甲基化活性。 E. II类限制酶要求严格的识别序列和切割点,具有高度精确性。 5. 如果一个限制酶识别长度为6bp ,则其在DNA上识别6bp的切割概率为( D ) A. 1/44 B. 1/66 C. 1/64 D.1/46 E. 1/106 6. 多数II类限制酶反应最适PH是 ( C ) A. PH:2-4 B. PH:4-6 C. PH:6-8 D. PH:8-10 E. PH:4-10 7. 下列关于限制酶反应的说法错误的是 ( D ) A. 限制酶识别序列内或其邻近的胞嘧啶、腺嘌呤或尿嘧啶被甲基化后,可能会阻碍限制酶的酶解活性。 B. 许多限制酶对线性DNA和超螺旋DNA底物的切割活性是有明显差异的。 C. 有些限制酶对同一DNA底物上不同酶切位点的切割速率会有差异。 D. 限制酶反应缓冲系统一般不用磷酸缓冲液,是由于磷酸根会抑制限制酶反应。 E. BSA对许多限制酶的切割活性都有促进作用,所以酶切反应中常加入一定量的BSA。 8. II类限制酶反应中必须的阳离子是( C )

《基因工程的诞生和发展》教案

《基因工程的诞生和发展》教案 【教学目标】 知识与能力方面: 1、简述基础理论研究和技术进步催生了基因工程。 2、简述基因工程的原理和技术。 过程与方法方面: 1、运用所学的DNA重组技术的知识,模拟制作重组DNA模型 2、运用基因工程的原理,提出解决某一实际问题的方案 情感态度、价值观方面:关注基因工程的发展,体会S、T、S三者之间的关系。【教学重点】 DNA重组技术所需要3种基本工具的作用。 【教学难点】 基因工程载体需要具备的条件。 【教学过程】 (导入新课)1973年转基因微生物──转基因大肠杆菌问世;1980年第一个转基因动物──转基因小鼠诞生;1983年第一例转基因植物──转基因烟草出现,实现了一种生物的某些基因在另一种生物中的表达。 基因工程的理论基础和技术保障分别是什么? 理论基础:DNA双螺旋结构的发现,使科学家发现所有生物的DNA都是由四种脱氧核苷酸聚合而成的,为来自异种的DNA拼接提供了结构基础;中心法则揭示了生物的遗传信息传递的过程,而且所有的生物共用一套密码子,这使基因在异种生物细胞内表达成为了可能。 既然科学家意识到了上述可能之后,就开始探索转基因的技术手段,此时,几种基因工程的工具的发现,为使这项技术最终成功了。 基因工程的技术保障:限制性核酸内切酶,DNA连接酶,运载体。 (提出问题)限制性核酸内切酶是从什么生物体内发现的?它的作用有什么特点?限制酶切开的DNA末端有什么特点? (学生活动)阅读课文,总结限制性内切酶的作用特点和作用结果。 (总结归纳) 科学家的基本意向也和同学们一样。单细胞生物比多细胞生物更容易受到外源DNA的侵入。在长期的进化过程中,使其必须有处理外源DNA的酶。科学家们经过不懈的努力,终于从原核生物中分离纯化出这种酶,叫做限制酶。迄今已从近300种微生物中分离出4000

扬州大学基因工程期末试题复习要点整理

基因工程期末试题复习要点整理 基因工程是70年代出现的一门科学,是生物学最具生命力和最引人注目的前沿科学之一,是现代生物技术的代表,是生命科学类专业中的一门重要的专业课。本课程主要介绍基因工程概述、重组DNA基本技术及原理、基因克隆、基因的分离及鉴定、基因工程的表达系统、基因工程的应用等。通过本课程的学习,使学生掌握基因工程技术的基本原理和了解该技术在动物、植物和微生物等方面的应用,为今后从事生物学教学、生物技术研究和产品开发,或进一步的研究生学习科研打下坚实的理论及专业基础。扬州大学试题纸 一、名词解释:共10题,每题2分,共20分。 1. 基因: 是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。 2. 定位克隆: 获取基因在染色体上的位置信息,然后采用各种方法对该基因进行定位和克隆 3. 融合基因: 是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。 4. 转化子: 导入外源DNA后获得了新遗传标志的细菌细胞或其他受体细胞,又称重组体。 5. 人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。 6. RT-PCR: 是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。 7. ORF : 起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。 8. MCS: 指载体上人工合成的含有紧密排列的多种限制核酸内切酶的酶切位点的DNA片段。 9. gene targeting : 基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术 10. 5’RACE: 是一种通过PCR进行cDNA末端快速克隆的技术,是以mRNA为模板反转录成cDNA第一链后用PCR技术扩增出某个特异位点到5’端之间未知序列的方法。 四、简答题:共4题,共20分。 1.简述获得目的基因常用的几种方法。(5分)

有关基因工程的看法

有关转基因植物争论的看法摘要与前言:植物转基因工程是指通过基因枪等基因工程手段,将一种或几种外源基因转移到原本不具有这些基因的植物体内,并使之有效表达,产生相应性状,这种具有相应性状的植物称之为转基因植物。植物转基因工程的目的旨在通过导入有用的外源基因,获得转基因植物,用于植物的改良和有效成分的生产。目前在抗除草剂、抗虫、抗病、控制果实成熟以及植物生物反应器等方面已获得了一系令列人鼓舞的成果。毫无疑问,能够按照人类意愿来“创造”优良作物新品种的植物基因工程近年来所取得的长足进展是激动人心的,它必将为未来农业的发展和满足人类日益增长的器要发挥巨大的作用。但是.在给人们带来明显经济效益和社会效益的同时,植物基因工程也可能带来一些重大的潜在危险。所以.必须从利弊两方面来考虑转基因植物的最终应用,并要对其做出正确的安全性评价。

目录 一:什么是转基因植物。。。。。。。。。。。。。。。。。。。。。。。3 二:转基因植物的发展方向。。。。。。。。。。。。。。。。。。。4 三:转基因安全性评价。。。。。。。。。。。。。。。。。。。。。。。5 四:对转基因争论的看法。。。。。。。。。。。。。。。。。。。。。6

一:什么是转基因 转基因植物是经过遗传改良进天然物种不具有基因序列的植物。这些基因序列来自不同的物种,并通过引入改变植物的一些基本特性。农作物是最经常实施转基因工程的植物,能通过引入新遗传材料提高产量和品质。 其中一些能培育进这些转基因植物的优良品质包括抗病虫害,提高产量,更高品质的水果、蔬菜或花卉,以及天气条件耐受性增加等。在发明人工插入新遗传材料之前,植物只是简单的在同一物种中找出最好的种子加以培育以期获得更高产量和品质。而转基因能让这一过程变的更有效。 首先要做的是确定需要替代的基因。DNA的每一个部分都管辖不同的植物部位。遗传专家必须确定用哪些基因控制每一个特定过程,并确定要被替代的植物部分。在本土环境中,植物通过授粉过程获得新遗传材料。转基因植物可以通过多种方式在这一过程中人工插入新信息。例如,基因枪是一个把新DNA通过细胞壁直接注射进植物细胞的新技术。这种方法在单子叶植物植入过程中很受欢迎。 在创造转基因双子叶植物时,农杆菌介导法最成功。该过程把基于土壤的农杆菌当做载体。在注入新的DNA后,细菌被导入植物根茎附近的土壤。这种独特的菌株会侵入植物并用植物自己的细胞再生,然后引入新的遗传品系。

基因工程的发展前景同步练习3

《基因工程的发展前景》同步练习 1.基因工程与蛋白质工程的区别是( ) A.基因工程需对基因进行分子水平操作,蛋白质工程不对基因进行操作 B.基因工程合成自然界已存在的蛋白质,蛋白质工程可以合成自然界不存在的蛋白质 C.基因工程是分子水平操作,蛋白质工程是细胞水平(或性状水平)的操作 D.基因工程完全不同于蛋白质工程 2.蛋白质工程的研究将对生命科学产生重大影响。下列关于蛋白质工程的叙述,不正确的是( ) A.实施蛋白质工程的前提条件是了解蛋白质结构和功能的关系 B.基因工程是蛋白质工程的关键技术 C.蛋白质工程是对蛋白质分子的直接改造 D.蛋白质工程是在基因工程的基础上,延伸出来的第二代基因工程 3.猪的胰岛素用于人体时降血糖效果不明显,原因是猪胰岛素分子中有一个氨基酸与人的不同。为了使猪胰岛素用于治疗人类糖尿病,用蛋白质工程的蛋白质分子设计的最佳方案是( ) A.对猪胰岛素进行一个氨基酸的替换 B.将猪胰岛素和人胰岛素进行拼接组成新的胰岛素 C.将猪和人的胰岛素混合在一起治疗糖尿病 D.根据人的胰岛素设计制造一种全新的胰岛素 4.干扰素是动物体内合成的一种蛋白质,可以用于治疗病毒感染和癌症,但体外保存相当困难,如果将其分子中的一个半胱氨酸变成丝氨酸,就可以在-70 ℃条件下保存半年,给广大患者带来了福音。 (1)蛋白质的合成是受基因控制的,因此获得能够控制合成“可以保存的干扰素”的基因是生产的关键,依据蛋白质工程原理,设计实验流程,让动物生产“可以保存的干扰素”: (2)基因工程和蛋白质工程相比较,基因工程在原则上只能生产____________的蛋白质,不一定符合______________的需要。而蛋白质工程是以蛋白质分子的结构规律及其与生物功能的关系为基础,通过__________或__________,对现有蛋白质进行________,或制造一种新的蛋白质,以满足人类的生产和生活需要。 结构。________蛋白质工程实施的难度很大,原因是蛋白质具有十分复杂的(3). (4)对天然蛋白质进行改造,应该直接对蛋白质分子进行操作,还是通过对基因的操作来实现?______________。原因是________________________________________。 5.基因工程是在现代生物学、化学和工程学基础上建立和发展起来的,并有赖于微生物学理论和技术的发展运用。基因工程基本操作流程如下图,请据图分析回答:

1基因工程发展史

实践证明,利用重组DNA技术,可以对不同生物的基因进行新的组合,得到性状发生改变的新生物。这意味着人类可以根据自己的意愿设计新的生物,并把它构建出来。人的创造性有一次性得到生动的体现。从此,生物科学完全超越了经验科学的阶段,第一次具备了工程学科的性质,以至于我们今天把基于重组DNA技术的新的学科分支,称为目前众所周知的“基因工程”。 第一节基因工程的诞生与发展 一、基因工程的定义 基因工程(Gene engineering)原称遗传工程(Genetic engineering)。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状甚至创造新的物种。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。除了少数RNA病毒外,几乎所有生物的基因都存在于DNA结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination technique)。另外,DNA重组分子大都需在受体细胞中复制扩增,故还可将基因工程表征为分子克隆或基因的无性繁殖(Molecular cloning)。 广义的基因工程定义为DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是外源基因重组、克隆和表达的设计与构建(即狭义的基因工程);而下游技术则涉及到含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。因此,广义的基因工程概念更倾向于工程学的范畴。 二、基因工程诞生的理论基础 (一)DNA是遗传物质 1944年,Avery进行的肺炎双球菌转化实验,证明了基因的分子载体是DNA,而不是蛋白质;1952年,Alfred Hershy和Marsha Chase通过噬菌体转染实验证明了遗传物质是DNA。 (二)DNA双螺旋结构和半保留复制

基因工程知识点梳理

生物选修3知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过,赋予生物以,创造出。基因工程是在 上进行设计和施工的,又叫做。 (一)基因工程的基本工具 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别的核苷酸序列,并且使每一条链中的两个核苷酸之间的断开,因此具有。(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式: 和。 2.“分子缝合针”—— (1)两种DNA连接酶()的比较: ①相同点:都缝合键。 ②区别:来源于大肠杆菌,来源于T4噬菌体, 只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来; 而能缝合两种末端,但连接的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。 DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 必须需要模板 3.“分子运输车”—— (1)载体具备的条件:①。 ②,供外源DNA片段插入。 ③,供重组DNA的鉴定和选择。 (2)最常用的载体是 ,它是一 种 。

(3)其它载体: (二)基因工程的基本操作程序 第一步: 1.目的基因是指:基因。 2.原核基因采取获得,真核基因是。人工合成目的基因的 常用方_ 和_。 3. 从基因文库中获取 基因文库(1)概念:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。 (2)类型:基因组文库和部分基因文库(如cDNA文库) (1)原理: (2)过程:第一步:加热至90~95℃; 第二步:冷却到55~60℃,; 第三步:加热至70~75℃,。 第二步:(核心步骤)

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

基因工程主要知识点整理

第一章基因克隆 基因工程的基本技术有哪些? 答:对核算分子的分离、纯化、回收、分析和检测、切割、连接和修饰,以及序列测定、诱变、扩增和转移等基因操作技术。 构建基因文库一般使用什么作为载体? 答:一般使用大肠杆菌作为载体 克隆与亚克隆? 答:克隆在一等程度上等同于基因的分离。亚克隆是将目的基因所对应的小段的DNA片段找出来。 PCR对基因克隆有什么作用? 答:现在基因克隆可以不用通过构建基因文库来实现,可以通过理性设计和PCR扩增获得大多数所需要的基因。但是尽管如此,在不知道基因序列的情况下,如相互作用的基因,表达调控因子,新基因等,还需要构建基因文库来进行基因克隆。 第二章分子克隆工具酶 限制与修饰系统? 答:限制系统可以排除外来DNA。限制的作用实际就是降解外源DNA,维护宿主稳定的保护机制。甲基化是常见的修饰作用,宿主通过甲基化来达到识别自身遗传物质和外来遗传物质的作用。并且能够保证自身的DNA不被降解。 使用最广泛的限制酶? 答:EcoR I是应用最广泛的限制性内切酶 限制性内切酶的命名? 答:宿主属名第一字母、种名头两个字母、菌株号+序列号。 如:HindIII 限制与修饰系统分类? 答:至少可分为3类。II类所占比例最大,其酶分子为内切酶与甲基化分子不在一起,识别位点为4-6bp的回文序列,切割位点为识别位点中或者靠近识别位点。其限制反应与甲基化反应是分开的反应。不需要ATP的参与。 限制酶识别的序列长度?结构?

答:一般为4-6个bp,即每256和每4096个碱基中存在一个识别位点。回文序列,不对称序列,多种不同序列,间断对称序列 限制酶产生的末端? 答:1、黏末端2、平末端3、非对称突出末端 什么是同裂酶?分类? 答:识别相同序列的限制酶称为同裂酶。但他们的切割位点有可能不同。分为:1、同位同切酶2、同位异切酶3、同工多位酶4、其他 限制性内切酶的作用是什么?它的反酶是什么? 答: 什么是同尾酶? 答:许多不同的限制酶切割DNA产生的末端是相通的,切实对称的,即他们可产生相同的黏性突出末端。 酶切的缓冲液中一般含有什么?作用是? 答:调控pH的缓冲剂:稳定溶液的pH M g2+:稳定酶的作用,提高酶的活性,提高酶的特异性 DDT(二硫苏糖醇):防止DNA二聚化,影响酶切结果 BSA(小牛血清蛋白):防止了酶的贴壁效应(可使酶变形),同时减少非特异性吸附,对酶有稳定和促进的作用。 酶切的反应温度?反应时间?中止酶切的方法? 答:反应温度大多为37℃,时间一般为2-3h。中止的方法是在65℃下反应20min。 什么星星活性?抑制其发生的办法? 答:在极端非标准条件下,限制酶能够切割与识别序列相似的序列,这个改变的特性称为星星活性。抑制星星活性的措施有很多,如减少酶的用量(可避免过分酶切)、减少甘油浓度、保证反应体系中唔有机溶剂或乙醇、提高离子强度到100-150mmol/L(如果不会抑制酶活性的话)和降低反应pH至pH7.0以及保证使用M g2+作为2价阳离子。 影响酶活性的因素有? 答:可分为内因和外因 外因是可预见的,可控的:反应条件、底物的纯度(是否有杂质、是否有盐离子和苯酚的污染)、何时加酶、操作是否恰当、反应提及的选择以及反应时间的长短等。 内因有:星星活性、底物甲基化和底物构象(线性还是超螺旋) 原核细胞有几种DNA聚合酶?其特点是什么? 答:DNA聚合酶I是单链多肽,可催化单链或者双链DNA的延长;DNA聚合酶II则与低分子脱氧核苷酸链的延长有关;DNA聚合酶III在细胞中存在的数目不多,是促进DNA链延长的主要酶。

高中生物基因工程试题

阶段质量检测(一)基因工程 (时间:45分钟,满分:100分) 一、选择题(每小题3分,共45分) 1 ?下列有关基因工程技术的叙述,正确的是() A. 重组DNA技术所用的工具酶是限制酶、连接酶和载体 B. 所有的限制酶都只能识别同一种特定的核苷酸序列 C. 只要是细菌中的质粒都可以直接作为基因工程中的载体 D. 载体必须具备的条件之一是有多个限制酶切割位点,以便与外源基因进行连接 2. (浙江高考)天然的玫瑰没有蓝色花,这是由于缺少控制蓝色色素合成的基因B,而 开蓝色花的矮牵牛中存在序列已知的基因B。现用基因工程技术培育蓝玫瑰,下列操作正确 的是() A. 提取矮牵牛蓝色花的mRNA经逆转录获得互补的DNA再扩增基因B B. 利用限制性核酸内切酶从开蓝色花矮牵牛的基因文库中获取基因B C. 利用DNA聚合酶将基因B与质粒连接后导入玫瑰细胞 D. 将基因B直接导入大肠杆菌,然后感染并转入玫瑰细胞 3. 日本下村修、美国沙尔菲和钱永健因在发现绿色荧光蛋白(GFP)等研究方面做出突出贡献,获得2008年度诺贝尔化学奖。GFP在紫外光的照射下会发出绿色荧光。依据GFP的特性,你认为该蛋白在生物工程中的应用价值是() A. 作为标记基因,研究基因的表达 B. 作为标记蛋白,研究细胞的转移 C. 注入肌肉细胞,繁殖发光小白鼠 D. 标记噬菌体外壳,示踪DNA路径 4. 下列有关质粒的叙述,正确的是() A. 质粒是广泛存在于细菌细胞中的一种颗粒状细胞器 B. 质粒是细菌细胞质中能自主复制的小型环状 DNA C. 质粒只有在侵入宿主细胞后,才能在宿主细胞内复制 D. 基因工程中常用的载体除了质粒外,还有核 DNA动植物病毒以及入噬菌体的衍生物

基因工程的诞生和发展

第一章基因工程概述 第一节基因工程的诞生和发展 一、基因 1.Mendel 的遗传因子阶段 Mendel . (1822-1884). 1856-1864 豌豆杂交实验。 1866 年发表论文,提出分离规律和独立分配规律 1900 年Mendel 遗传规律被重新发现遗传学的元年 Mendel 提出:生物的某种性状是由遗传因子负责传递的。是颗粒性的,体细胞内成双存在,生殖细胞内成 单存在。遗传因子是决定性状的抽象符号。 2.Morgan 的基因阶段 1909 年丹麦遗传学家Yohannsen (1859-1927)发表了“纯系学说”首先提出了“基因”的概念,代替了Mendel “遗传因子” 的概念。但没有提出基因的物质概念。 1910 年以后,Morgan . 等提出了基因的连锁遗传规律。说明了基因是在染色体上占有一定空间的实体。基因不再是抽象符号,被赋予物质内涵。 3.顺反子阶段 1957年,本泽尔(Seymour Benzer )以T4噬菌体为材料,在DNA分子水平上研究基因内部的精细结 构,提出了顺反子(cistron )概念:顺反子是1 个遗传功能单位,1 个顺反子决定1 条多肽链。4. 现代基因阶段 (1 )操纵子 启动基因+操纵基因+结构基因 (2 )跳跃基因 指DNA能在有机体的染色体组内从1个地方跳到另一个地方,它们能从1个位点切除,然后插入同一或不同染色体上的另一个位置。 (3 )断裂基因 1 个基因被间隔区分成不连续的若干区段,这种编码序列不连续的间断基因被称为断裂基因。 (4)假基因不能合成出功能蛋白质的失活基因。 (5)重叠基因不同基因的核苷酸序列有时是可以共用的即重叠的。 现代对基因的定义是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功 能单位。 二、基因工程的诞生 一般认为1973 年是基因工程诞生的元年 (S. Cohen 等获得了卡那霉素和四环素双抗性的转化子菌落) 理论上的三大发现和技术上的三大发明对于基因工程的诞生起到了决定性的作用。 (一)DNA是遗传物质被证实 1944 年,Avery . 利用肺炎双球菌转化实验 1944 年,美国洛克菲勒研究所的Oswald Avery 等公开发表了改进的肺炎双球菌实验结果。 (1)S型菌细胞提取物及其纯化的DNA都可使R型菌转变成S型菌; (2)经DNase处理的S型菌细胞提取物失去了转化作用。 ( 3)经胰蛋白酶处理的S 型菌细胞提取物仍有转化作用。 不仅证实了DNA是遗传物质,而且证明了DNA可以将一个细菌的性状转给另一个细菌,他的工

(整理)专题一基因工程.(最新整理)

专题一基因工程单元测试 A卷 一、选择题(共50分) 1.限制性内切酶的特点是( ) A.只能识别GAATTC序列 B.识别特定的核苷酸序列和具有特定的酶切位点 C.识别黏性末端 D.切割质粒DNA的标记基因 2.上海医学遗传研究所成功培育出第一头携带白蛋白的转基因牛,可以想象这头牛( ) A.发生了基因突变 B.发生了染色体变异 C.发生了基因重组 D.没发生可遗传的变异 3.“工程菌”是指( ) A.用物理或化学方法诱发菌类自身某些基因得到高效表达的菌类细胞株系 B.用遗传工程的方法,把相同种类不同株系的菌类通过杂交得到的新细胞株系 C.用基因工程的方法,使外源基因得到高效表达的菌类细胞株系 D.从自然界中选择出的能迅速增殖的菌类 4.基因工程技术也称为DNA重组技术,其实施必须具备的四个必要条件是( ) A.目的基因限制性内切酶运载体受体细胞 B.重组DNA RNA聚合酶内切酶连接酶 C.模板DNA信使RNA质粒受体细胞 D.工具酶目的基因运载体受体细胞 5.用DNA限制酶切割DNA时识别的核苷酸序列和切口是( ) A.一种限制酶只识别一种核苷酸序列,有专一性酶切位点 B.一种限制酶在DNA双链上识别的核苷酸序列不同 C.一种限制酶在DNA双链上识别的核苷酸序列相同,但酶切位点不同 D.一种限制酶在DNA双链上识别的核苷酸序列和酶切位点都不同 6.根据mRNA的信息推出并获取目的基因的方法是( ) A.用DNA探针测出目的基因 B.用mRNA探针测出目的基因 C.用mRNA反转录形成目的基因 D.用PCR技术扩增mRNA 7.在人类染色体DNA不表达的碱基对中,有一部分是串联重复的短序列,它们在个体之间具有显著的差异性,这种短序列可用于( ) A.生产基因工程药物 B.侦查罪犯 C.遗传病的产前诊断

基因工程的现状与发展趋势

题目:基因工程的现状与发展趋势专业:13食品科学与工程 学号:132701105 姓名:盛英奇 日期:2015/7/1

【摘要】从20世纪70 年代初发展起来的基因工程技术,经过40多年来的进步与发展,已成为生物技术的核心内容。生物学成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 【关键词】基因工程技术;应用;前景;现状 一、墓因工程的原理及研究内容 基因工程是人们在揭示生命之谜的过程中建立起来的。早在300多年前,人们就发现,世界上生物尽管种类繁多,千姿百态,但都是细胞(如肉眼看不见的细菌等微生物)或者是由细胞构成的(如现存的200多万种多细胞动植物)。人们还发现,生物有遗传和变异的特征,遗传保证了生物种类的延续不断,变异则赋予生物种的进化,保证生物种类对环境的适应。而生物的所有特性及遗传变异都是由生物体细胞内的遗传物质所决定的,这种遗传物质就是被科学家称之为脱氧核糖核酸(简称DNA)的大分子物质,一般位于生物的细胞核内。DNA是由许多核昔酸连接而成的高分子化合物,如把DNA比喻成长链条,核昔酸就是组成这链条的一个个环节。生物细胞核内的DNA分子是由两条成对的多核昔酸长链互相缠人类开始学会干预生物的变异,即通过杂交、筛选等方式改变生物物种的某些特性,使之有利于人类,如水稻、小麦等作物的育种,家禽家畜优良品系的培育等,它是通过动植物父、母本交配繁殖时,生殖细胞内DNA上相应性状基因互相间可能出现的交换来实现的,这种交换的概率是人们不能控制的,所以选种的过程较为缓慢,需几年乃至几十年的时间,而且亲缘关系相差较远的生物种之间很难杂交。而本世纪}o年代初诞生的基因工程,则是按照人类的需要,从某种生物体的基因组中,分离出带有目的基因(即所需基因)的DNA片段,运用重组DNA技术,对这些DNA片段进行体外操作,把不同来源的基因按照设计的蓝图,重新构成新的基因组(即重组体),再将重组DNA分子插入到原先没有这类DNA 片段的受体细胞(亦称宿主细胞)的DNA上,并使其不仅能“安家落户”,而且能“传种接代”,即能准确地把该外源基因的遗传特性在新的细胞(宿主细胞)里增殖和表达出来。就像一台机器上的零部件拆下来安装到另一台机器上。在生物体中,这种生命零件就是基因。因为用的是工程技术的方法原理,故称基因工程,亦叫遗传工程。用这种方法所形成的杂种DNA分子与神话中的那种狮首、羊身、

生物选修三基因工程习题(打印)

生物选修3专题一基因工程习题 一.单选题: 1.下列有关基因工程的叙述,正确的是:( ) A .DNA 连接酶的作用是将两个黏性末端的碱基连接起来 B .目的基因导入受体细胞后,受体细胞即发生基因突变 C .目的基因与运载体结合的过程发生在细胞外 D .常使用的运载体有大肠杆菌、噬菌体和动植物病毒等 2.下列关于基因工程的叙述,正确的是:( ) A .基因工程经常以抗菌素抗性基因为目的基因 B .细菌质粒是基因工程常用的运载体 C .通常用一种限制性内切酶处理含目的基因的DNA ,用另一种处理运载体DNA D .为育成抗除草剂的作物新品种,导入抗除草剂基因时只能以受精卵为受体 3.下列四条DNA 分子,彼此间具有粘性末端的一组 ( ) ① ② ③ ④ A .①② B .②③ C .③④ D .②④ 4.下面图中a 、b 、c 、d 代表的结构正确的是:( ) A .a —质粒RNA B .b —限制性外切酶 C .c —RNA 聚合酶 D .d —外源基因 5.目的基因与运载体结合所需的条件是:( ) ①同一种限制酶 ②具有标记基因的质粒 ③RNA 聚合酶 ④目的基因 ⑤DNA 连接酶 ⑥四种脱氧核苷酸 ⑦ATP A .①②③④⑤⑥⑦ B .①②④⑤⑥⑦ C .①②③④⑤⑦ D .①②④⑤⑦ 6.科学家用纳米技术制造出一种“生物导弹”,可以携带DNA 分子。把它注射入组织中,可以通过细胞的内吞作用的方式进入细胞内,DNA 被释放出来,进入到细胞核内,最终整合到细胞染色体中,成为细胞基因组的一部分,DNA 整合到细胞染色体中的过程,属于( ) A .基因突变 B .基因重组 C .基因互换 D .染色体变异 7.人们常选用的细菌质粒分子往往带有一个抗菌素抗性基因,该抗性基因的主要作用是 A . 提高受体细胞在自然环境中的耐药性 ( ) B. 有利于对目的基因是否导入进行检测 C. 增加质粒分子的分子量 D .便于与外源基因连接 8.下列不可作为基因工程中的标记基因的是:( ) A .抗性基因 B .发光基因 C .产物具有颜色反应的基因 D .贮藏蛋白的基因 9.如果科学家通过转基因工程,成功地把一名女性血友病患者的造血干细胞进行改造,使其凝血功能恢复正常。那么,她后来所生的儿子中:( ) A .全部正常 B .一半正常 C .全部有病 D .不能确定 10.下表关于基因工程中有关基因操作的名词及对应的内容,正确的组合是:( ) 11.1987年,美国科学家将萤火虫的萤光素基因转入烟草植物细胞,获得高水平的表达。长成的植物通体光亮,堪称自然界的奇迹。这一研究成果表明:( ) ①萤火虫与烟草植物的DNA 结构基本相同 ②萤火虫与烟草植物共用一套遗传密码 ③烟草植物体内合成了萤光素 ④萤火虫和烟草植物合成蛋白质的方式基本相同 A .①和③ B .②和③ C .①和④ D .①②③④ 12.人们常用DNA 进行亲子鉴定。其原理是:从被测试者的血滴或口腔上皮提取DNA ,用限制性内切酶将DNA 样本切成特定的小片段,放进凝胶内,用电泳推动DNA 小片段分离,再使用特别的DNA “探针”去寻找特定的目的基因。DNA “探针”与相应的基因凝聚在一起,然后,利用特别的染料在X 光下,便会显示由DNA 探针凝聚于一起的黑色条码。被测试者这种肉眼可见的条码很特别,一半与母亲的吻合,一半与父亲的吻合。反复几次过程,每一种探针用于寻找DNA 的不同部位形成独特的条码,用几组不同的探针,可得到超过99.9%的父系分辨率。请问,DNA “探针”是指:( ) A .某一个完整的目的基因 B .目的基因片段的特定DNA C .与目的基因相同的特定双链DNA D .与目的基因互补的特定单链DNA 13.2003年我国科学工作者用基因工程迅速研制出“非典”诊断盒。其作用及机理是:( ) A .治疗“非典”,利用的是抗原抗体反应 B .诊断“非典”,利用的是DNA 分子杂交原理 C .诊断“非典”,利用的是抗原抗体反应 D .治疗“非典”,利用的是DNA 分子杂交原理 T A G G C C A T T A C C G G T A

《基因工程的概述》word版

第一章基因工程 第一节基因工程的概述 【学习目标】 1、简述基因工程的概念含义,简述基因工程的诞生历程,认同基因工程的诞生和发展离不开理 论突破和技术创新 2、简述基因工程的原理,说出DNA重组技术的基本工具及其作用、特点,简述基因工程基本操 作程序,以及各步骤的一般方法、原理,模拟重组DNA分子的操作过程 【课前预习】 1、基因工程是指按照人们的愿望,进行严格的设计,在通过人工和等方法, 对生物的基因进行和,然后导入并使重组基因在中表达,产生人类需要的基因产物的技术。因而又叫DNA重组技术。基因工程是在水平上操作、改变生物遗传性状的技术,包括基因的、以及在受体细胞内的和过程。 2、为基因工程的创立作出了重要的理 论铺垫,而的发现,则直接促进了基因工程的诞生。 1973年,美国科学家将不同来源的两种DNA分子体外重组,并首次实现了在大肠杆菌中的表达。 3、“分子手术刀”:。其作用的特点是: 其产生的DNA末端有两种形式:和。 “分子针线”将双链DNA片段缝合起来,恢复被限制酶切开的两个核苷酸之间的。 4、“运载工具”。通常利用质粒作为载体。作为载体必须具备以下条 件:载体DNA必需有一个或多个的切割位点;载体DNA必需能在受体细胞中;载体DNA必需带有特殊的基因。 5、基因工程的基本操作步骤包括:①②、 ③、④ 6、PCR是一项在生物复制特定DNA片段的核酸合成技术。目的基因受热形 成,与结合,在的作用下延伸形成DNA。 【共同探究】

【思考题1】(10全国2)下列叙述符合基因工程概念的是 A.B淋巴细胞与肿瘤细胞融合,杂交瘤细胞中含有B淋巴细胞中的抗体基因 B.将人的干扰素基因重组到质粒后导入大肠杆菌,获得能产生人干扰素的菌株 C.用紫外线照射青霉菌,使其DNA发生改变,通过筛选获得青霉素高产菌株 D.自然界中天然存在的噬菌体自行感染细菌后其DNA整合到细菌DNA上 (一)DNA重组技术的基本工具 1、“分子手术刀”——限制性核酸内切酶 限制性核酸内切酶能将外来的DNA切断,即能够限制异源DNA的侵入并使之失去活力,但对自己的DNA却无损害作用,这样可以保护细胞原有的遗传信息。它在切割DNA时,特异性识别核苷酸序列,即只能在一定的DNA序列上进行切割,这种能被特意性识别的切割部位都具有回文序列。 这种酶主要在原核生物中存在,有何意义?这给我们在基因工程中有什么启发? 【思考题2】下列关于限制酶的说法正确的是 A、限制酶广泛存在于各种生物中,但微生物中很少 B、一种限制酶只能识别一种特定的核苷酸序列 C、不同的限制酶切割DNA后都会形成黏性末端 D、限制酶的作用部位是特定核苷酸形成的氢键 【思考题3】(10浙江卷)在用基因工程技术构建抗除草剂的转基因烟草过程中,下列操作错误的是 A.用限制性核酸内切酶切割烟草茶叶病毒的核酸 B.用DNA连接酶连接经切割的抗除草剂基因和载体 C.将重组DNA分子导入原生质体 D. 用含除草剂的培养基筛选转基因烟草细胞 【思考题4】(07广东)现有一长度为1000碱基对(by)的DNA分子,用限制性核酸内切酶Eco R1酶切后得到的DNA分子仍是1000 by,用Kpn1单独酶切得到400 by和600 by两种长度的DNA分子,用EcoRI,Kpnl同时酶切后得到200 by和600 by两种长度的DNA分子。该DNA分子的酶切图谱正确的是D

基因工程知识点总结归纳(更新版)

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。 9、S1核酸酶:特异性降解单链DNA或RNA。

基因工程专题测试题.docx

扬州大学附属中学东部分校2015 寒假高二生物选修 《基因工程》专题测试题 班级学号姓名 一、选择题 1.有关蛋白质合成的叙述,不正确的是 A.终止密码子不编码氨基酸 B.每种 tRNA 只运转一种氨基酸 C. tRNA 的反密码子携带了氨基酸序列的遗传信息 D.核糖体可在mRNA上移动 2.酶 A、 B、 C 是大肠杆菌的三种酶,每种酶只能催化下列反应链中的一个步骤,其中任意一种酶的缺失均能导致该菌因缺少化合物丁而不能在基本培养基上生长。 现有三种营养缺陷型突变体,在添加不同化合物的基本培养基上的生长情况如下表: 由上可知:酶A、 B、 C 在该反应链中的作用顺序依次是 A.酶 A、酶 B、酶 C B.酶C.酶 B、酶 C、酶 A D.酶A、酶C、 酶 C、酶B、 酶 B A 3.利用外源基因在受体细胞中表达,可生产人类所需要的产品。下列各项中能说明目的 基因完成了在受体细胞中表达的是 A.棉花二倍体细胞中检测到细菌的抗虫基因 B.大肠杆菌中检测到人胰岛素基因及其mRNA C.山羊乳腺细胞中检测到人生长激素DNA序列 D.酵母菌细胞中提取到人干扰素蛋白 4.已知某种限制性内切酶在一线性DNA分子上有 3 个酶切位点,如图中箭头所指,如果该 线性 DNA分子在 3 个酶切位点上都被该酶切断,则会产生a、b、 c、 d 四种不同长度的 DNA 片段。现在多个上述线性DNA分子,若在每个DNA 分子上至少有 1 个酶切位点被该酶切断,则从理论 上讲,经该酶切后,这些线性DNA分子最多能产生 长度不同的 DNA片段种类数是 线性 DNA分子的酶切示意A. 3B. 4C.9D. 12 5.现有一长度为 1000 碱基对( bp)的 DNA分子,用限制性核酸内切酶EcoRI 酶切后得到的DNA分子仍是 1000bp,用 KpnI 单独酶切得到 400bp 和 600bp 两种长度的 DNA分子,用 EcoRI 、KpnI 同时酶切后得到 200bp 和 600bp 两种长度的 DNA分子。该 DNA分子的酶切图谱正确的 是 6.已知基因表达载体中的复制原点处比较容易打开双链,可以推断该处 A. A+T的比例较高B.C+G的比例较高 C.位于基因的首端,是RNA聚合酶识别和结合的部位 D.位于基因的尾端,是转录停止的信号 7.下列有关基因工程中限制性内切酶的描述,错误的是 A.在特定的切点上切割B.活性受温度的影响 C.能识别和切割RNA D.可从原核生物中提取 8.下列有关基因结构的叙述,正确的是 A. . 真核细胞的基因中,编码区也含有不能编码蛋白质的序列 B.原核细胞的基因中,编码区的外显子是连续的 C.非编码区是两个基因之间没有遗传效应的区段 D.终止密码子的作用是阻碍RNA聚合酶的移动

基因工程期末考试重点知识整理教学文案

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg 及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)

第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ

相关文档
最新文档