专题09 磁场-2016年高考物理备考中等生百日捷进提升系列(原卷版)

合集下载

专题10 分子动理论与统计观点-2016年高考物理备考中等生百日捷进提升系列(原卷版)

专题10 分子动理论与统计观点-2016年高考物理备考中等生百日捷进提升系列(原卷版)

第一部分名师综述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查基本概念和基本规律。

更加注重:(1)建立宏观量和微观量的对应关系,如分子动能与温度相对应,分子势能与体积相对应,物体的内能与温度、体积、物质的量相对应等;(2)强化基本概念与基本规律的理解和记忆;(3)建立统计的观点;(1)考纲要求掌握分子动理论的基本内容.2.知道内能的概念.3.会分析分子力、分子势能随分子间距离的变化.(2)命题规律高考热学命题的重点内容有:(1)分子动理论要点,分子力、分子大小、质量、数目估算;题型多为选择题和填空题,绝大多数选择题只要求定性分析,极少数填空题要求应用阿伏加德罗常数进行计算(或估算)。

第二部分知识背一背(1)物体是由大量分子组成的①多数分子大小的数量级为10-10 m.②一般分子质量的数量级为10-26 kg.(2)分子永不停息地做无规则热运动说明分子永不停息地做无规则运动的两个实例①扩散现象:由于分子的无规则运动而产生的物质迁移现象.温度越高,扩散越快.②布朗运动:在显微镜下看到的悬浮在液体中的固体颗粒的永不停息地无规则运动.布朗运动反映了液体内部的分子的无规则运动.颗粒越小,运动越明显;温度越高,运动越剧烈.(3)分子间存在着相互作用力①分子间同时存在引力和斥力,实际表现的分子力是它们的合力.②引力和斥力都随分子间距离的增大而减小,但斥力比引力变化得快.(4)温度和内能①当分子力做正功时,分子势能减小;当分子力做负功时,分子势能增大.②从分子动理论观点来看,温度是物体分子热运动平均动能的标志,温度越高,分子的平均动能就越大;反之亦然.注意同一温度下,不同物质分子的平均动能都相同,但由于不同物质的分子质量不尽相同,所以分子运动的平均速率不尽相同。

③决定物体内能的是物体中所含分子的摩尔数、温度和体积三个因素。

第三部分技能+方法一、微观量的估算①微观量:分子体积V 0、分子直径d 、分子质量m 0.②宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ.③关系(a)分子的质量:Am A N V N M m ρ==0 (b)分子的体积:AA m N M N V V ρ==0 (c)物体所含的分子数:A m A m N V m N V V N ∙=∙=ρ或A A N M V N M m N ∙=∙=ρ ④)分子的两种模型:(a)对于固体、液体,分析分子的直径时,可建立球体模型,分子直径306πV d =。

专题09 磁场(包含复合场)(第05期)-决胜2016年高考全国名校试题物理分项汇编(解析版)

专题09  磁场(包含复合场)(第05期)-决胜2016年高考全国名校试题物理分项汇编(解析版)

一、单项选择题1.【2016•福建省漳州八校高三12月联考】如图所示,两平行金属导轨CD、EF间距为l,与电动势为E 的电源相连,质量为m、电阻为R的金属棒ab垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab棒静止,需在空间施加的匀强磁场磁感强度的最小值及其方向分别为()A. mgREI,水平向右 B.cosmgREIθ,垂直于回路平面向上C.tanmgREIθ,竖直向下 D.sinmgREIθ,垂直于回路平面向下【答案】D考点:共点力平衡的条件及其应用;力的合成与分解的运用;安培力;左手定则2.【2016•洛阳市高三统考】如图4所示,一个静止的质量为m、带电荷量为q的粒子(不计重力),经电压U加速后垂直进人磁感应强度为B的匀强磁场,粒子在磁场中转半个国后打在P点,设OP=x,能够正确反应x与U之间的函数关系的是【答案】B考点:带电粒子在复合场中的运动【名师点睛】本题是质谱仪的原理,根据物理规律得到解析式,再由数学知识选择图象是常用的方法和思路。

3.【2016•内蒙古鄂尔多斯市三中高三四模】在水平地面上方有正交的匀强电场和匀强磁场,匀强电场方向竖直向下,匀强磁场方向水平向里。

现将一个带正电的金属小球从M点以初速度v0水平抛出,小球着地时的速度为v1,在空中的飞行时间为t1。

若将磁场撤除,其它条件均不变,那么小球着地时的速度为v2,在空中飞行的时间为t2。

小球所受空气阻力可忽略不计,则关于v1和v2、t1和t2的大小比较,以下判断正确的是()A.v1>v2,t1>t2B.v1<v2,t1<t2C.v1=v2,t1<t2D.v1=v2,t1>t2【答案】D考点:带电粒子在复合场中的运动【名师点睛】未撤除磁场时,小球受到重力、电场力和洛伦兹力,但洛伦兹力不做功.根据动能定理分析速度大小关系.分析洛伦兹力对小球运动影响,分析时间关系。

4. 【2016•广东省七校联合体第二次联考】 关于电场强度、磁感应强度,下列说法中正确的是 A. 由真空中点电荷的电场强度公式2rQk E =可知,当r 趋近于零时,其电场强度趋近于无限大 B. 电场强度的定义式qFE =适用于任何电场 C. 由安培力公式F =BIL 可知,一小段通电导体在某处不受安培力,说明此处一定无磁场D. 一带电粒子在磁场中运动时,磁感应强度的方向一定垂直于洛伦磁力的方向和带电粒子的运动方向 【答案】B 【解析】试题分析:公式2rQ kE = 是点电荷的电场强度的决定式,E 与Q 成正比,与r 2成反比,但是当0→r 时,带电体不能视为点电荷,A 错误;公式qFE =是电场强度的定义式,适用于任何电场,但是电场中某点的电场强度与F 、q 无关,B 正确;公式ILFB =是磁感应强度的定义式,适用条件是通电导线必须垂直于磁场方向放置.通电导线受力为零的地方,磁感应强度B 的大小不一定为零,这可能是电流方向与B 的方向在一条直线上的原因造成的,C 错误;洛伦兹力方向垂直于B 与v 决定的平面,但B 与v 不一定垂直,D 错误;故选B 。

高考物理_专题09_电磁感应及综合应用(高考押题)-2016年高考物理二轮复习精品资料(原卷版)

高考物理_专题09_电磁感应及综合应用(高考押题)-2016年高考物理二轮复习精品资料(原卷版)

1.如图1,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是( )图12.如图2所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6) ( )图2A.2.5 m/s 1 W B.5 m/s 1 WC.7.5 m/s 9 W D.15 m/s 9 W3.如图3所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的直角三角形线框abc的ab边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab边垂直.则下列各图中可以定性地表示线框在进入磁场的过程中感应电流随时间变化的规律的是( )图34.如图4,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v-t图象中,可能正确描述上述过程的是( )图45.图5中L是绕在铁芯上的线圈,它与电阻R、R0、电键和电池E可构成闭合回路.线圈上的箭头表示线圈中电流的正方向,当电流的流向与箭头所示的方向相同时,该电流为正,否则为负.电键K1和K2都处于断开状态.设在t=0时刻,接通电键K1,经过一段时间,在t=t1时刻,再接通电键K2,则能正确表示L中的电流I随时间t变化图线的是( )图56. 如图6甲所示,MN 左侧有一垂直纸面向里的匀强磁场.现将一边长为L 、质量为m 、电阻为R 的正方形金属线框置于该磁场中,使线框平面与磁场方向垂直,且bc 边与磁场边界MN 重合.当t =0时,对线框施加一水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t =t 0时,线框的ad 边与磁场边界MN 重合.图乙为拉力F 随时间t 变化的图线.由以上条件可知,磁场的磁感应强度B 的大小及t 0时刻线框的速率v 为 ( )图6A .B =1L mR t 0 B .B =1L 2mR t 0C .v =F 0t 0mD .v =2F 0t 0m7. 如图7所示,间距l =0.4 m 的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd 内匀强磁场的磁感应强度B =0.2 T ,方向垂直于斜面.甲、乙两金属杆电阻R 相同、质量均为m =0.02 kg ,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab 上,乙在甲上方距甲也为l 处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F ,使甲金属杆始终以a =5 m/s 2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g =10 m/s 2,则 ( )图7A .每根金属杆的电阻R =0.016 ΩB .甲金属杆在磁场中运动的时间是0.4 sC .甲金属杆在磁场中运动过程中F 的功率逐渐增大D .乙金属杆在磁场中运动过程中安培力的功率是0.1 W8. 如图8所示,两条电阻不计的平行导轨与水平面成θ角,导轨的一端连接定值电阻R 1,匀强磁场垂直穿过导轨平面.一根质量为m 、电阻为R 2的导体棒ab ,垂直导轨放置,导体棒与导轨之间的动摩擦因数为μ,且R 2=2R 1.如果导体棒以速度v 匀速下滑,导体棒此时受到的安培力大小为F ,则以下判断正确的是 ( )图8A .电阻R 1消耗的电功率为Fv 3B .整个装置消耗的机械功率为FvC .整个装置因摩擦而消耗的功率为μmgv cos θD .若使导体棒以v 的速度匀速上滑,则必须施加沿导轨向上的外力F 外=2F9. 如图9所示,空间存在垂直纸面向里的高度为a 的有界匀强磁场,磁场边界水平,磁感应强度大小为B .一个边长为2a 、质量为m 的正方形线框ABCD ,AB 边电阻为R 1,CD 边电阻为R 2,其他两边电阻不计,从距离磁场上边界某一高度处自由下落,AB 边恰能匀速通过磁场,重力加速度为g ,则 ( )图9A .线框匀速运动的速度为mg R 1+R 24B 2a 2B .线框匀速运动时,AB 边消耗的电功率为m 2g 2R 14B 2a2 C .线框通过磁场的整个过程中,电流先沿顺时针方向,后沿逆时针方向D .从开始到AB 边刚好进入磁场的过程中,通过线框横截面的电荷量为Ba 2R 1+R 210. 如图10甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距L =0.2 m ,电阻R =0.4 Ω,导轨上停放一质量为m =0.1 kg ,电阻为r =0.1 Ω的金属杆ab ,导轨的电阻不计,整个装置处于磁感应强度为B=0.5 T的匀强磁场中,磁场的方向竖直向下.现用一外力F沿水平方向拉杆,使杆由静止开始运动,若理想电压表示数U随时间t的变化关系如图乙所示.求:图10(1)金属杆在第5秒末的瞬时速度;(2)若在5秒时间内电阻R上产生的焦耳热为12.5 J,求在这段时间内外力F所做的功.11.如图11所示,一质量m=0.5 kg的“日”字形匀质导线框“abdfeca”静止在倾角α=37°的粗糙斜面上,线框各段长ab=cd=ef=ac=bd=ce=df=L=0.5 m,ef与斜面底边重合,线框与斜面间的动摩擦因数μ=0.25,ab、cd、ef三段的阻值相等且均为R=0.4 Ω,其余部分电阻不计.斜面所在空间存在一有界矩形匀强磁场区域GIJH,其宽度GI=HJ=L,长度IJ>L,IJ∥ef,磁场垂直斜面向上,磁感应强度B=1 T.现用一大小F=5 N、方向沿斜面向上且垂直于ab的恒力作用在ab中点,使线框沿斜面向上运动,ab进入磁场时线框恰好做匀速运动.若不计导线粗细,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:图11(1)ab进入磁场前线框运动的加速度a的大小;(2)cd在磁场中运动时,外力克服安培力做功的功率P;(3)线框从开始运动到ef恰好穿出磁场的过程中,线框中产生的焦耳热与外力F做功的比值QW.12.如图12所示,正方形单匝均匀线框abcd,边长L=0.4 m,每边电阻相等,总电阻R=0.5 Ω.一根足够长的绝缘轻质细线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接绝缘物体P.物体P放在一个光滑的足够长的固定斜面上,斜面倾角θ=30°,斜面上方的细线与斜面平行.在正方形线框正下方有一有界的匀强磁场,上边界Ⅰ和下边界Ⅱ都水平,两边界之间距离也是L=0.4 m.磁场方向水平,垂直纸面向里,磁感应强度大小B=0.5 T.现让正方形线框的cd边距上边界Ⅰ高度h=0.9 m的位置由静止释放,且线框在运动过程中始终与磁场垂直,cd边始终保持水平,物体P始终在斜面上运动,线框刚好能以v=3 m/s的速度进入匀强磁场并匀速通过匀强磁场区域.释放前细线绷紧,重力加速度g=10 m/s2,不计空气阻力.求:图12(1)线框的cd边在匀强磁场中运动的过程中,c、d间的电压是多大;(2)线框的质量m1和物体P的质量m2分别是多大;(3)在cd边刚进入磁场时,给线框施加一个竖直向下的拉力F,使线框以进入磁场前的加速度匀加速通过磁场区域,在此过程中,力F做功W=0.23 J,求正方形线框cd边产生的焦耳热是多少.。

2016年高考物理试题分类汇编:九 磁场

2016年高考物理试题分类汇编:九 磁场

2016年高考物理试题分类汇编:九、磁场一、选择题1.(全国新课标I 卷,15)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。

质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。

若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。

此离子和质子的质量比约为( ) A. 11 B. 12C. 121D.144【答案】D【解析】设质子的质量数和电荷数分别为1m 、1q ,一价正离子的质量数和电荷数为2m 、2q ,对于任意粒子,在加速电场中,由动能定理得:2102qU mv =-得2qUv m=① 在磁场中应满足2v qvB m r=②由题意,由于两种粒子从同一入口垂直进入磁场,从同一出口垂直离开磁场,故在磁场中做匀速圆周运动的半径应相同. 由①②式联立求解得 匀速圆周运动的半径12mUr B q=,由于加速电压不变,故1212212111r B m q r B m q =⋅⋅= 其中211212B B q q ==,,可得121144m m = 故一价正离子与质子的质量比约为1442.(全国新课标II 卷,18)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔.筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN 成30︒角.当筒转过90︒时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为A .3BωB .2BωC .BωD .2Bω 【答案】A【解析】如图所示,由几何关系可知粒子的运动轨迹圆心为'O ,''30MO N ∠=由粒子在磁场中的运动规律可知22πF m r T ⎛⎫= ⎪⎝⎭向 ①=F F qvB =向合 ②由①②得2mT Bq π=即比荷2q m BTπ= ③由圆周运动与几何关系可知 t t =粒子筒即3090360360T T ︒︒⋅=⋅︒︒粒子筒则3T T =粒子筒 ④ 又有2T πω=筒 ⑤由③④⑤得3q m Bω= 3. (全国新课标III 卷,18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

高考物理母题题源系列 专题09 带电粒子在磁场中的运动(含解析)

高考物理母题题源系列 专题09 带电粒子在磁场中的运动(含解析)

专题09带电粒子在磁场中的运动【母题来源一】2016年四川卷【母题原题】如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场。

一带正电的粒子从f点沿fd方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b,当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c,不计粒子重力。

则:()A.v b:v c=1:2,t b:t c=2:1 B.v b:v c=2:2,t b:t c=1:2 C.v b:v c=2:1,t b:t c=2:1 D.v b:v c=1:2,t b:t c=1:2【答案】A【名师点睛】此题考查了带电粒子在匀强磁场中的运动;做此类型的习题,关键是画出几何轨迹图,找出半径关系及偏转的角度关系;注意粒子在同一磁场中运动的周期与速度是无关的;记住两个常用的公式:mvRqB=和2mTqBπ=。

【母题来源二】2016年全国新课标Ⅰ卷【母题原题】现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。

质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。

若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。

此离子和质子的质量比约为:()A.11 B.12 C.121 D.144【答案】D【考点定位】带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动【名师点睛】本题主要考查带电粒子在匀强磁场和匀强电场中的运动。

要特别注意带电粒子在匀强磁场中做圆周运动的向心力由洛伦兹力提供,根据动能定理求出带电粒子出电场进磁场的速度。

本题关键是要理解两种粒子在磁场中运动的半径不变。

【命题意图】本题考查带电粒子在匀强磁场中做匀速圆周运动时遵循的规律,涉及向心力、洛伦兹力、圆周运动知识,意在考查考生对物理规律的理解能力和综合分析能力。

【考试方向】带电粒子在匀强磁场中做匀速圆周运动问题,是高考考查的重点和热点,可能以选择题单独命题,但更多的是结合其他知识以计算题的形式考查。

专题09 电磁感应现象及电磁感应规律的应用(高考押题)-2016年高考物理考纲解读及热点难点试题

专题09 电磁感应现象及电磁感应规律的应用(高考押题)-2016年高考物理考纲解读及热点难点试题

1.英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场,如图所示,一个半径为r 的绝缘光滑细圆环水平放置,环内存在竖直向上的磁场,环上套一带电荷量为q 的质量为m 的小球,已知 磁感应强度大小B 随时间均匀增大,其变化率为k ,由此可知( )A .环所在处的感生电场的电场强度的大小为kr 2B .小球在环上受到的电场力为kqrC .若小球只在感生电场力的作用下运动,则其运动的加速度为2πkqr mD .若小球在环上运动一周,则感生电场对小球的作用力所做的功大小是πr 2qk2.矩形导线框abcd 如图甲所示放在匀强磁 场中,磁感线方向与线框平面垂直,磁感应强度B 随时间变化的图象如图乙 所示.t =0时刻,磁感应强度的方向垂直纸面向里.若规定导线框中感应电 流逆时针方向为正,则在0~4 s 时间内,线框中的感应电流I 以及线框的ab 边所受安培力F 随时间变化的图象为(安培力取向上为正方向)( )3.如图所示,在PQ 、QR 区域存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合.导线框与磁场区域的尺寸如图所示.从t =0时刻开始线框向右匀速横穿两个磁场区域.以a →b →c →d →e →f 为线框中电流的正方向.以下四个it 关系示意图中正确的是( )4. (多选)如图所示,正方形金属线圈abcd 平放在粗糙水平传送带上,被电动机带动一起以速度v 匀速运动,线圈边长为L ,电阻为R ,质量为m ,有一边界长度为2L 的正方形磁场垂直于传送带,磁感应强度为B ,线圈穿过磁场区域的过程中速度不变,下列说法中正确的是( )A .线圈穿出磁场时感应电流的方向沿abcdaB .线圈进入磁场区域时受到水平向左的静摩擦力,穿出区域时受到水平向右的静摩擦力C .线圈经过磁场区域的过程中始终受到水平向右的静摩擦力D .线圈经过磁场区域的过程中,电动机多消耗的电能为2B 2L 3v R5. (多选)水平固定放置的足够长的U 形金属导轨处于竖直 向上的匀强磁场中,在导轨上放着金属棒ab ,开始时,ab 棒以水平初速度v 0 向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程 ( )A .安培力对ab 棒所做的功不相等B .电流所做的功相等C.产生的总内能相等D.通过ab棒的电荷量相等6.如图所示,水平放置的平行金属导轨MN和PQ之间接有定值电阻R,导体棒ab长为L且与导轨接触良好,整个装置处于竖直向上的匀强磁场中,现使导体棒ab匀速向右运动,下列说法正确的是()A.导体棒ab两端的感应电动势越来越小B.导体棒ab中的感应电流方向是a→bC.导体棒ab所受安培力方向水平向右D.导体棒ab所受合力做功为零7.如图所示,两个垂直于纸面的匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度均为a.高度为a的正三角形导线框ABC从图示位置沿x轴正方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,在下列图形中能正确描述感应电流I与线框移动距离x关系的是()8.如图所示,一根空心铝管竖直放置,把一枚小圆柱形的永磁体从铝管上端由静止释放,经过一段时间后,永磁体穿出铝管下端口.假设永磁体在铝管内下落过程中始终沿着铝管的轴线运动,不与铝管内壁接触,且无翻转.忽略空气阻力,则下列说法中正确的是()A.若仅增强永磁体的磁性,则其穿出铝管时的速度变小B.若仅增强永磁体的磁性,则其穿过铝管的时间缩短C.若仅增强永磁体的磁性,则其穿过铝管的过程中产生的焦耳热减少D.在永磁体穿过铝管的过程中,其动能的增加量等于重力势能的减少量9. 如图所示,一正方形闭合线圈,从静止开始下落一定高度后,穿越一个有界的匀强磁场区域,线圈上、下边始终与磁场边界平行.自线圈开始下落到完全穿越磁场区域的过程中,线圈中的感应电流I、受到的安培力F及速度v随时间t变化的关系,可能正确的是()10.一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示.t=0时刻对线框施加一水平向右的外力,让线框从静止开始做匀加速直线运动穿过磁场,外力F随时间t变化的图象如图乙所示.已知线框质量m=1 kg、电阻R=1 Ω,以下说法错误的是()A.线框做匀加速直线运动的加速度为1 m/s2 B.匀强磁场的磁感应强度为2 2 TC.线框穿过磁场的过程中,通过线框的电荷量为22 CD.线框边长为1 m11.(多选)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为1,两导轨间连有一电阻R,导轨平面与水平面的夹角为θ,在两 虚线间的导轨上涂有薄绝缘涂层,匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直,质量为m 的导体棒从h 高度处由静止释放,在刚要滑到涂层 处时恰好匀速运动,导体棒始终与导轨垂直且仅与涂层间有摩擦,动摩擦因数μ=tan θ,其他部分的电阻不计,重力加速度为g ,下列说法正确的是( )A .导体棒到达涂层前做加速度减小的加速运动B .在涂层区导体棒做减速运动C .导体棒到达底端的速度为mgR sin θB 2L 2D .整个运动过程中产生的焦耳热为mgh -m 2g 2R 2sin 2θ2B 4L 412.如图所示,同一竖直面内的正方形导线框ABCD 、 abcd 的边长均为l ,电阻均为R ,质量分别为2m 和m .它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为2l 、磁感应强度大小为B 、方向垂直竖直面向里的匀强磁场.开始时,ABCD 的下边与匀强磁场的上边 界重合,abcd 的上边到匀强磁场的下边界的距离为l .现将系统由静止释放,当ABCD 全部进入磁场时,系统开始做匀速运动.不计摩擦和空气阻力,则 ( )A .系统匀速运动的速度大小为mgR 2B 2l 2B .从开始运动至ABCD 全部进入磁场的过程中,两线框组成的系统克服安培力做的功为mgl -3m 3g 2R 22B 4l 4C .两线框从开始运动至等高的过程中,所产生的总焦耳热为2mgl -3m 3g 2R 24B 4l 4D .线框abcd 通过磁场的时间为3B 2l 3mgR13.在xOy 平面内有一条抛物线金属导轨,导轨的抛物线方程为y 2=4x ,磁感应强度为B 的匀强磁场垂直于导轨平面向里,一根足够长的金属棒ab 垂直于x 轴从坐标原点开始,以恒定速度v 沿x 轴正方向运动,运动中始终与金属导轨保持良好接触形成闭合回路,如图所示.则下图所示图象中能表示回路中感应电动势大小随时间变化的图象是( )14.如图甲所示,线圈ABCD 固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB 边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是选项中的( )15.如图所示,两根竖直固定的足够长的金属导轨ab 和cd 相距L =0.2 m,另外两根水平金属杆MN 和PQ 的质量均为m =1×10-2 kg ,可 沿导轨无摩擦地滑动,MN 杆和PQ 杆的电阻均为R =0.2 Ω(竖直金属导轨电阻不计),PQ 杆放置在水平绝缘平台上,整个装置处于垂直导轨平面向里的磁场中,g 取10 m/s 2.(1)若将PQ 杆固定,让MN 杆在竖直向上的恒定拉力F =0.18 N 的作用下由 静止开始向上运动,磁感应强度B 0=1.0 T ,杆MN 的最大速度为多少?(2)若将MN 杆固定,MN 和PQ 的间距为d =0.4 m ,现使磁感应强度从零开 始以ΔB Δt=0.5 T/s 的变化率均匀地增大,经过多长时间,杆PQ 对地面的压力为零?16.如图(a)所示,平行长直导轨MN 、PQ 水平放置,两导轨 间距L =0.5 m,导轨左端M 、P 间接有一阻值R=0.2 Ω的定值电阻,导体棒ab质量m=0.1 kg,与导轨间的动摩擦因数μ=0.1,导体棒垂直于导轨放在距离左端为d=1.0 m处,导轨和导体棒始终接触良好,电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,t=0时刻,磁场方向竖直向下,此后,磁感应强度B随时间t的变化如图(b)所示,不计感应电流磁场的影响.取重力加速度g=10 m/s2.(1)求t=0时棒所受到的安培力F0;(2)分析前3 s时间内导体棒的运动情况并求前3 s内棒所受的摩擦力f随时间t变化的关系式;(3)若t=3 s时,突然使ab棒获得向右的速度v0=8 m/s,同时垂直棒施加一方向水平、大小可变化的外力F,使ab棒的加速度大小恒为a=4 m/s2、方向向左.求从t=3 s到t=4 s的时间内通过电阻的电荷量q.17.如图甲所示,两条不光滑平行金属导轨倾斜固定放置,倾角θ=37°,间距d=1 m,电阻r=2 Ω的金属杆与导轨垂直连接,导轨下端接灯泡L,规格为“4 V,4 W”,在导轨内有宽为l、长为d的矩形区域abcd,矩形区域内有垂直导轨平面均匀分布的磁场,各点的磁感应强度B大小始终相等,B随时间t变化如图乙所示.在t=0时,金属杆从PQ位置静止释放,向下运动直到cd位置的过程中,灯泡一直处于正常发光状态.不计两导轨电阻,sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2.求:(1)金属杆的质量m;(2)0~3 s内金属杆损失的机械能ΔE.:。

专题05 万有引力定律-2016年高考物理备考中等生百日捷进提升系列(原卷版)

专题五、万有引力定律中等生-百日捷进第一部分 特点描述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。

考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。

由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。

本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。

牢牢地抓住基本公式,建立天体运动的两个模型是解决万有引力问题的关键。

复习万有引力定律的应用时分两条主线展开,一是万有引力等于向心力,二是重力近似等于万有引力。

第二部分 知识背一背一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小跟物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。

2.公式:F =Gm 1m 2r 2,其中G 为引力常量,G =6.67×10-11 N ·m 2/kg 2,由卡文迪许扭秤实验测定.3.适用条件:两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离。

(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为_质点到球心间的距离。

二、三种宇宙速度三、经典时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量不随运动状态而改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的. 2.相对论时空观(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m=m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。

第三部分 技能+方法考点一、万有引力定律在天体运动中的应用 1.利用万有引力定律解决天体运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式G Mm r 2=m v 2r =mω2r =m 4π2T2·r =ma mg =GMmR 2(g 为星体表面处的重力加速度).2.天体质量和密度的计算(1)估算中心天体的质量①从环绕天体出发:通过观测环绕天体运动的周期T 和轨道半径r ,就可以求出中心天体的质量M ②从中心天体本身出发:只要知道中心天体表面的重力加速度g 和半径R ,就可以求出中心天体的质量M (2)设天体表面的重力加速度为g ,天体半径为R ,则mg =G Mm R 2,即g =GMR 2(或GM =gR 2)若物体距星体表面高度为h ,则重力mg ′=G Mm R +h 2,即g ′=GM R +h 2=R 2R +h 2g .【例1】“嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的16,月球半径为地球半径的14,根据以上信息得 ( ).A .绕月与绕地飞行周期之比为3∶ 2B .绕月与绕地飞行周期之比为2∶ 3C .绕月与绕地飞行向心加速度之比为1∶6D .月球与地球质量之比为1∶96 【答案】ACD【解析】由G MmR 2=mg 可得月球与地球质量之比:M 月M 地=g 月g 地×R 月2R 地2=196,D 正确.由于在近地及近月轨道中,“嫦娥一号”运行的半径分别可近似等于地球的半径与月球的半径,由G MmR 2=m ⎝⎛⎭⎫2πT 2R ,可得:T 月T 地= R 月3M 地R 地3M 月=32,A 正确.由G MmR 2=ma 可得:a 月a 地=M 月R 地2M 地R 月2=16,C 正确.考点二、双星模型1.模型概述:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星. 2.模型特点:(1)两颗行星做圆周运动所需的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在m 1、m 2两颗行星上.(2)由于两颗行星之间的距离总是恒定不变的,所以两颗行星的运行周期及角速度相等. (3)由于圆心在两颗行星的连线上,所以r 1+r 2=L .【例2】宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不至因万有引力的作用吸引到一起.试证明它们的轨道半径之比、线速度之比都等于质量的反比. (2)设两者的质量分别为m 1和m 2,两者相距L ,试写出它们角速度的表达式.【答案】(1)见解析;(2)G m 1+m 2L 3【解析】(1)证明:两天体绕同一点做匀速圆周运动的角速度ω一定要相同,它们做匀速圆周运动的向心力由它们之间的万有引力提供,所以两天体与它们的圆心总是在一条直线上.设两者的圆心为O 点,轨道半径分别为R 1和R 2,如图所示.对两天体,由万有引力定律可分别列出G m 1m 2L 2=m 1ω2R 1① G m 1m 2L2=m 2ω2R 2② 所以R 1R 2=m 2m 1,所以v 1v 2=R 1ωR 2ω=R 1R 2=m 2m 1,即它们的轨道半径、线速度之比都等于质量的反比.(2)由①②两式相加得G m 1+m 2L 2=ω2(R 1+R 2),因为R 1+R 2=L ,所以ω= G m 1+m 2L 3.考点三、卫星的在轨运行和变轨问题 (1)圆轨道上的稳定运行 G Mm r 2=m v 2r =mrω2=mr ⎝⎛⎭⎫2πT 2 (2)变轨运行分析当卫星由于某种原因速度v 突然改变时,受到的万有引力G Mm r 2和需要的向心力m v 2r 不再相等,卫星将偏离原轨道运动.当G Mm r 2>m v 2r 时,卫星做近心运动,其轨道半径r 变小,由于万有引力做正功,因而速度越来越大;反之,当G Mm r 2<m v 2r 时,卫星做离心运动,其轨道半径r 变大,由于万有引力做负功,因而速度越来越小.3.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定,卫星离地面高度h =r -R ≈6R(为恒量). (5)绕行方向一定:与地球自转的方向一致. 4.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.【例3】如图所示,北京飞控中心对“天宫一号”的对接机构进行测试,确保满足交会对接要求,在“神舟八号”发射之前20天,北京飞控中心将通过3至4次轨道控制,对“天宫一号”进行轨道相位调整,使其进入预定的交会对接轨道,等待神舟八号到来,要使“神舟八号”与“天宫一号”交会,并最终实施对接,“神舟八号”为了追上“天宫一号” ( ).A .应从较低轨道上加速B .应从较高轨道上加速C .应在从同空间站同一轨道上加速D .无论在什么轨道上只要加速就行 【答案】A【解析】“神舟八号”要追上“天宫一号”,不能像汽车或飞机那样,对准目标加速飞去,因为在同一轨道上,“神舟八号”一旦加速,它就离开原来轨道,进入另外一条较高的椭圆轨道,为了缩短距离,“神舟八号”应该从较低轨道加速,加速后轨道高度升高,才能与“天宫一号”在同一轨道上完成对接.据G Mmr 2=m ⎝⎛⎭⎫2πT 2r ,得T =2πr 3GM,先让“神舟八号”在低轨上运行,“天宫一号”在高轨道上的运动周期大、“神舟八号”在低轨道上的运行周期小,然后“神舟八号”适时加速后做离心运动,使之与“天宫一号”在高轨道上实现对接,故选项A 对B 错.若“神舟八号”在同一轨道上只加速,将要离开原轨道向外,所以只加速不减速是不可能进行对接的,因此选项C 、D 都错.第四部分 基础练+测1.【重庆市第一中学2016届高三上学期第二次月考考试理科综合试题】“轨道康复号”是“垃圾卫星”的救星,它可在太空中给“垃圾卫星”补充能量,延长卫星的使用寿命。

2016年高考+联考模拟物理试题分项版解析 专题09 电磁感应(解析版) 含解析

一、选择题1.【2016·上海卷】磁铁在线圈中心上方开始运动时,线圈中产生如图方向的感应电流,则磁铁A.向上运动B.向下运动C.向左运动D.向右运动【答案】B【考点定位】楞次定律和安培定则【方法技巧】通过安培定则判断感应磁场方向,通过楞次定律判断磁铁的运动情况。

2.【2016·北京卷】如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大。

两圆环半径之比为2:1,圆环中产生的感应电动势分别为E a和E b。

不考虑两圆环间的相互影响.下列说法正确的是A .E a :E b =4:1,感应电流均沿逆时针方向B .E a :E b =4:1,感应电流均沿顺时针方向C .E a :E b =2:1,感应电流均沿逆时针方向D .E a :E b =2:1,感应电流均沿顺时针方向【答案】B【解析】根据法拉第电磁感应定律可得=B E S t t∆∆=⋅∆∆Φ,根据题意可得41ab S S =,故:4:1a b E E =,感应电流产生的磁场要阻碍原磁场的增大,即感应电流产生向里的感应磁场,根据楞次定律可得,感应电流均沿顺时针方向。

【考点定位】法拉第电磁感应定律、楞次定律的应用【方法技巧】对于楞次定律,一定要清楚是用哪个手判断感应电流方向的,也可以从两个角度理解,一个是增反减同,一个是来拒去留,对于法拉第电磁感应定律,需要灵活掌握公式,学会变通。

3.【2016·海南卷】如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流.若A.金属环向上运动,则环上的感应电流方向为顺时针方向B.金属环向下运动,则环上的感应电流方向为顺时针方向C.金属环向左侧直导线靠近,则环上的感应电流方向为逆时针方向D.金属环向右侧直导线靠近,则环上的感应电流方向为逆时针方向【答案】D【考点定位】楞次定律【名师点睛】解决本题的关键会用安培定则判断电流周围磁场的方向,以及学会根据楞次定律来确定感应电流的方向。

专题09 磁场(包含复合场)(第01期)-决胜2016年高考全国名校试题物理分项汇编(解析版)

1.【唐山一中2015年高考仿真试卷】竖直放置的固定绝缘光滑轨道由半径分别为R 的41圆弧MN 和半径为r 的半圆弧NP 拼接而成(两段圆弧相切于N 点),小球带正电,质量为m ,电荷量为q 。

已知将小球由M 点静止释放后,它刚好能通过P 点,不计空气阻力。

下列说法正确的是A .若加竖直向上的匀强电场E (Eq <mg ),则小球能通过P 点B .若加竖直向下的匀强电场,则小球不能通过P 点C .若加垂直纸面向里的匀强磁场,则小球不能通过P 点D .若加垂直纸面向外的匀强磁场,则小球不能通过P 点 1.AC【考点】牛顿第二定律;洛伦兹力。

2.【唐山一中2015年高考仿真试卷】如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场。

现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是A .该带电粒子不可能刚好从正方形的某个顶点射出磁场B .若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是t 0C .若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是230t D .若该带电粒子从cd 边射出磁场,它在磁场中经历的时间一定是350t 2.AD【解析】 随粒子速度逐渐增大,轨迹由①→②→③→④依次渐变,由图可知粒子在四个边射出时,射出【考点】带电粒子在匀强磁场中的运动3.【河南省南阳市一中2012级高三春期第三次模拟考试】如图所示为洛伦兹力演示仪的结构图。

励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直。

电子速度的大小和磁场强弱可分别由通过电子枪的加速电压和励磁线圈的电流来调节。

下列说法正确的是A.仅增大励磁线圈中电流,电子束径迹的半径变大B.仅提高电子枪加速电压,电子束径迹的半径变大C.仅增大励磁线圈中电流,电子做圆周运动的周期将变大D.仅提高电子枪加速电压,电子做圆周运动的周期将变大3.B则电子做圆周运动的周期将变小,选项C 错误;仅提高电子枪加速电压,电子的速度变大,但是电子做圆周运动的周期不变,选项D 错误;故选B. 【考点】带电粒子在匀强磁场中的运动4.【哈尔滨三中2015年第四次模拟考试理科综合能力测试】如图所示,空间中存在一水平方向匀强电场和一水平方向匀强磁场,且电场方向和磁场方向相互垂直。

高考物理二轮复习【专题09】磁场与带电粒子在磁场中的运动(测)(原卷版)

班级______________ 姓名______________ 学号______________ 得分______________ 【满分:110分 时间:90分钟】 一、选择题(12×5=60分) 1.【2018·吉林市三模】下列说法中正确的是( ) A.在探究求合力方法的实验中利用了理想模型的方法 B.牛顿首次提出“提出假说,数学推理,实验验证,合理外推"的科学推理方法 C.用点电荷来代替实际带电物体是采用了等效替代的思想 D.奥斯特通过实验观察到电流的磁效应,揭示了电和磁之间存在联系

2.【2018·吉林松原油田高中10月基础调研试卷】图中的D为置于电磁铁两极间的一段通电直导线,电流方向垂直于纸面向里.在开关S接通后,导线D所受磁场力的方向是:( )

A.向上 B.向下 C.向左 D.向右

3.【2018·河南洛阳高三三练】带电荷量不变的微粒在匀强电场和匀强磁场的复合场中受重力、电场力、洛仑磁力(均不为0)作用,可能做的运动是( ) A.匀变速直线运动 B. 匀变速曲线运动 C.动能变化的直线运动 D.动能不变的曲线运动

4.【2018•重庆市二诊】在高能物理研究中,粒子回旋加速器起着重要作用.回旋加速器的工作原理如题5图所示,置于高真空中的D形金属盒半径为R,磁感应强度为B的匀强磁场与盒面垂直.S处粒子源产生的粒子,质量为m、电荷量为+q,初速不计,在加速器中被加速,加速电压为U,磁场的磁感应强度为B,D型盒的半径为R.两盒间的狭缝很小,每次加速的时间很短,可以忽略不计,加速过程中不考虑相对论效应和重力作用.下列说法正确的是( ) A.为使正离子每经过窄缝都被加速,交变电压的频率f=2πm/(qB) B.粒子第H次与第1次在下半盒中运动的轨道半径之比为2n C.若其它条件不变,将加速电压U增大为原来的2倍,则粒子能获得的最大动能增大为原来的2倍 D.若其它条件不变,将D型盒的半径增大为原来的2倍,则粒子获得的最大动能增大为原来的4倍

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 特点描述 本章内容包括磁场的基本性质和安培定则、左手定则的应用、安培力的应用、洛伦兹力和带电粒子在磁场中的运动、带电粒子在复合场中的运动等内容,基本概念多且非常抽象,需要熟练掌握磁场的基本概念,掌握用磁感线描述磁场的方法,以及电流、带电粒子在磁场中的受力和运动情况,结合牛顿运动定律、运动学知识、圆周运动知识及功能关系等知识进行综合分析.历年高考对本考点知识的考查覆盖面大,几乎每个知识点都考查到。特别是左手定则的运用和带电粒子在磁场中的运动更是两个命题频率最高的知识点.带电粒子在磁场中的运动考题一般运动情景复杂、综合性强,多以把场的性质、运动学规律、牛顿运动定律、功能关系及交变电流等有机结合的计算题出现,难度中等偏上,对考生的空间想象能力、物理过程和运动规律的综合分析能力及用数学方法解决物理问题的能力要求较高。从近两年高考看,涉及本考点的命题常以构思新颖、高难度的压轴题形式出现,在复习中要高度重视。特别是带电粒子在复合场中的运动问题在历年高考中出现频率高,难度大,经常通过变换过程情景、翻新陈题面貌、突出动态变化的手法,结合社会、生产、科技实际来着重考查综合分析能力、知识迁移和创新应用能力。情景新颖、数理结合、联系实际将是本考点今年高考命题的特点。 第二部分 知识背一背 一、洛伦兹力: 1、产生洛伦兹力的条件: (1)电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. (2)电荷的运动速度方向与磁场方向不平行. 2、洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力为零;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,等于qvB; 3、洛伦兹力的方向:洛伦兹力方向用左手定则判断 4、洛伦兹力不做功. 二、带电粒子在匀强磁场的运动 1、带电粒子在匀强磁场中运动规律 初速度的特点与运动规律 (1)000Fv,,为静止状态; (2)0//0FBv,,则粒子做匀速直线运动; (3)qvBFBv,0,则粒子做匀速圆周运动,其基本公式为:

向心力公式:RvmBqv2 运动轨道半径公式:BqmvR; 运动周期公式:BqmT2 动能公式:mBqRmvEk22122 2、解题思路及方法 圆周运动的圆心的确定: (1)利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心. (2)利用圆上弦的中垂线必过圆心的特点找圆心 三、带电体在复合场或组合场中的运动. 复合场是指重力场、电场和磁场三者或其中任意两者共存于同一区域的场;组合场是指电场与磁场同时存在,但不重叠出现在同一区域的情况.带电体在复合场中的运动(包括平衡),说到底仍然是一个力学问题,只要掌握不同的场对带电体作用的特点和差异,从分析带电体的受力情况和运动情况着手,充分发掘隐含条件,建立清晰的物理情景,最终把物理模型转化成数学表达式,即可求解. 解决复合场或组合场中带电体运动的问题可从以下三个方面入手:1、动力学观点(牛顿定律结合运动学方程);2、能量观点(动能定理和机械能守恒或能量守恒);3、动量观点(动量定理和动量守恒定律). 一般地,对于微观粒子,如电子、质子、离子等不计重力,而一些实际物体,如带电小球、液滴等应考虑其重力.有时也可由题设条件,结合受力与运动分析,确定是否考虑重力. 四、带电粒子在复合场中运动的应用实例 1.电视显像管 电视显像管是应用电子束磁偏转的原理来工作的,使电子束偏转的磁场是由两对偏转线圈产生的.显像管工作时,由阴极发射电子束,利用磁场来使电子束偏转,实现电视技术中的扫描,使整个荧光屏都在发光. 2.速度选择器(如图所示)

(1)平行板中电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出 来,所以叫做速度选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是BEvqvBqE,即。 3.磁流体发电机

(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B是发电机正极. (3)磁流体发电机两极板间的距离为l,等离子体速度为v,磁场的磁感应强度为B,则由qvBlUqqE得两极板间能达到的最大电势差BlvU.

4.电磁流量计

工作原理:如图所示,圆形导管直径为d,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定,即:dUqqEqvB,所以BdUv,因此液体流量BdUSvQ4。 5.霍尔效应 在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应,所产生的电势差称为霍尔电势差,其原理如图所示.

第三部分 技能+方法 考点一 带电粒子在磁场中的运动 解析带电粒子在磁场中运动的问题,应画出运动轨迹示意图,确定轨迹圆的圆心是关键.常用下列方法确定圆心:①已知轨迹上某两点速度方向,作出过两点的速度的垂线,两条垂线的交点即圆心;②已知轨迹上两个点的位置,两点连线的中垂线过圆心. 带电粒子在磁场中运动侧重于运用数学知识(圆与三角形知识)求解,带电粒子在磁场中偏转的角度、初速度与磁场边界的夹角往往是解题的关键,角度是确定圆心、运动方向的依据,更是计算带电粒子在磁场中运动时间的桥梁,如带电粒子在磁场中运动的时间为Tt2(α是圆弧对应的圆心角).带电粒子在磁场中的运动半径不仅关联速度的求解,而且在首先确定了运动半径的情况下,可利用半径发现题中隐含的几何关系. 【例1】如图所示,带有正电荷的A粒子和B粒子先后以同样大小的速度从宽度为d的有界匀强磁场的边界上的O点分别以30°和60°(与边界的夹角)射入磁场,又都恰好不从另一边界飞出,则下列说法中正确的是( )

A.A、B两粒子在磁场中做圆周运动的半径之比是31 B.A、B两粒子在磁场中做圆周运动的半径之比是323 C.A、B两粒子qm之比是31 D.A、B两粒子qm之比是323 考点二 带电粒子在复合场中的运动问题 1.是否考虑粒子重力 (1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力. (2)在题目中有明确说明是否要考虑重力的,按题目要求处理. (3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力. 2.分析方法 (1)弄清复合场的组成.如磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合等. (2)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析. (3)确定带电粒子的运动状态,注意运动情况和受力情况的结合. (4)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理. 3.带电粒子在叠加场中无约束情况下的运动情况分类 (1)磁场力、重力并存 ①若重力和洛伦兹力平衡,则带电体做匀速直线运动. ②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因F洛不做功,故机械能守恒,由此可求解问题. (2)电场力、磁场力并存(不计重力的微观粒子) ①若电场力和洛伦兹力平衡,则带电体做匀速直线运动. ②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动. ③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因F洛不做功,可用能量守恒或动能定理求解问题. 4.带电粒子在复合场中有约束情况下的运动 带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果. 【例2】一个带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图中的虚线所示.在如图所示的几种情况中,可能出现的是( )

考点三 与磁场有关的实际应用问题 与磁场、复合场相关的实际应用问题很多,如回旋加速器、速度选择器、质谱仪、电磁流量计、等离子发电机、霍尔效应等,对这类问题的分析首先要清楚相关仪器的结构,进而理解其原理,其核心原理都是带电粒子在磁场、复合场中运动规律的应用.对于常用仪器要记住其基本结构、基本原理以及经常出现的基本结论,例如“回旋加速器加速后的带电粒子所能达到的最大动能与加速次数无关,而与加速器半径和磁感应强度有关”等,这样有利于提高快速解题能力. 【例3】1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于真空中的两个D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直. 设两D形盒之间所加的交流电压为U,被加速的粒子质量为m、电量为q,粒子从D形盒一侧开始被加速(初动能可以忽略),经若干次加速后粒子从D形盒边缘射出.求:

相关文档
最新文档