基本初等函数

合集下载

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点基本初等函数是指在数学中常见且重要的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

这些函数在数学中广泛应用于各种数学问题和实际应用中,对于学习和理解高等数学和物理等学科具有重要意义。

本文将对这些基本初等函数进行详细介绍。

首先,常数函数是最简单的一个函数,它的函数值始终保持不变。

常数函数的一般形式为f(x)=c,其中c是常数。

常数函数在数学中常用于表示等级和水平等不变的情况。

例如,常用的数学常数π就是一个常数函数,表示圆周长与直径之比。

其次,幂函数是一类形如f(x)=x^n的函数,其中x是变量,n是常数。

幂函数的特点是通过改变幂指数n的大小可以得到不同形状的函数图像。

比如当n为正偶数时,函数图像是一个开口朝上的平滑曲线;当n为正奇数时,函数图像是一个开口朝下的平滑曲线;当n为负数时,函数图像则是一个经过坐标轴原点的曲线。

指数函数是一类形如f(x)=a^x的函数,其中a是常数,且a大于0且不等于1、指数函数的特点是函数值随着自变量的增大而指数级增长或指数级衰减。

当a大于1时,函数图像是一个增长的指数曲线;当0小于a小于1时,函数图像是一个衰减的指数曲线。

对数函数是指数函数的反函数,它表示一些数在一个给定的底数下的指数。

对数函数的一般形式为f(x) = log_a(x),其中a是常数,且a大于0且不等于1、对数函数和指数函数是一对互逆函数,它们的图像是关于y=x对称的。

三角函数是一类周期函数,包括正弦函数、余弦函数和正切函数等。

正弦函数的一般形式为f(x) = A*sin(Bx+C),余弦函数的一般形式为f(x) = A*cos(Bx+C),正切函数的一般形式为f(x) = A*tan(Bx+C)。

其中A、B、C是常数,分别表示振幅、频率和初相位。

三角函数的图像具有周期性和对称性,常用于描述波动和周期性现象。

反三角函数是三角函数的反函数,它表示一些角度在三角函数中的对应值。

基本初等函数知识点归纳

基本初等函数知识点归纳

基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。

常见的常值函数有恒等于0的零函数和恒等于1的单位函数。

常值函数的图像是一条与x轴平行的直线。

2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。

当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。

特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。

当a>1时,函数递增;当0<a<1时,函数递减。

指数函数特点是它们的图像都经过点(0,1)。

4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。

对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。

5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。

正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。

6. 反三角函数:反三角函数是三角函数的反函数。

反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。

它们的定义域和值域与所对应的三角函数的范围正好相反。

反三角函数的图像和所对应的三角函数的图像关于y = x对称。

以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。

通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。

基本初等函数

基本初等函数

基本初等函数包括以下几种:(1)常数函数y = c(c 为常数)(2)幂函数y = x^a(a 为非0 常数)(3)指数函数y = a^x(a>0, a≠1)(4)对数函数y =log(a) x(a>0, a≠1)(5)三角函数:主要有以下6 个:正弦函数y =sin x余弦函数y =cos x正切函数y =tan x余切函数y =cot x正割函数y =sec x余割函数y =csc x此外,还有正矢、余矢等罕用的三角函数。

(6)反三角函数:主要有以下6 个:反正弦函数y = arcsin x反余弦函数y = arccos x反正切函数y = arctan x反余切函数y = arccot x反正割函数y = arcsec x反余割函数y = arccsc x初等函数是由基本初等函数经过有限次的有理运算和复合而成的函数。

基本初等函数和初等函数在其定义区间内均为连续函数幂函数简介形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。

因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识。

特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q 次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。

当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。

基本初等函数

基本初等函数

基本初等函数初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。

基本初等函数和初等函数在其定义区间内均为连续函数。

不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。

有两种分类方法:数学分析有六种基本初等函数,高等数学只有五种。

基本初等函数包括以下几类:(1)常数函数y=c(c为常数)(2)幂函数y=x^a(a为常数)(3)指数函数y=a^x(a>0,a≠1)(4)对数函数y=log(a)x(a>0,a≠1,真数x>0)(5)三角函数和反三角函数(如正弦函数:y=sinx反正弦函数:y=arcsinx等)幂函数定义:一般来说,形状如y=xα(α具有理数的函数,即以底数为自变量,幂为变量,指数为常数的函数称为幂函数。

例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/xy=x0时x ≠0)等等都是幂函数。

一般形式如下:(α它是常数,可以是自然数、有理数,也可以是任复数。

指数函数定义:指数函数是数学中的一个重要函数。

应用于值e的函数写为exp(x)。

也可以等价写作ex,e是数学常数,是自然对数的底数,近似等于2.718281828,又称欧拉数。

一般形式如下:(a>0,a≠1)对数函数定义:一般来说,函数y=logax(a>0,且a≠1)称为对数函数,即以幂(真数)为自变量,指数为因变量,底数为常量函数,称为对数函数。

x是自变量,函数定义域为(0、∞),即x>0.它实际上是指数函数的反函数,可以表示为x=ay。

因此,指数函数中对a的规定也适用于对数函数。

一般形式如下:(a>0,a≠1,x>0,特别当α=e时,记为y=lnx)常见的三角函数主要有以下六种:正弦函数:y=sinx余弦函数:y=cosx正切函数:y=tanx余切函数:y=cotx正割函数:y=secx余割函数:y=cscx此外,还有正矢、余矢等罕见的三角函数。

基本初等函数知识点总结

基本初等函数知识点总结

基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。

它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。

下面将对基本初等函数的知识点进行总结。

一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。

它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。

多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。

二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。

指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。

三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。

对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。

四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。

三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。

五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。

它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。

反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。

基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。

基本初等函数知识总结

基本初等函数知识总结

基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。

基本初等函数知识点

基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。

函数通常用f(x)表示,其中x是自变量,f(x)是因变量。

函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。

2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

3. 单调性:函数可以是单调递增或单调递减的。

单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。

二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。

根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。

2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。

3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。

4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。

5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。

三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。

幂函数的性质与指数n的奇偶性、正负有关。

2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。

常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。

基本初等函数知识点总结

基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。

表示为f(x)=c,其中c是常数。

常数函数的图像是一条平行于x轴的直线。

常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。

2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。

表示为f(x)=x²。

平方函数的图像是一条开口向上的抛物线。

平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。

3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。

表示为f(x)=x³。

立方函数的图像是一条通过原点且存在于所有象限的曲线。

立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。

4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。

表示为f(x)=,x。

绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。

绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。

5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。

表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。

指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。

表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。

对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。

7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。

正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。

基本初等函数初等函数

基本初等函数初等函数初等函数是指可以用有限次加、减、乘、除、乘方、开方、指数、对数、函数互反和常数的四则运算来表示的函数。

它是高中数学中的一种函数类型,是数学研究和应用中最基本、最常见的一类函数。

最基本的初等函数包括:1.常数函数:y=C,其中C为任意常数。

常数函数在整个定义域上都保持不变。

2. 一次函数:y = mx + b,其中m和b为任意常数,m表示斜率,b 表示截距。

一次函数的图像为一条直线。

3.幂函数:y=x^r,其中r为任意的实数。

幂函数是由自变量的幂指数决定的。

4.指数函数:y=a^x,其中a为一个正常数且不等于1、指数函数的图像呈现指数增长或指数衰减的形式。

5. 对数函数:y = log_a(x),其中a为一个正数且不等于1、对数函数是指数函数的反函数,可以解决指数方程。

6. 三角函数:包括正弦函数y = sin(x),余弦函数y = cos(x),正切函数y = tan(x)等。

三角函数是周期性的函数。

除了以上基本初等函数外,复合函数也属于初等函数的范畴。

例如,将两个初等函数通过运算符号连接在一起形成的函数仍然属于初等函数。

例如加、减、乘、除、复合函数、互反函数等等。

初等函数在数学的研究和应用中起着非常重要的作用。

它们广泛应用于科学、工程、经济、物理、化学、生物学等领域中的数学模型建立和问题求解。

通过使用初等函数,我们可以更好地描述和分析变量之间的关系,从而更好地理解和预测实际问题。

初等函数的性质和特点也是数学学科中的重要内容之一、初等函数的图像、定义域、值域、对称性、奇偶性、单调性、极值等特征都可以通过数学工具和方法进行研究和分析。

总之,初等函数是数学中最基本和常见的一类函数。

它们通过有限次的四则运算、函数互反和常数的运算构成,在数学的研究和应用中起着重要的作用。

初等函数的性质和特点也是数学学科中的重要内容之一、通过学习初等函数,我们可以更好地理解和应用数学知识,解决实际问题。

基本初等函数初等函数

基本初等函数初等函数初等函数是指可以用基本初等函数表示和运算的函数。

基本初等函数是指常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

常数函数是指函数的值恒为一些常数的函数,例如f(x)=3幂函数是以x为底数的幂指数函数,可以表示为f(x)=x^n,其中n是一个常数。

指数函数是指以指数形式表示的函数,例如f(x)=a^x,其中a是一个常数。

对数函数是指以对数形式表示的函数,例如 f(x) = log_a(x),其中a 是一个常数。

三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

它们都是周期函数,周期为2π。

反三角函数是三角函数的反函数,例如正弦函数的反函数是反正弦函数(arcsin),余弦函数的反函数是反余弦函数(arccos),正切函数的反函数是反正切函数(arctan)。

例如,用加法和乘法运算可以生成多项式函数,多项式函数是指以多项式形式表示的函数,例如f(x)=3x^2+5x+2用加法、乘法和除法运算可以生成有理函数,有理函数是指以多项式分式形式表示的函数,例如f(x)=(3x^2+5x+2)/(2x+1)。

用加法、乘法、除法和根号运算可以生成代数函数,代数函数是指通过代数运算得到的函数,例如f(x)=√(3x^2+5x+2)。

例如,两个初等函数的和、差、积和商仍然是初等函数。

两个初等函数的复合函数也是初等函数。

例如,f(x) = sin(x^2) 是正弦函数和幂函数的复合函数。

需要注意的是,初等函数是一个相对的概念。

一些函数在特定的领域内可以表示为初等函数,但在其他领域内则可能无法表示为初等函数。

例如,f(x)=e^x在实数域上是一个指数函数,但在复数域上则无法用基本初等函数表示。

初等函数在数学和科学领域中有着广泛的应用。

它们可以描述和研究自然界中的各种现象和规律,为科学家和工程师提供了强大的工具。

此外,初等函数还在数学分析、微积分、概率论、统计学等许多数学学科中发挥着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.5 基本初等函数(Ⅰ)考点梳理(一)指数函数 1.根式(1)n 次方根:如果x n =a ,那么x 叫做a 的 ,其中n >1,且n ∈N *. 注:负数没有偶次方根.(2)根式的性质:n 为奇数时,na n = ; n 为偶数时,na n = . 2.幂的有关概念及运算(1)零指数幂:a 0= .(a ≠ 0.)(2)负整数指数幂:a -n = (a ≠0,n ∈N *).(3)正分数指数幂:a m n= (a >0,m ,n ∈N *,且n >1). (4)有理指数幂的运算性质 ⎩⎪⎨⎪⎧a r a s= (a >0,r ,s ∈Q ),(a r )s= (a >0,r ,s ∈Q ),(ab )r = (a >0,b >0,r ∈Q ).3.a >1 0<a <1(二)对数函数 1.对数(1)对数:如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的_______,记作x =_______.其中a 叫做对数的_______,N 叫做_______.(2)两类重要的对数①常用对数:以_______为底的对数叫做常用对数,并把log 10N 记作_______; ②自然对数:以_______为底的对数称为自然对数,并把log e N 记作_______. 注:无理数e =2.718 28…; (3)对数与指数之间的关系当a >0,a ≠1时,a x =N_______x =log a N . (4)对数运算的性质如果a >0,且a ≠1,M >0,N >0,那么: ①log a (MN )=___________;②log a MN=______________;③log a M n =_____________;一般地,na M m log =_______;(5)换底公式及对数恒等式①对数恒等式:Na a log =_______;log a 1=_______,log a a =_______.②换底公式:log a b =_______ (a >0且a ≠1;c >0且c ≠1;b >0).特别地,log a b =1log b a2.a >1 0<a<1____________ 3.对数函数y =log a x (a >0,且a ≠1)与指数函数y =a x (a >0且a ≠1)互为反函数;它们的图象关于直线________对称.(三)幂函数1.幂函数的定义一般地,函数________叫做幂函数,其中x 是自变量,α是常数. 2.几个常用的幂函数的图象与性质α>0α<0自查自纠:(一)1.(1)n 次方根 (2)a |a |2.(1)1 (2)1an (3)n a m (4)a r +s a rs a r b r3.R (0,+∞) (0,1) 增函数 减函数(二)1.(1)对数 log a N 底数 真数 (2)①10 lg N ②e lnN (iii )0 1 (3)⇔(4)①log a M +log a N ②log a M -log a N③n log a M nmlog a M(5)①N ,0,1.②log c blog c a2.(0,+∞) R (1,0) 增函数 减函数 3.y =x(三)1.y =x α2.(1)(0,0)和(1,1) (1,1) (2)增函数 减函数典型例题讲练类型一 指数幂和对数的运算例题1 (2013·济宁测试)化简下列各式: (1)[(0.06415)-2.5]23-3338-π0; .解:(1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎡⎦⎤⎝⎛⎭⎫64100015-5223-⎝⎛⎭⎫27813-1 =⎣⎡⎦⎤⎝⎛⎭⎫410315×()-52×23-⎣⎡⎦⎤⎝⎛⎭⎫32313-1 =52-32-1 =0.(2)计算log 535+2log 122-log 5150-log 514的值. 解:原式=log 535×5014+2log 12212=log 553-1=2.变式1 (2016浙江理12)已知a >b >1.若log a b +log b a =,a b =b a ,则a = ,b = . 【答案】,(2015浙江理12)若,则 .52424log 3a =22a a-+=【答案】. 类型二指数和对数函数的图象及其应用例题2 (1)已知实数a ,b 满足等式⎝⎛⎭⎫12a=⎝⎛⎭⎫13b,下列五个关系:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能...成立的关系有( ) A .1个 B .2个 C .3个 D .4个解:作出函数y =⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫13x 的图象,然后作直线y =m ,y =n (0<m <1<n ).我们很容易得到a <b <0或0<b <a 或a =b =0,即可能成立的为①②⑤,不可能成立的为③④.故选B.(2)(2015·河北模拟)已知函数f (x )=|log 2x |,0<m <n ,且f (m )=f (n ),若函数f (x )在区间[m 2,n ]上的最大值为2,则m 2=( )A.14B. 2C.32D.12解:作出函数f (x )=|log 2x |的图象如图.由题意可得0<m <1<n ,∴0<m 2<m ,结合图象可知函数f (x )在[m 2,n ]上的最大值为f (m 2),则有-log 2m 2=2,m 2=2-2=14.故选A.类型三 指数和对数函数的综合问题例题3 (1)(2015·北京)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________. 解:(1)a =1时,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )∈(-1,1),f (x )无最小值;当x ≥1时,f (x )在⎣⎡⎦⎤1,32为减函数,在⎣⎡⎭⎫32,+∞为增函334数,当x =32时,f (x )取得最小值为-1.(2)①若函数g (x )=2x -a 在x <1时与x 轴有一个交点,则a >0,并且当x =1时,g (1)=2-a >0,则0<a <2;此时函数h (x )=4(x -a )(x -2a )与x 轴只有一个交点,所以2a ≥1且a <1,则12≤a <1.综合得12≤a<1.②若函数g (x )=2x -a 与x 轴有无交点,则函数h (x )=4(x -a )(x -2a )与x 轴有两个交点.当a ≤0时,g (x )与x 轴无交点,h (x )=4(x -a )(x -2a )在[1,+∞)与x 轴也无交点,不合题意;当g (1)=2-a ≤0时,a ≥2,h (x )与x 轴有两个交点,其横坐标为x =a 和x =2a ,由于a ≥2,两交点横坐标均满足x ≥1,符合题意.综合①②可得a 的取值范围为12≤a <1或a ≥2.故填-1;⎣⎡⎭⎫12,1∪[2,+∞).(2) 已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.解:(1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2.∵2x >0,∴2x =1+2,即x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, ∵2t >0,两边同乘以2t ,即得m (22t -1)≥-(24t -1). ∵22t -1>0,∴m ≥-(22t +1). ∵t ∈[1,2],∴-(1+22t )∈[-17,-5],故m 的取值范围是[-5,+∞).(2)已知f (x )=lg 2xax +b ,f (1)=0,当x >0时,恒有f (x )-f ⎝⎛⎭⎫1x =lg x . (1)求f (x )的解析式;(2)若方程f (x )=lg(m +x )的解集是∅,求实数m 的取值范围.解:(1)∵当x >0时,f (x )-f ⎝⎛⎭⎫1x =lg x 恒成立,∴lg 2x ax +b -lg 2bx +a =lg x ,即(a -b )x 2-(a -b )x =0. ∵x ≠0,∴上式若恒成立,则只能有a =b ,又f (1)=0,即a +b =2,从而a =b =1,∴f (x )=lg 2x 1+x.(2)由lg 2xx +1=lg(m +x )知⎩⎪⎨⎪⎧2xx +1=m +x ,2x x +1>0,即⎩⎪⎨⎪⎧x 2+(m -1)x +m =0,x <-1或x >0,由于方程的解集为∅,故有如下两种情况: ①方程x 2+(m -1)x +m =0无解,即Δ<0, 解得3-22<m <3+22;②方程x 2+(m -1)x +m =0有解,两根均在区间[-1,0]内,令g (x )=x 2+(m -1)x +m ,则有⎩⎪⎨⎪⎧Δ≥0,g (-1)≥0,g (0)≥0,-1≤1-m 2≤0,即⎩⎪⎨⎪⎧m ≤3-22或m ≥3+22,1≤m ≤3,无解. 综合①②知,实数m 的取值范围是{m |3-22<m <3+22}.类型四 幂函数的图象与性质例题4 如图,曲线是幂函数y =x n 在第一象限的图象,已知n 取2,3,12,-1四个值,则相应于曲线C 1,C 2,C 3,C 4的n 依次为 .解法一(数形结合法):如图,作直线x =t (t >1),由于函数y =x n 的图象与直线x =t 的交点为(t ,t n ),可见指数n 的大小与图象交点的“高低”是一致的,结合图象,可得答案.解法二(特殊值法):当x =2时,y 1=23=8,y 2=22=4,y 3=20.5=2,y 4=2-1=12,∵8>4>2>12,∴y 1>y 2>y 3>y 4,故填3,2,12,-1.变式4 (2014·天门、仙桃、潜江期末)在下列直角坐标系的第一象限内分别画出了函数y =x ,y =x ,y =x 2,y =x 3,y =x -1的部分图象,则函数y =2x的图象通过的阴影区域是()解:函数y =2x 的图象位于函数y =x 与y =x 2的图象之间,对比各选项中的阴影区域,知C 正确.故选C .方法规律总结1.指数函数的图象、性质在应用时,如果底数a 的取值范围不确定,则要对其进行分类讨论. 2.比较两个幂的大小,首先要分清是底数相同还是指数相同.如果底数相同,可利用指数函数的单调性;如果指数相同,可转化为底数相同,或利用幂函数的单调性,也可借助函数图象;如果指数不同,底数也不同,则要利用中间量.3.熟练掌握指数式与对数式的互化,它不仅体现了两者之间的相互关系,而且为对数的计算、化简、证明等问题提供了更多的解题途径.4.作指数函数y =a x (a >0,且a ≠1)和对数函数y =log a x (a >0,且a ≠1)的图象应分别抓住三个点⎝⎛⎭⎫-1,1a ,(0,1),(1,a )和⎝⎛⎭⎫1a ,-1,(1,0),(a ,1).5.比较两个对数的大小的基本方法(1)若底数为同一常数,则由对数函数的单调性直接进行判断;若底数为同一字母,则需对这一字母进行分类讨论.(2)若底数不同真数相同,则可先换底再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.6.幂函数的图象特征与指数的大小关系,大都可通过幂函数的图象与直线x =2或x =12的交点纵坐标的大小反映.一般地,在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大、图低”),在区间(1,+∞)上,幂函数中指数越大,图象越远离x 轴(不包括幂函数y =x 0).7.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,则要看函数的定义域和奇偶性.函数的图象最多只能同时出现在两个象限内,如果幂函数的图象与坐标轴相交,则交点一定是原点.8.判断一个函数是否为指数函数或对数函数或幂函数,一定要根据三种函数定义给出的“标准”形式.如f (x )=2x 2不是指数函数,而f (x )=23x 是指数函数,因为f (x )=23x =8x ,此时a =8,同样f (x )=2x +1也不是指数函数,因为f (x )=2x +1=2·2x ,不是f (x )=a x (a >0,且a ≠1)的形式.课后作业1.(2015·衡水模拟)已知幂函数y =f (x )的图象经过点⎝⎛⎭⎫8,12,则f ⎝⎛⎭⎫164的值为( ) A .3 B .4 C.13 D.14解:设f (x )=x α,则有8α=23α=12,∴3α=-1,解得α=-13,f ⎝⎛⎭⎫164=(2-6)α=2-6α=22=4.故选B. 2.(2014·浙江)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是( )解:两图象均不可能过点(0,1),A 错;B 选项中f (x )=x a中a 满足a >1,而g (x )=log a x 中a 满足0<a <1,矛盾,B 错;类似B 选项的判断方法知C 错;D 正确.故选D .3.log 29×log 34=( ) A.14 B.12C .2D .4 解:log 29×log 34=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.故选D.4.(2015·广东模拟)已知log 2a >log 2b ,则下列不等式一定成立的是( ) A.1a >1bB .log 2(a -b )>0 C.⎝⎛⎭⎫13a <⎝⎛⎭⎫12b D .2a -b <1 解:因为log 2a >log 2b ,所以a >b >0,所以⎝⎛⎭⎫13a <⎝⎛⎭⎫13b <⎝⎛⎭⎫12b.故选C.5. (2015·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解:由3a >3b >3知,a >b >1,则log a 3<log b 3;反过来,设0<a <1,b >1,依然有log a 3<log b 3,但此时3a <3b .故选B.6.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解:当x ≤1时,21-x ≤2⇔1-x ≤1⇔x ≥0,∴0≤x ≤1;当x >1时,1-log 2x ≤2⇔log 2x ≥-1⇔x ≥12,∴x >1.综上可知x 的取值范围是[0,+∞).故选D.7.(2015·浙江文)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解:由题知,f (-3)=1,f (1)=0,即f (f (-3))=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.故填0;22-3.8.函数f (x )=1-2log 6x 的定义域为____________.解:根据二次根式和对数函数有意义的条件,得⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0 ⇒⎩⎪⎨⎪⎧x >0,log 6x ≤12⇒⎩⎨⎧x >0,x ≤6⇒0<x ≤ 6. 故填(0,6].9.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解:当x ≤2时,-x +6≥4,要使得函数f (x )的值域为[4,+∞),则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,解得1<a ≤2.故填(1,2].10.设a >1,若仅有一个常数c 使得对于任意的x ∈[a ,2a ],都有y ∈[a ,a 2]满足方程log a x +log a y =c ,求a 的值.解:∵log a x +log a y =log a (xy )=c (a >1),∴y =a cx.∵a >1,∴y =a cx 在x ∈[a ,2a ]上单调递减,∴y max =a c a =a c -1,y min =a c 2a =12a c -1,⎩⎪⎨⎪⎧a c -1≤a 2⇒c ≤3,12a c -1≥a ⇒a c -2≥2⇒c ≥log a 2+2.∵log a 2+2≤c ≤3且c 值只有1个, ∴log a 2+2=c =3,即log a 2=1,故a =2.。

相关文档
最新文档