中考数学复习课件11:几何型综合问题
2019中考数学专题复习 几何变换几何综合题 解析版

几何变换几何综合题1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DC所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为;∠DFE度数为;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为;②线段AE,CD之间的数量关系为.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=;16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.17.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.18.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.19.感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).解析一.解答题(共14小题)1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线OE时,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.【解答】解:(1)如图1,∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为:AD=BE.(2)AD=BE成立,∠APE不随着∠ACB的大小发生变化,始终是60°.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴∠CEB=∠CAD;如图2,设BE与AC交于Q,又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.(3)由(2)同理可得∠CPE=∠EAC=60°;如图3,在PE上截取PH=PC,连接HC,则△PCH为等边三角形,∴HC=PC,∠CHP=60°,∴∠CHE=120°;又∵∠APE=∠CPE=60°,∴∠CPA=120°,∴∠CPA=∠CHE;在△CPA和△CHE中,,∴△CPA≌△CHE(AAS),∴AP=EH,∴PB+PC+PA=PB+PH+EH=BE.若∠ABC=60°,AB=6,BC=4,则PA+PB+PC=2.理由:如图,过D作DG⊥AB,交AB的延长线于G,当∠ABC=60°=∠CBD时,将DBG=60°,∴∠BDG=30°,∴BG=BD=2,AG=6+2=8,DG=2,∴Rt△ADG中,AD==2,∴BE=2,即PA+PB+PC的值为2.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为BE=AD;∠DFE 度数为60°;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是45°;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.【解答】解:(1)∵△ABC和△ECD是等边△,∴∠ACB=∠DCE=60°,∴∠BCD=60°,∴△ACD是△BCE顺时针旋转60°来的,∴△ACD≌△BCE,∴BE=AD,∴∠CAD=∠CBE,∴∠DFE=∠CAD+∠CEB=∠CBE+∠CEF=∠ACB=60°;故答案为BE=AD,∠DFE=60°;(2)连接EM,则△CEM是等腰直角三角形,∴CE=CM,∵∠ACB=45°=∠ECM,∴∠BCE=∠ACM,∵BC=AC,∴==,∴△BCE∽△ACM,∴==,∠CBE=∠CAM,∵∠BFM=∠BAF+∠ABF=∠BAC+∠CAM+∠ABF=90°+∠CBE+∠ABF=90°+∠ABC=135°,∴∠MFE=45°;故答案为,45°;(3)取BC中点F,取CD中点M,连接MN,AF,NF,EM,∴NF,NM是△BCD的中位线,∴NF=CD=EM,NM=BC=AF,∵NF∥CD,NM∥BC,∴四边形NFCM是平行四边形,∴∠NFC=∠NMC,∵∠AFC=90°=∠EMC,∴∠AFN=∠EMN,∵在△AFN和△NME中,,∴△AFN≌△NME,(SAS)∴AN=EN,∠NAF=∠ENM,∵MN∥BC,AF⊥BC,∴MN⊥AF,∴∠NAF+∠ANM=90°,∴∠ENM+∠ANM=90°,即∠ANE=90°,∴AN⊥EN.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.【解答】解:(1)AD=BE,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD,∴BE=AD;(2)不变,∠AMB=60°,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BEC≌△ADC,∴∠EBC=∠DAC,∵∠EBC+∠ABM=60°∴∠MAC+∠ABM=60°,∴∠AMB=180°﹣(∠ABM+∠BAM)=60°.(3)如图3,∵当B、C、D三点在同一条直线上,∴∠ACB=∠DCE=60°,∴∠ACE=60°,∴∠BCE=120°,∵△ABC与△CDE是共顶点的等边三角形,且BC=CD,∴BC=CE,∴∠CBE=∠BEC=30°,∵∠BCF=60°,∴∠BFC=90°,∵BC=EC,∴BE=2BF,在Rt△BFC中,∠BCF=30°,∴BF=BC,∴BE=2BF=BC,∵BE=BM+ME,∴BM+ME=BC.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.【解答】解:(1)猜想:AD=BE,证明:∵△ABC和△CDE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD∠BCD,即∠ACD=BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如下图1所示,当△CDE旋转到BC与C到DE到高在同一条直线上时,△BDE面积最大,此时,DE边上的高为∴△BDE面积最大值为.(3)①如图3,∵DE∥AB,∴△CDE∽△CAB,∴∵△CD'E'由△CDE绕C点旋转得到∴CE'=CE,CD'=CD,∠DCE=∠D'CE'=60°∴,则又∵∠DCE+∠BCD'=∠D'CE'+∠BCD',即∠ACD'=∠BCE'∴△ACD'∽△BCE'∴由△ACD'∽△BCE'得∠CBE'=∠CAF∴∠BFA=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠ABC+∠FAC)=180°﹣120°=60°②如图4所示,当D'与点O重合时,△AOC的面积最大过点O作OG⊥AC于G,∴∴△AOC的面积的最大值为.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°;②请直接写出点D到PC的距离为或.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=,即点D到PC的距离为:或.故答案为:或.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为AE=BD,AE、BD所在直线的位置关系为AE⊥BD;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为或7﹣3.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC﹣∠CDE=135°﹣45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.(3)情形1:如图3﹣1中,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△EAC≌△BAD(SAS),∴BD=CE.∵AE=AB=7,∴BE==7,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.情形2:如图3﹣2中,作AE⊥AB交BC的延长线于E,则△ABE是等腰直角三角形,同法可证:△EAC≌△BAD(SAS),∴BD=CE,∵AB=AE=7,∴BE=7,∴EC=BE=CB=7﹣3,综上所述,BD的长为或7﹣3.故答案为或7﹣3.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=120°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.故答案为:120.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=15﹣7=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB===17;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=4,∴∠BED=∠BEC﹣∠PEC=90°,∵∠APD=30°,∴∠DPC=150°﹣30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=8+4=12,在Rt△BDE中,,即BD的长为13.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为60°;②线段AE,CD之间的数量关系为AE=CD.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.【解答】解:(1)①∵△ACB和△DBE均为等边三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=60°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠BEA.∵△DBE为等边三角形,∴∠CDB=∠BED=60°.故答案为:60°.②∵△BCD≌△BAE,∴CD=AE,故答案为:CD=AE,(2))∠CDB=45°,CD=AD+2BF理由:∵△ACB和△DBE均为等腰直角三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=90°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠AEB,CD=AE∵BF是△DBE均为等腰直角三角形,∴∠CDB=∠AEB=45,DE=2BF,∴CD=AE=AD+DE=AD+2BF.∴∠CDB=45°,CD=AD+2BF;(3)①如图,连接EB,ED,作BH⊥CE,BP⊥BE,∵四边形ABCD是正方形,∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,∴CD=2,∴AC=2,∵AE=1,∴CE=,∵A,E,B,C四点共圆,∴∠BCE=∠CAB=45°,∴△PBE是等腰直角三角形,∵△ABC是等腰直角三角形,且C,E,P共线,BH⊥CE,∴由(2)的结论可得,CE=AE+2BH,∴=2BH+1,∴BH=.②同①的方法可得,CE=2BH﹣AE,∴=2BH﹣1,∴BH=,∴点B到CE的距离为或.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE;(2)①∠AEB=90°证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°;②延长BE交AC的延长线于点G,由①可知∠CAD=∠CBE,∠AEB=90°,在△ACF和△BCG中,,∴△ACF≌△BCG,∴AF=BG,∵∠CAF=∠BAF,∠AEB=90°,∴E是BG的中点,∵BE=2,∴BG=4,∴AF=4,∴S==4.△ABF12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=2,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;②由①知,△CDA≌△CEB,∴AD=BE;故答案为:60°,AD=BE(2)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;结论:AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.(3)如图3,∵点P到点B的距离是3,∴点P是以点B为圆心,3为半径的圆,当B、D、A三点在同一条直线上时,BD有最小值,∵∠ACB=90°,∠DCP=90°,∴∠ACD=∠BCP在△ACD与△BCP中,,∴△ACD≌△BCP(SAS),∴∠PBC=∠A=45°,AD=BP=3,在Rt△ABC中,AC=BC=5,∴AB=5∴BD=AB﹣AD=5﹣3此时∠PBC=45°时,BD的最小值为5﹣3,同理可得:如图4,当B、D、A三点在同一条直线上时,BD的最大值为:AB+AD=AB+BP=5+3,14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).【解答】解:(1)如图1中,∵AD′∥CE′,∴∠AD′C=∠E′CD′=90°,∵AC=2CD′,∴∠CAD′=30°,∴∠ACD′=90°﹣∠CAD′=60°,∴α=60°.(2)如图2中,作CK⊥BE′于K.∵AC=BC==2,∴CD′=CE′=,∵△CD′E′是等腰直角三角形,CD′=CE′=,∴D′E′=2,∵CK⊥D′E′,∴KD′=E′K,∴CK=D′E′=1,∴sin∠CBE′===.(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.∵AP=AD′+PD′=+,∵cos∠PAB==,∴AH=2+,∴点P横坐标的最大值为.如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB于H.根据对称性可知OH=,∴点P横坐标的最小值为﹣,∴点P横坐标的取值范围为﹣≤m≤.15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=6;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=4或16;【分析】(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.理由勾股定理可得DE.②如图2中,结论:EC∥PA.只要证明PA⊥BE,EC⊥BE即可解决问题.(3)分两种情形分别求解即可解决问题.【解答】解:(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.在Rt△ADE中,∵∠D=90°,AE=AB=10,AD=8,∴DE===6,故答案为6.②如图2中,结论:EC∥PA.理由:由翻折不变性可知:AE=AB,PE=PB,∴PA垂直平分线段BE,即PA⊥BE,∵PB=PC=PE,∴∠BEC=90°,∴EC⊥BE,∴EC∥PA.(2)①如图3﹣1中,当点Q在线段CD上时,设DQ=QD′=x.在Rt△AD′B中,∵AD′=AD=8,AB=10,∠AD′B=90°,∴BD′==6,在Rt△BQC中,∵CQ2+BC2=BQ2,∴(10﹣x)2+82=(x+6)2,∴x=4,∴DQ=4.②如图3﹣2中,当点Q在线段DC的延长线上时,∵DQ∥AB,∴∠DQA=∠QAB,∵∠DQA=∠AQB,∴∠QAB=∠AQB,∴AB=BQ=10,在Rt△BCQ中,∵CQ==6,∴DQ=DC+CQ=16,综上所述,满足条件的DQ的值为4或16.故答案为4和16.16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长。
中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:⼏何综合题(含答案解析)⼏何综合题1.已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC ∠=?①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=?,45ACB ∠=?;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=?,AD=2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=?,DE=1,可得EC =1. ∴AC 31=.Rt △ACH 中,由30DAC ∠=?,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明:延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正⽅形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN .(1)如图1,当045α?<②⽤等式表⽰NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α?<CDBA图1备⽤图C DBAM答案:(1)①补全的图形如图7所⽰.(2)当45°<α<90°时,=1802NCE BAM ∠?-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵四边形ABCD 为正⽅形,∴∠BAD=∠ADC=∠BCD=90°,直线BD为正⽅形ABCD的对称轴,点A与点C关于直线BD对称.∵射线AM与线段BD交于点M,∴∠BAM=∠BCM=α.-.∴∠1=∠2=90α∵CE⊥AM,∴∠CEH=90°,∠3+∠5=90°.⼜∵∠1+∠4=90°,∠4=∠5,∴∠1=∠3.-.∴∠3=∠2=90α∵点N与点M关于直线CE对称,-∠.∴∠NCE=∠MCE=∠2+∠3=1802BAM(313. 如图,已知60AOB ∠=?,点P 为射线OA 上的⼀个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满⾜DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在⼀个定点M ,证明你的判断.答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o,∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o∴cos30DF PD =??=∴2DE DF ==(2)当M 点在射线OA 上且满⾜OM =DMME的值不变,始终为1.理由如下:当点P 与点M 不重合时,延长EP 到K 使得PK PD =.∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠. ∴KPMDPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵3,60MO MOL =∠=o,∴sin 603ML MO =?=o.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK ,∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MKME =.∴ME MKMD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成⽴.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上⼀动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中⼼,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的⼤⼩(⽤含α的式⼦表⽰);(3)⽤等式表⽰线段AE 、AF 与CG 之间的数量关系,并证明.答案:(1)补全的图形如图所⽰.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠?= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,⽤等式表⽰线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;ABCE(2)45°;(3)结论:AM CN.证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=α.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°-∠ACD)=12(180°-90°-α-α)=45°-α.∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM AG.∴AM CN.6.在正⽅形ABCD中,M是BC边上⼀点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;答案:(1)补全图形略(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ ,∴AQ AP =,90QAP ∠=°.∵四边形ABCD 是正⽅形,∴AD AB =,90DAB ∠=°.∴12∠=∠.∴△ADQ ≌△ABP .∴DQ BP =,3Q ∠=∠.∵在Rt QAP ?中,90Q QPA ∠+∠=°,∴390BPD QPA ∠=∠+∠=°.∵在Rt BPD ?中,222DP BP BD +=,⼜∵DQ BP =,222BD AB =,∴2222DP DQ AB +=.②BP AB =.7.如图,在等腰直⾓△ABC 中,∠CAB=90°,F 是AB 边上⼀点,作射线CF ,过点B 作BG ⊥C F 于点G ,连接AG .(1)求证:∠ABG =∠ACF ;(2)⽤等式表⽰线段C G ,AG ,BG 之间∵∠CAB=90°. ∵ BG ⊥CF 于点G ,∴∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH ,∵△ABC 是等腰直⾓三⾓形,∴∠CAB =90°,AB =AC . ∵∠ABG =∠ACH . ∴△ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正⽅形ABCD 中,E 是BC 边上⼀点,连接AE ,延长CB ⾄点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对⾓线AC 于点P ,连接AF .(1)依题意补全图形;(2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所⽰.(2)证明∵正⽅形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°,∴∠PAH =45°-∠BAE .∵FH ⊥AE .EDCBAM H PDAC∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.(3)判断:FM=PN.证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正⽅形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴FP=MN.∴FM=PN.9.如图所⽰,点P位于等边ABC△的内部,且∠ACP=∠CBP.(1) ∠BPC的度数为________°;(2) 延长BP⾄点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的⾯积.M HPD AC解:(1)120°. ----------------------------2分(2)①∵如图1所⽰.②在等边ABC △中,60ACB ∠=?,∴60.ACP BCP ∠+∠=? ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=?∴()180120.BPC CBP BCP ∠=?-∠+∠=?∴18060.CPD BPC ∠=?-∠=? ∵=PD PC ,∴CDP △为等边三⾓形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=?,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =??∠=∠??=?,,,∴()SAS ACD BCP △≌△. ∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=?,∴=60.ADB CDB ∠∠=?∴=60.ADB CDB ∠∠=?D∴=BM BN BD == ⼜由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =22==-----------------------------------7分10.如图1,在等边三⾓形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (⽤含α的式⼦表⽰);②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①3-. ………………………………………………………………………… 1分② 0≤QL.……………………………………………………………… 2分(2)设直线+33y x =与x 轴,y 轴的交点分别为点A ,点B,可得A ,(0,3)B .∴OA =3OB =,30OAB ∠=?.由0≤Q①如图13,当⊙D 与x 轴相切时,相应的圆⼼1D 满⾜题意,其横坐标取到最⼤值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO=.∵⊙D 的半径为1,∴ 111D E =.∴1AE =11OE OA AE =-=.∴1D x =②如图14,当⊙D与直线y =相切时,相应的圆⼼2D 满⾜题意,其横坐标取到最⼩值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的交点为F .可得60AOF ∠=?,OF ⊥AB .则9cos 2AF OA OAF =?∠==.图13∵⊙D 的半径为1,∴ 21D F =.∴2272AD AF D F =-=.=?∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是;(2)若DBC α∠=,求FEC ∠的⼤⼩; (⽤α的式⼦表⽰)(3)⽤等式表⽰线段,BG GF 和FA 之间的数量关系,并证明.GFEDCBA图15(1)DE DF =;(2)解:连接DE ,DF ,∵△ABC 是等边三⾓形,∴60C ∠=?. ∵DBC α∠=,∴120BDC α∠=?-.∴120BDF BDC α∠=∠=?-,DF DC =. ∴1202FDC α∠=?+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆⼼,DC 为半径的圆上.∴1602FEC FDC ∠=∠=?+α.(3)BG GF FA =+.理由如下:连接BF ,延长AF ,BD 交于点H ,∵△ABC 是等边三⾓形,∴60ABC BAC ∠=∠=?,AB BC CA ==. ∵点C 与点F 关于BD 对称,∴BF BC =,FBD CBD ∠=∠.GFEDCBA∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=,则602ABF α∠=?-. ∴60BAF α∠=?+. ∴FAD α∠=.∴FAD DBC ∠=∠.由(2)知60FEC α∠=?+. ∴60BGE FEC DBC ∠=∠-∠=?. ∴120FGB ∠=?,60FGD ∠=?.四边形AFGB 中,360120AFE FAB ABG FGB ∠=?-∠-∠-∠=?. ∴60HFG ∠=?.∴△FGH 是等边三⾓形. ∴FH FG =,60H ∠=?. ∵CD CE =,∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠??∠=∠??=?∴△△AHD BGE ?. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.HGFEDCBA12.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)⽤等式表⽰线段CD和CE之间的数量关系,并证明.解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90,°,M是BC的中点,AB AC BAC=∠=∴∠BAD=∠CAD=45°.∴△BAD≌△CAD. ………………………………2分∴∠DBA=∠DCA,BD = CD.∵CD=DF,∴B D=DF. ………………………………………3分∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA =180°,∴∠DCA+∠DFA =180°.∴∠BAC+∠CDF =180°.∴∠CDF =90°. ………………………………………4分21CD. ……………………………………5分(3)CE=)证明:∵90∠=°,EAD∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分∴DF =EF .由②可知,CF. …………………………7分∴CE=)1C D .13.如图,正⽅形ABCD 中,点E 是BC 边上的⼀个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对⾓线BD 于点G ,连接AG .(1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .∵四边形ABCD 是正⽅形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°,∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF ,A BC ED∴AE=AF ,∠FAE =90°.∴∠1=∠2.∴△FDA ≌△EBA . …………………3分∴∠FDA =∠EBA =90°,FD=BE .∵∠ADC =90°,∴∠FDA +∠ADC =180°。
课件中考数学二轮复习_利用一元二次方程解决几何问题课件

2.列方程解应用题的一般步骤.
活学巧记 列方程解应用题,
审设列解和验答;
审题弄清已未知,
设元直间两办法;
等量关系列方程,
解方程时守章法;
检验准且合题意,
问求同一才作答.
情景引入
1.李明准备进行如下操作实验:把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
如何列一元二次方程解决图形类的应用题呢? 根据几何问题中的数量关系列一元二次方程并求解.
解:设出发后x s时,S ∆MON=1/12 S菱形ABCD. 已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3cm DN=x ²cm.
分析:利用正方形的性质,结合勾股定理列方程,据题意,画图如图所示, (2)在运动过程中,△PBQ的面积能否等于矩形ABCD的面积的四分之一?若能,求出运动的时间;
动点M从点A出发沿AC方向以每秒2cm的速度做匀速直线运动,动点N从点B 出发沿BD方向以每秒1cm的速度做匀速直线运动,若M,N同时出发,问出发后几秒时,△MON的面积为菱形
ABCD面积的1/12.
自的位置. 解得x₁=-10(舍去),x₂=4
某村计划建造如图的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m的通道。
拓展探究
如围,菱形ABCD中AC, BD交于点0.4C=8 cm.BD=6cm.动点M从点A出发沿AC方向以 每秒2cm的速度做匀速直线运动,动点N从点B 出发沿BD方向以每秒1cm的速度做匀速 直线运动,若M,N同时出发,问出发后几秒时,△MON的面积为菱形ABCD面积的1/12.
2013届北京市中考数学二轮专题突破复习课件几何综合题

专题七┃ 京考解读
解: (1)线段 PG 与 PC 的位置关系是 PG PG⊥PC; = 3. PC (2)猜想:(1)中的结论没有发生变化. 证明:如图,延长 GP 交 AD 于点 H,联结 CH、CG. ∵P 是线段 DF 的中点,∴FP=DP. 由题意可知 AD∥FG. ∴∠GFP=∠HDP. ∵∠GPF=∠HPD, ∴△GFP≌△HDP. ∴GP=HP,GF=HD. ∵四边形 ABCD 是菱形, ∴CD=CB, ∠HDC=∠ABC=60°.
7分 旋转变换、对称变换、构造全等三角形
专题七┃ 京考解读
京考解读与指导
► 热考一 阅读探究型问题
例 1 请阅读下列材料: 问题:如图①,在菱形 ABCD 和菱形 BEFG 中,点 A,B,E 在同一条直线上,P 是线段 DF 的中点,联结 PG,PC.若∠ABC= PG ∠BEF=60°,探究 PG 与 PC 的位置关系及 的值. PC 小聪同学的思路是:延长 GP 交 DC 于点 H,构造全等三角形, 经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题: PG (1)写出上面问题中线段 PG 与 PC 的位置关系及 的值; PC
专题七┃ 京考解读
图形变化问题的探究,关键是把握在点或图形运动过程 中或是几何图形背景变换过程中始终不变的几何量或性质, 对于变化的量要分析它的运动状态, 分析是否需要分类讨论, 分析它们和不动量之间可能有什么关系, 如何建立这种关系.题
例 3 问题: 已知△ABC 中, ∠BAC=2∠ACB, D 是△ABC 点 内的一点, AD=CD, 且 BD=BA.探究∠DBC 与∠ABC 度数的比 值. 请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以 证明. (1) 当∠BAC=90°时,依问题中的条件补全图形.观察图 形,AB 与 AC 的数量关系为________;当推出∠DAC=15°时, 可进一步可推出∠DBC 的度数为________;可得到∠DBC 与 ∠ABC 度数的比值为________;
中考数学复习讲义课件 专题8 几何综合题

33;
图2
①解:四边形 CDEF 是正方形. 理由:∵DM 平分∠CDE,∠CDE=90°, ∴∠CDM=∠EDM=45°. ∵CF∥DE, ∴∠CFD=∠EDM=45°=∠CDM. ∴CF=CD=ED. ∴四边形 CDEF 是菱形. 又∠CDE=90°,∴四边形 CDEF 是正方形.
②证明:由(1)知,∠ADC=2∠B=60°,∠CGD=60°,BD=DE. ∴∠BDE=30°,∠BGE=60°. ∴∠DBE=∠DEB=75°.∴∠EBG=45°. ∵∠ABC=90°-∠A=30°=∠GDB,∴DG=BG. 由①知,∠CFD=∠CDF=45°,∠DCF=90°,∠FCH=60°. ∴∠BGE=∠FCH,∠EBG=∠CFD.∴△BEG∽△FHC.∴FBHE=BFGC. ∵DG=BG,CD=CF,∴FBHE=DCDG=tan30°= 33.
专题8 几何综合题
1
考法透析
2
考法示例
考法透析
几何知识是初中数学的重要内容,能培养学生逻辑推理、演绎推理的能 力.几何综合题的考查既能反映学生对几何知识的理解和掌握,更能反映 学生观察、思考、推理的能力.解决这类题的方法要旨:(1)由条件入手, 反复思考由每一个条件能得到什么样的结论;(2)数形结合,通过观察、分 析、概括、推理、判断等一系列探究活动,确定要求的条件和结论,然后 选择适当的方法进行解答.在平时的复习中,应加强对此类题的训练,熟 练掌握其解题方法技巧.
2
m =
6m
6+ 4
2.
即 sin∠EBG=
6+ 4
2.
3.(2021·岳阳)如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,点 D 为 AB 的中点,连接 CD,将线段 CD 绕点 D 顺时针旋转 α(60°<α<120°)得到 线段 ED,且 ED 交线段 BC 于点 G,∠CDE 的平分线 DM 交 BC 于点 H.
2023年九年级中考数学复习++几何图形动点与函数图像综合讲义

几何图形动点与函数图像综合考向一判断函数图像(1)面积问题:①函数类型:与面积相关的量如果有一个变化的量为一次函数,如果有两个变化的量为二次函数;②节点、自变量取值范围及函数值;③函数的增减性等(2)线段长度问题:①根据相似性质对应边成比例或面积公式等确定函数关系式;②节点、自变量取值范围及函数值;③函数的增减性等1.如图,在Rt △ABC中,△C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC→ CB→ BA运动,最终回到A点。
设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()2.如图,点E、F、G、H是正方形ABCD四条边(不含端点)上的点,DE=AF=BG=CH。
设线段DE的长为x cm,四边形EFGH的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是()3.如图,菱形ABCD的边长为5cm,sinA=,点P从点A出发,以1cm/s的速度沿折线AB→BC→CD运动,到达点D停止;点Q同时从点A出发,以1cm/s的速度沿AD运动,到达点D停止.设点P运动x(s)时,△APQ的面积为y(cm2),则能够反映y与x之间函数关系的图象是()A B C D4.如图,在菱形ABCD中,△B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x 秒.则下列图象能大致反映y与x之间函数关系的是()A B C D5.如图,在等边三角形ABC中,BC=4,在Rt△DEF中,△EDF=90°,△F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E 重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()6.如图,在四边形ABCD中,AD△BC,△A=45°,△C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以cm/s的速度沿AB向终点B运动,点N以2cm/s的速度沿折线AD﹣DC向终点C运动.设点N的运动时间为ts,△AMN的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.7.如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F在线段DA的延长线上,且AF=AE,连接ED,将ED绕点E顺时针旋转90°得到EG,连接EF,FB,BG.设AE=x,四边形EFBG的面积为y,下列图象能正确反映出y与x的函数关系的是()A.B.C.D.8.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()9.如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1 cm/s,设P点的运动时间为t(s),点P的运动路径与OA,OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致为()11.如图,AD、BC是△O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设△APB=y(单位:度),那么y与P运动的时间x(单位:秒)的关系图是()12.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。
2021年中考数学复习专题五 几何综合探究题(精讲课件)
(2)①△BOD 的面积=12
×1×
3
=
3 2
;
典重例点题精型讲
题组训练
②过点 O 作 OM⊥AB 于 M,ON⊥AC 于 N,由①得:
OM= 3 ,同理:ON=2 3 ,∵△ABC 是等边三角形,
∴∠B=∠C=60°, ∵∠DOC=∠B+∠BDO=∠DOG+∠COG, 且∠FOG=60°,∴∠COG=∠BDO,且∠B=∠C=60°, ∴△BDO∽△COE,∴OECB =BODC ,∴BD·EC=OB·OC=8,
∴AD=AH=GE,∵四边形ABCD为平行四边形,
∴BC=AD,∴BC=GE,∵∠DAE=∠EAB=30°,
∴平行四边形ABEN为菱形,∴AB=AN=NE,
∴GE=3AB,∴
BC AB
=3.
典重例点题精型讲
题组训练
类型2 变换型问题 例2.(2020·江西一模) (1)方法导引: 问题: 如图1,等边三角形ABC的边长为6,点O是∠ABC和∠ACB 的角平分线交点,∠FOG=120°,绕点O任意旋转∠FOG,分 别交△ABC的两边于D,E两点,求四边形ODBE的面积.
典重例点题精型讲
题组训练
③应用:如图4,已知∠FOG=60°,顶点O在等边三角形 ABC的边CB的延长线上,OB=2,BC=6,记△BOD的面积为a ,△COE的面积为b,请直接写出a与b的关系式.
典重例点题精型讲
题组训练
解:(1)方法引导:如图 1,
S△OBC=四边形 ODBE 的面积=13 S△ABC=3 3 ;
当四边形AEGH是平行四边形时,求BC的值. AB
解:(1)60°; (2)①=;
典重例点题精型讲
题组训练
中考数学专题复习教学案_几何综合题
2014年中考数学二轮复习--几何综合题主备人 毛琴香 学校 访仙中学 审核人 陈海青 一、教学目标:⑴引导学生注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补 全或构造基本图形.⑵能掌握常规的证题方法和思路.⑶能运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法如数形结合、分类讨论等). 二、教学重点:掌握常规的证题方法和思路.三、教学难点:灵活运用数学思想方法解决几何证明问题 四、教学过程:一)、基本图形及辅助线:解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。
在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。
举例:1、与相似及圆有关的基本图形 2、正方形中的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;【参见(一)1;(二)1;】*(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;【参见(一)2、3、4、5】*(3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折; 转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;【参见C'A B C B'C'B'C B AB'C'C B A OAB C C'B'B'OABC OB'C'A BCF E AB D CE DAB C O DC AB O D AC B E OF E C A B D F DC B A E G(一)6,7,8,9】(4)特殊图形的辅助线及其迁移——梯形的辅助线(什么时候需要这样添加?)等【参见(一)7】作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数 平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形 平移对角线——上下底之和;对角线有特殊位置、数量关系。
《反比例函数与几何综合题之解题策略》教学PPT课件【初中数学】公开课
PM 4
t
t
∴t²=3,∴t= 3 (t= - 3舍去)
y (t, 8)
t (2,4) (5,4)
(3,0)
y8 x
x
活动二 链接中考
如图,在平面直角坐标系xOy中,点C(3,0),函数 y
k x
(k>0,x>0)的图象经过□OABC
的顶点A(m,n) 和边BC的中点D.(1)求m的值;(2)若△OAD的面积等于6,求k的值;
时,求t的值.
PM 4
解:(1)由题意得A(m,n),B(m+3,n)
,D
m
2
6
,
n 2
∴mn= m 6·n
(m,n) (m+3,n)
m
2
6
,
n 2
22
∴两边除以n,m=2
(3,0) x
活动二 链接中考
变式:如图,在平面直角坐标系xOy中,点C(3,0),函数
x
直线l与x轴上方的□ABCD的一边交于点N,设点P的横坐标为t,当
PN
1时,求t的值.
PM 4
解:(3)设A(2,4),k=8,P(t,8 ),PM 8 (t>0)
t
t
①∴直线PlN与O8A交 2于t 点N,yOA=2x,∴N(t,2t)
t
当 PN 1 时,4(8 2t) 8 (0<t≤2)
G是否在反比例函数的图象上,并说明理由.
拓展作业
1、找找近3年各地中考数学试卷中关于 反比例函数的题目,看看都考查了反比 例函数的哪些知识点,与其他哪些知识 相关联。
2、试着给其他同学出一道反比例函数与 几何图形综合的题目。
2011中考数学专题:例+练——第10课时_综合型问题(含答案)
第10课时综合型问题综合型试题是将所学的知识在一定的背景下进行优化组合,找到解决问题的方案,在解决问题的时候所用到的知识不再是单一的知识点,而是相关的知识,可能同时用到方程、函数,也有可能是三角形与多边形,也有可能是相关学科的知识,这类题目对学生综合能力的要求较高,同时这类题目有相对新颖的背静环境,数学综合题是初中数学中覆盖面最广、综合性最强的题型.解数学综合题必须要有科学的分析问题的方法,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.类型之一代数类型的综合题代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.1.(·安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。
一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。
⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。
2.(沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油多少升?(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B地.(货车在D处加油过程中的时间和路程忽略不计)类型之二几何类型的综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.3.(龙岩市)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.4.(益阳) △ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC 上,顶点F、G分别落在AC、AB上.Ⅰ.证明:△BDG≌△CEF;Ⅱ. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在...............Ⅱ.a.的解答记分................... .如果两题都解,只以...Ⅱ.a.和.Ⅱ.b.的两个问题中选择一个你喜欢的问题解答Ⅱa. 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了. 设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .Ⅱb. 小明想:不求正方形的边长也能画出正方形. 具体作法是:①在AB边上任取一点G’,如图作正方形G’D’E’F’;②连结BF’并延长交AC于F;③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG即为所求.你认为小明的作法正确吗?说明理由.类型之三几何与代数相结合的综合题几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力.5.(·恩施自治州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若∆ABC 固定不动,∆AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明. (2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.(3)以∆ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD =CE ,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2.(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若不成立,请说明理由.6.(茂名)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c ,经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.7.(嘉兴市)如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .(1)求B C ,两点的坐标; (2)求直线CD 的函数解析式;(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长. 试探究:AEF △的最大面积?参考答案1.【解析】本题是一道包含着分类思想的应用综合应用题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)如 ,过 作 E ⊥ A , D 图 B B 足 E R A E , 垂 为 ,在 t∆ B 中 B =10sin60° = 5 3 E ∵A = t, B = 2t M N 1 15 3 t ∴S梯形 BNM = (t +2t)×5 3 = A 2 2 ∵ t ≤10,∴t ≤ 5 2 当 时 ∴ t = 5 , S梯形 BNM最 . 大 A 15 3 75 3 最 面 为 大 积 : ×5 = 2 2
从点B 与点M 出发的时刻相同) (2) 点 N 从点 B ( 与点 M 出发的时刻相同 ) 以每 个单位长的速度沿着BC 边向点C 移动, BC边向点 秒 2 个单位长的速度沿着 BC 边向点 C 移动 , 在 什么时刻, 梯形ABNM 的面积最大? ABNM的面积最大 什么时刻 , 梯形 ABNM 的面积最大 ? 并求出面 积的最大值; 积的最大值;
K
(3) 1≤ t < 2 ,点 的 置 会 生 化 当 时 P 位 不 发 变 明 1 证 :设 ≤ t < 2 , E, F 发 运 了 时 出 后 动 t 钟 , 秒 时 EF 位 如 示 置 图 , B E 则 E = t, A = 2−t, C = 4−2t F A E 2−t 1 ∴ = = F C 4−2t 2 4− ∵AB ∥ DC
(2)当0≤x≤3时,梯形位于直线 左侧的图形为 当 时 梯形位于直线m左侧的图形为 △BPE,过 A作AF∥DC,交BC于F,即得四 , 作 ∥ , 于 , 边形AFCD为平行四边形。 为平行四边形。 边形 为平行四边形 边上到E的距离为 ∴ BF=3 设 △ BPE中BP边上到 的距离为 , 中 边上到 的距离为d,
E
(3)△ABC是腰长为10的等腰三角形,当 ABC是腰长为10的等腰三角形, 是腰长为10的等腰三角形 MPN≌△ABC时 MP=10,PN=BC=10, △MPN≌△ABC时,MP=10,PN=BC=10,且 MP=PN
C N C C C B ∴N = P − P = B − P = P ∵B = A = t, P M C C ∴P =10−t, N = t
G
MN一定能在某一时刻将菱形ABCD分 一定能在某一时刻将菱形ABCD 解:(1)MN一定能在某一时刻将菱形ABCD分 割成面积相等的两部分。 割成面积相等的两部分。 对于中心对称图形, 对于中心对称图形 , 过中心的任一直线均能 将图形分割成面积相等的两部分, 将图形分割成面积相等的两部分 , 而且菱形 是中心对称图形。 是中心对称图形。 在点M 在点M由A到D的移动过 程中,一定存在一个时 程中, 刻使得线段MN过菱形的 刻使得线段MN过菱形的 MN 中心。 中心。
G
图 P P C 足 G 如 ,过 作 G⊥ D ,垂 为 ,在 R∆ G 中 t P C , 3 P = P sin60° = (10−t) G C 2 设 N D 于 , M 交C F ∵ DC∥MP且MP=PN ∥ 且 ∠ F N P MP ∴ N C =∠ M =∠ N C C ∴F = N = t ∵ 叠 分 P F 梯 重 部 MC 是 形
G
1 3 ∴S = (t +10)× (10−t) 2 2 3 2 = − t +25 3 4 3 2 S , − t +25 3 =0 当 =0时即 4 解 : t1 =10,t2 = −10(舍 ) 得 去 ∵B =at,且 N = P + P =10+t N B N B at ∴ =10+t t 将 =10代 at =10+t,解 a = 2 入 得
A P A E 1 P 位 与 ∴ = = ,点 的 置 t P C F C 2 的 值 关 取 无 . ∴ 1≤ t < 2 ,点 的 置 会 当 时 P 位 不 发 1 C 值 生 化且 P: P 的 为 . 变 , A 2
[例2](河南省,2001)如图示,在菱 例 (河南省, )如图示, 形ABCD中,AB=10,∠BAD=60°, 中 , ° 从点A以每秒1 点M从点A以每秒1个单位长的速度沿着 AD边向 移动;设点M移动的时间为t 边向D AD边向D移动;设点M移动的时间为t秒 (0≤t≤10) ≤≤ ) (1)点 BC边上任意一点 边上任意一点。 (1)点N为BC边上任意一点。 在点M移动过程中,线段MN 在点M移动过程中,线段MN 是否一定可以将菱形分割 成面积相等的两部分? 成面积相等的两部分?并 说明理由; 说明理由;
(1)当t为何值时, 为何值时, 线段EF与BC平行? 线段EF与BC平行? EF 平行
(2)设1<t<2时,当t <t<2 为何值时,EF与半圆 为何值时,EF与半圆 ,EF
K
相切? 相切?
(3)当1≤t<2时 (3)当1≤t<2时,设EF与AC相交于 EF与AC相交于 P,问点 问点E 运动时, 点P,问点E、F运动时,点P的位 置是否发生变化?若发生变化, 置是否发生变化?若发生变化, 请说明理由;若不发生变化, 请说明理由;若不发生变化,请 给予证明,并求AP PC的值 AP: 的值。 给予证明,并求AP:PC的值。
G
龙岩市、 如图, 〖例3〗(龙岩市、宁德市,2001)如图, 〗 龙岩市 宁德市, 如图 已知梯形ABCD中,BC∥AD,AD=3, 已知梯形 中 ∥ , , BC=6,高h=2。P是BC边上的一个动点, 边上的一个动点, , 。 是 边上的一个动点 直线m过 点 直线 过p点,且m∥DC交梯形另外一边 ∥ 交梯形另外一边 于E,若BP=x,梯形位于直线 左侧的图 若 ,梯形位于直线m左侧的图 形面积为y。 形面积为 。 (1)当3<x≤ 6时,求y 当 时 与x之间的函数关系 之间的函数关系 式;
B F 则 E = t,C =4−2t, E = t −(4−2t) = 3t −4 K 切 长 理 : M B 据 线 定 知 E =E F =F M C F B C ∴E = E + F = t +(4−2t) =4−t
K
∵ R∆ F 中 在t E K , E 2 = E 2 +F 2 F K K ( ∴ 4−t)2 = (3t −4)2 +22 2t2 −4t +1= 0 2± 2 解 :t = 得 2 2+ 2 1 ∵ < t < 2,∴t = 2 2+ 2 ∴ t= 当 秒 ,E 与 圆 切 时 F 半 相 . 2
E
(3)点 从点B 与点M出发的时刻相同) (3)点N从点B(与点M出发的时刻相同)以 每秒a(a≥2)个单位长的速度沿着射线BC a(a≥2)个单位长的速度沿着射线 每秒a(a≥2)个单位长的速度沿着射线BC 的方向(可以超越C 移动,过点M 的方向(可以超越C点)移动,过点M作MP AB, BC于点 于点P MPN≌△ABC时 ∥ AB,交BC于点P。当△MPN≌△ABC时, MPN与菱形ABCD重叠部分面积为 与菱形ABCD重叠部分面积为S 设△MPN与菱形ABCD重叠部分面积为S,求 出用t表示S的关系式,并求当S=0 S=0时 的值。 出用t表示S的关系式,并求当S=0时a的值。
动态 几何问题
[例1](南昌市,2001)如图示,正方形 1](南昌市,2001)如图示, 南昌市,2001)如图示 ABCD中 有一直径为BC的半圆,BC=2cm, BC的半圆 ABCD中,有一直径为BC的半圆,BC=2cm, 现有两点E 分别从点B 同时出发, 现有两点E、F,分别从点B、A同时出发, 沿线段BA 1cm/秒的速度向点 运动, BA以 秒的速度向点C 点E沿线段BA以1cm/秒的速度向点C运动, 沿折线A 点F沿折线A-D-C以 2cm/秒的速度向点 秒的速度向点C 2cm/秒的速度向点C 运动,设点E 运动,设点E离开点 的时间为t B的时间为t秒。
(2)当0≤ x ≤ 3时,求y 当 时 之间的函数关系式; 与x之间的函数关系式; 之间的函数关系式 (3)若梯形 若梯形ABCD的面积 若梯形 的面积 为S,当y=S时,求x的 , 时 的 值。
h d F
解 (1)当3<x≤6时,梯形位于直线 左侧的 当 时 梯形位于直线m左侧的 图形为梯形BPEA 图形为梯形 ∵四边形PCDE为平行四边形 四边形 为平行四边形 则PC=ED=6-x, , 得上底AE=3-(6-x)=x-3 得上底 ∴y=[(x-3)+x]·2=2x-3 即当3<x≤6时,y与x之间的 时 即当 与 之间的 函数关系式为: 函数关系式为:y=2x-3
1 (3) 已 得 = (3+6)×2 =9 由 知 S 2 S 9 ∴ = 2 2 1 2 S x 时 ( y 当 = 3 ,由2)得 = x = 3< 3 2 S x 间 函 关 满 , ∴ y = 时 y与 之 的 数 系 足 当 2 y = 2x −3 S 9 9 15 2 由 = 得 x −3 = , 解 x = 得 2 2 2 4
出发后运动了t 秒时, 解 (1) 设 E 、 F 出发后运动了 t 秒时 , 有 EF∥BC 则BE=t,CF=4-2t. BE=t,CF=4 即有t=4即有t=4-2t t=4
4 t= 3 4 ∴ t = 秒 ,线 E 与 C 行 当 时 段F B 平 . 3
(2) 设 E 、 F 出发后运动了t 秒时, EF与半圆 出发后运动了 t 秒时 , EF 与半圆 相切于点M 过点F KF∥BC交AB于点K 相切于点M,过点F作KF∥BC交AB于点K 于点
B P d 由△BPE∽△BFA,得 ∽ , = B F h x d 2 即 = ,解 d = x 得 3 2 3 1 1 2 1 2 P ∴y = B ⋅ d = x⋅ x = x 2 2 3 3
d
h F
即当0 之间的函数关系式为: 即当 ≤ x ≤ 3时,y与x之间的函数关系式为: 时 与 之间的函数关系式为 y=x²