2016国考行测备考:由“鸡兔同笼”问题学母题思想
鸡兔同笼问题的求解方法及数学思想

鸡兔同笼问题的求解方法及数学思想鸡兔同笼,这个问题,是我国古代著名趣题之一。
大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
求笼中各有几只鸡和兔?解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。
概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数 - 每只鸡脚数×鸡兔总数)÷(每只兔子脚数 - 每只鸡脚数)。
类似地,也可以假设全是兔子。
解:假设全是鸡:2×35=70(只 ) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条)24 ÷2=12 ( 只 ) ――兔35-12=23(只) ――鸡方程:解:设兔有 x只,则鸡有35-x只。
4x+2(35-x)=94,4x+70-2x=94 2x=24 x=12 35-x=35-12=23 答:兔有12 只,鸡有23 只。
我们也可以采用列方程的办法:设兔子的数量为x,鸡的数量为y 那么:x+y=35 那么4x+2y=94 这个算方程解出后得:兔子有 12 只,鸡有 23 只用假设法来解对于这个问题,我们给出如下几种求解方法,并给出相应的公式;解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数 =兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数 =鸡的只数解法3:总脚数÷2- 总头数 =兔的只数,总只数 - 兔的只数 =鸡的只数解法4:兔的只数=总脚数÷ 2―总头数,总只数 - 兔的只数 =鸡的只数解法5(方程):x=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(x=兔的只数),总只数 -兔的只数 =鸡的只数解法6(方程):x=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(x=鸡的只数),总只数-鸡的只数 =兔的只数解法7 鸡的只数=(4×鸡兔总只数 - 鸡兔总脚数)÷2,兔的只数=鸡兔总只数 - 鸡的只数解法8 兔总只数=(鸡兔总脚数 -2 ×鸡兔总只数)÷2,鸡的只数=鸡兔总只数-兔总只数解法:9 总腿数 /2- 总头数 =兔只数,总只数 - 兔只数 =鸡的只数“鸡兔同笼”中的数学思想方法一、化归思想化归是基本而典型的数学思想。
行测数量关系:鸡兔同笼

行测数量关系:鸡兔同笼在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面为你精心准备了“行测数量关系:鸡兔同笼”,持续关注本站将可以持续获取的考试资讯!行测数量关系:鸡兔同笼行测数量运算部分一直是考生认为难度最大的一个板块,通常10道数学运算题目,准确率往往难以达到50%,甚至是花费了大量的时间来做该部分。
那么原因主要还是学员对这部分题目有着畏怯的心理,未战先败;另外的原因就是在做这一部分题目的时候缺乏相应的方法和技巧,导致浪费了大量的时间在一些所谓的难题上。
今天跟大家分享盈亏思想中的一个模型——鸡兔同笼,能够解决一类问题,较列方程会比较方便。
一、经典例题大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。
求笼中各有几只鸡和兔?1.方程法:解:设鸡、兔各有x, y.根据等量关系可以得到x+y=35;2x+4y=94.这样可以得到x=23, y=122.盈亏思想(鸡兔同笼):解:可将笼中动物全部看成鸡(兔亦可),这样35只鸡有35个头和70只脚,会发现脚的数量还差24只。
之所以脚的数量对不上,是因为其中的一些兔子被当成了鸡,一只兔子看成一只鸡,就少掉2只脚,所以一共少了24只脚,就对应把12只兔子看成了12只鸡。
因此就得到了兔子的数量为12,所以鸡的数量就为23.3.解法特征如果先设的是鸡,求出来的是兔子;如果先设的是兔子,则求出来的鸡。
4.题型特征存在两个总量(一共35个头,一共94只脚);存在两个分量(一只鸡有2只脚,一只兔子有4只脚)二、应用某餐厅设有可坐12人和可坐10人两种规格的餐桌共18张,最多可容纳208人同时就餐,问该餐厅有几张10人桌?A.2B.4C.6D.8【答案】B。
行测数量关系技巧:鸡兔同笼问题

⾏测数量关系技巧:鸡兔同笼问题 公务员⾏测考试主要是考量⼤家的数学推理能⼒和逻辑分析能⼒,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:鸡兔同笼问题”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:鸡兔同笼问题 在近年来的公职考试数量关系中,计算问题近年来备受出题⼈青睐,考察频率也在不断的上升,虽然这⼀类型的题⽬在题⽬特征上花样百出,但是考点却不外乎就那么⼏个,最常见的就是接下来要讲解的鸡兔同笼。
⼀、例题精讲 若⼲只鸡和兔⼦关在同⼀个笼⼦⾥,从上边数,有35个头,从下边数,有94只脚,问,鸡和兔⼦各有⼏只? 【解析】题⽬中告诉我们鸡和兔⼦共有35个头,94只脚,⽽常识告诉我们,⼀只鸡有⼀个头两只脚,⼀只兔⼦有⼀个头4只脚,所以,我们可以假设鸡和兔⼦分别有x,y只,则有: x+y=35,2x+4y=94,由此可以解得x=23,y=12。
按照我们的⽅程法,其实是可以求解出来的,但是在实际操作过程中,⽅程可能⽐较耗时,所以我们需要给⼤家讲解另外⼀种快速的⽅法,假设法。
在这道题中,我们可以假设全部的动物都是鸡,则35个动物就会有70只脚,但实际上,有94只脚,所以我们算的70会和实际相差24只脚,再来思考⼀下,为啥会相差呢?是因为我们把所有的兔⼦都当做了鸡,每把⼀直兔⼦当做鸡的时候就会少两只脚,所以共少24只脚,就需要12只兔⼦。
因此就会有23只鸡。
对⽐上述两种⽅法,我们会发现假设法⽐较简单⼀些。
⼆、典型例题 例1.某餐厅设有可坐12⼈和10⼈两种规格的餐桌共28张,最多可容纳332⼈同时就餐,问餐厅有多少10⼈桌?A.2B.4C.6D.8 【答案】A。
解析:假设全部都是10⼈桌,则共可以容纳280⼈,但实际上容纳332⼈,相差52⼈,⽽每⼀张12⼈桌和10⼈桌会相差2⼈,所以会有26张12⼈桌,因此我们可以得到10⼈桌有2张。
三、题⽬巩固 例. 有⼀辆货车运输2000只玻璃瓶,运费按到达时完好的瓶⼦数⽬计算,每只2⾓钱,如有破损,破损⼀只还要倒赔2⾓,结果共得到运费393.2元,破损的只数是:A.17B. 24C.34D.36 【答案】A。
公务员行测考试鸡兔同笼题解答

公务员行测考试鸡兔同笼题解答行测数量关系中有很多具体的题型,并且每种题型会有对应的方法与技能,要了解和掌控必要的方法与技能,可以到达短时间收获更多的分数。
下面作者给大家带来关于公务员行测考试鸡兔同笼题解答,期望会对大家的工作与学习有所帮助。
公务员行测考试鸡兔同笼题型特点题目中显现:一、同一事物有两种不同不标准;二、两种标准数以及事物总数,就可称为鸡兔同笼。
解题方法(1)方程法:利用已知条件设未知量以及找两个等量关系建立二元一次方程组,进行求解。
(2)假定法:假定事物为其中一个标准。
鸡和兔在同一个笼子里,假定笼子里都是鸡,这个假定条件成立的话,则脚应当有多少只,同时看已知题干信息有多少只脚,两者会存在一定的差,此时产生的差值是由于XXX的存在,每多一只XXX会比鸡多两只脚,看多少鸡的存在才会产生脚的差值;同理,也能够反之设所有都是XXX,就可以求鸡的只数。
(求鸡设兔,求兔设鸡) 【例1】送货公司为超市运送鸡蛋,每完好送一个,运费0.01元,如果显现破旧,打破一个,除不收运费外,还需赔偿0.04元。
现在一次运送鸡蛋5000个,实得运费45元,问鸡蛋打破了多少个?A、100B、200C、300D、400【答案】A。
对于运送一个鸡蛋有两个标准,完好运费和破旧赔偿以及对应鸡蛋总个数,利用假定法,求打破鸡蛋个数,可以设5000都完好,则可以得到运费5000×0.01=50元,实际得到45元,少了5元,是由于存在打破,打破一个少赚0.05元,则存在5÷0.05=100,故选A。
【例2】“复兴号”高铁从A地动身向相距1260千米的B地行驶,其中前一段以210千米/小时平均速度行驶,后一段以280千米/小时的平均速度行驶,5小时恰好走完全程。
则前后两段路程相差:A.620千米B.420千米C.520千米D.720千米【答案】B。
对于行驶路程有两种不同的速度,同时已知总路程,利用假定法,假定5小时都以210千米/小时的速度行驶,则可以行驶5×210=1050千米,实际行驶了1260千米,少走了210千米,是由于存在以250千米/小时的速度行驶的情形,即1小时就少70千米,则存在以280千米/小时行驶210÷70=3小时,故后段长840千米;则以210千米/小时的速度就行驶了2小时,行驶了420千米,前后相差为840-420=420千米,故选B。
公务员行政能力测试数量关系鸡兔同笼问题

973844.doc1 / 3声明:本资料由 大家论坛公务员考试专区/forum-66-1.html 收集整理,转载请注明出自 更多公务员考试信息,考试真题,模拟题:/forum-66-1.html 大家论坛,全免费公益性公务员论坛,等待您的光临!公务员行政能力测试鸡兔同笼问题“鸡兔同笼”是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解.因此很有必要学会它的解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,•也就是 244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式: 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) 当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只). 说明设想中的“鸡”,有34只是兔子,也可以列出公式: 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”. 现在,拿一个具体问题来试试上面的公式.例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,2/3973844.doc 它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有:蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只“鸡”,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.下面再举四个稍有难度的例子.例3一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数=(30-3×7)÷(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是:(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是 973844.doc3 / 314-4=10(岁). 父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)÷(3-1)=15(岁). 这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6)=5(只). 因此就知道6条腿的小虫共 18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式 蝉数=(13×2-20)÷(2-1)=6(只). 因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉. 例6某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有 52-7-6=39(人). 他们共做对181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39. 对4道题的有(144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人.更多公务员考试信息,考试真题,模拟题:/forum-66-1.html 大家论坛,大家学习的地方!。
公务员考试之鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。
(1)方程法:通过一元一次方程或者二元一次方程组求解;
(2)十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。
(鸡兔同笼原型) 方程法:设鸡的个数为x,则兔的个数为35-x,则有2x+4(35-x)=94,解得x=23。
故有鸡23只,兔12只。
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
问甲教室当月共举办了多少次这项培训?
A.8
B.10
C.12
D.15
【答案】D
【方程法】甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,设甲教室举办了x次培训,则有:50x+45(27-x)=1290,解得x=15。
故选D。
【公式法】根据题意,甲教室一次可坐10×5=50人,乙教室一次可坐9×5=45人,则由鸡兔同笼公式可知:甲教室举办的培训次数=
(红麒麟2013版强势升级,打造更权威、更智能、更实用的公考学习平台,专属方案、迭代题库、视频课程和配套练习、解析问答、学霸排名、能力测评、申论批改打分、面试语音答题、名师语音点评……一切尽在免费中)。
手机版红麒麟,无需下载,手机浏览器登录
——源自红麒麟定制式公考督学平台。
国考行测难点技巧掌握:数量关系中鸡兔同笼问题
国考行测难点技巧掌握:数量关系中鸡兔同笼问题数量关系一直是行测考试中的难点,本身题目难度较大,在有限的时间内数量题目经常被放弃,但由于题型分值较高,学员又觉得弃之可惜,所以针对数量中的相对简单的一类题型进行梳理。
接下来中公教育专家讲的是鸡兔同笼问题,首先来看一道例题:【例题】:一山兔子一山鸡,两山并在一山里,数头49只,数脚整100只,问鸡兔各有多少只?A.38、11B.40、9C.44、5D.48、1(方法一):由已知条件,头和脚的等量关系,可设有鸡x只,有兔y只,则有:x+y=49 ①2x+4y=100 ②将①×2得: 2x+2y=98 ③,②-③得:2y=2,解得y=1,x=48。
故选D。
(方法二):假设49只全是鸡,则应有脚为49×2=98(只),实际有脚100只,说明少算2只脚,是由于将所有的兔子也当做鸡来计算导致的,每只兔子少算(4-2)=2只脚,则应有兔子(100-49×2)÷(4-2)=1只。
由于设49只全部为鸡,则所求数为兔子数量。
故选D。
小结:简单的方法二其实是在方法一的基础上简化了运算过程。
在方法一中,我们先将方程①×2,在此过程中就相当于假设鸡兔都是2只脚,也就是假设49只全部为鸡共有98只脚;②-③得(100-98)=(4-2)y,y=(100-98)÷(4-2)=1,其中(100-98)说明假设全是鸡少算2只脚,(4-2)说明每只兔子少算2只脚,用(100-98)÷(4-2)=1即为兔子数量。
【巩固】:小伟参加英语考试,共50道题,满分为100分,得60分算及格。
试卷评分标准为做对一道加2分,做错一道倒扣2分,结果小伟做完全部试题但未及格。
他发现,如果他少做错两道题就刚好及格了。
问小伟做对了几道题?【解析】:根据题干中“如果他少做两道题就刚好及格了”说明少错两道就少扣4分,这两道题目没错说明作答正确要再加4分,也就是说目前得分基础上再得8分就及格了,目前得分52分。
行测数量关系技巧:“鸡兔同笼”数清楚
⾏测数量关系技巧:“鸡兔同笼”数清楚 掌握⽅法做事永远都是事半功倍,国考的时候也是这样的,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:“鸡兔同笼”数清楚”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:“鸡兔同笼”数清楚 家⼀起分享鸡兔同笼问题的解题⽅法。
例:鸡和兔放在同⼀个笼⼦⾥,数头⼀共35个,数脚⼀共94只,问笼⼦中鸡和兔各有多少只? 解析:⽅法⼀:⽅程法。
⽐较基础的⽅法,设笼⼦当中有鸡x只,兔y只。
题⼲中存在两个等量关系式,第⼀个是头总共35个,第⼆个是脚总共94个。
可列得⽅程: ⽅程法相对来讲好理解⼀些,但是有的时候⽅程法解⽅程的计算量更⼤⼀些,⽽假设法的计算量更⼩⼀些。
鸡兔同笼的题型特征:⼀、题⼲⼀般会涉及两个对象:鸡和兔;⼆、题⼲中会有两个总量:头35个,脚94个;三、题⼲中会有两个单量:⼀只鸡2个脚,⼀只兔⼦4个脚。
解题原则:设鸡求兔,设兔求鸡。
假设全都是鸡,最后求出来的是兔⼦的数量,假设全都是兔⼦,最后求出的是鸡的数量。
例:有⼀辆货车运输2000只玻璃瓶,运费按到达时完好瓶⼦数⽬计算,每只2⾓,如有破损,破损⼀只还要倒赔2⾓,结果得到运费393.2元,破损只数是:A.17B.24C.34D.36 解析:⾸先识别考点:两个对象分别是好的玻璃和破损的玻璃;两个总量分别是2000只玻璃瓶,393.2元也就是3932⾓;两个单量分别是⼀只好的玻璃瓶2⾓,⼀只破损的玻璃瓶倒赔两⾓。
假设都是好的玻璃瓶,总价应该是4000⾓,实际是3932⾓,损失了68⾓,⼀只好的玻璃瓶如果破损,倒赔2⾓也就是相当于损失4⾓,故总共损失了 故选择A。
⾏测⽚段阅读技巧:⾔语理解题“过度推断”如何把握 对于⾏测⾔语理解中的主旨观点题,其实只要经过第⼀阶段的学习之后就还是⽐较简单的,也是提分快的题型之⼀,但是到了后期困扰⼩伙伴⼉们最多的问题就是我到底什么时候选择对策,为什么有时候我选择对策就是过度推断,⽽到了下⼀次,我感觉是过度推断不能选对策,但是答案却恰恰选了对策呢?如果有这样疑惑的⼩伙伴⼩编建议⼤家那就要搞清楚作者的写作意图⼀定在⽂段内,只不过有时候在⽂字内,有时候在⽂字外,我们在纠结的时候需要结合⽂体和⽂段⾏⽂具体分析。
行测答题技巧:盈亏思想巧解鸡兔同笼类问题
【导语】在事业单位行测考试中,鸡兔同笼类问题经常会在考题中出现,面对这类问题,快速巧妙的解题方法必不可少!中公事业单位考试网就此为考生做介绍。
【例1】有若干只鸡和兔子,它们共有35个头,94只脚,鸡和兔各有多少只?【解析1】:设鸡为x只,兔子为y只,一只鸡两只脚,一只兔子四只脚。
则x+y=35 (1)2x+4y=94 (2)解方程:(1)×2=2x+2y=70, (2)-(1)=2y=24,y=12,x=23像这样一道题,我们需要列方程,解方程,但是考试中我们分秒必争,为了提高解题速度,我们运用盈亏思想把列方程计算的过程转化成口算的过程帮助大家解答鸡兔同笼问题。
盈亏思想指的是多的量和少的量保持平衡的思想,核心是:多的量=少的量【解析2】:我们可以假设全是鸡,那就是有35只鸡,那么共有70只脚,而实际上有94只脚,少了24只,运用盈亏思想,多退少补,少的就要补上,总共比实际少了24只脚,一只鸡比一只兔子少2只脚,那么有24÷2=12,有12只兔子。
我们也可以发现这也是解方程的过程,利用盈亏思想帮我们省略了列方程的过程,从而提高了速度。
下面我们就此类型题目继续体验下盈亏思想的特点。
【例2】足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。
一个队打了14场,负5场,共得19分,那么这个队胜了几场?A. 3B.4C. 5D. 6答案:C【解析】:负一场得0分,我们只用看胜一场的情况和平一场的情况,负5场,胜的场数和平的场数总共9场,根据盈亏思想,可以假设全部胜一场,则总分应该为3×9=27,总共19分,多出了27-19=8,胜一场和平一场的分数相差2分,则8÷2=4场为平场,胜的场数为9-4=5。
【例3】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
2016江西公务员考试行测之鸡和兔的故事
江西公务员考试真题<<<点这里看江西公务员考试行测之鸡和兔的故事根据最新的江西公务员招考信息和考试大纲,《行政职业能力测验》行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。
江西中公教育整理了江西省考资料大全供考生备考学习。
需要更多指导,请选择在线咨询一对一解答。
很多考生在小学奥数中就学习过“鸡兔同笼”问题,而事实上,这种“鸡兔同笼”问题在公务员考试中也是有所应用的。
所谓“鸡兔同笼”问题是指:一个笼子里,有若干只鸡和兔子,已知鸡和兔子的头数为35只,脚数共为94个,问鸡和兔子分别为多少个?像这样一种问题我们称为鸡兔同笼问题。
拿到这样的题,很多同学首先想到的是通过方程的思想去来求解,也就是设鸡和兔子分别为X,Y只,之后列出方程组来进一步求解,虽然这种方程组并不难解,但毕竟也需要列出方程从而来进行计算,所以也不能够进行秒杀,快速的选出答案。
中公教育专家认为,在这里可以利用极值的思想来解决鸡兔同笼问题。
都看成鸡,应该是70个脚,而事实上是94个脚,说明多了24只脚是由于兔子导致的,而每只兔子比鸡多两只脚,所以24除以2得到12为兔子个数;同理,都看成兔子,应该是35×4=140个脚,而事实上是94个脚,说明少了46个脚是鸡影响的,所以46除以2得到23为鸡的个数。
按照以上的方法便可以省去了列方程的过程,从而能够快速的口算出结果。
真题演练:例1.某零件加工厂按照完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资10元,每做一个不合格零件将被扣除5元,已知某人一天共做了12个零件,得工资90元,那么他在这一天做了多少个不合格零件?中公解析:都看成合格零件,应该得到120元钱,而事实上得到了90元,差出的30元钱是由于做了不合格零件,每一个不合格的零件与合格零件相比损失了15元钱,所以30除以15=2个不合格零件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠阳2016国考行测备考:由“鸡兔同笼”问题学母题思想
公务员行测考试中的数量关系常常是广大考生为之头疼的部分,一方面是因为它涉及知识点繁多,需要考生综合运用各类方法技巧,另一方面是因为考生往往只能局限于一道题目的解决,不能做到触类旁通,学会一类题目,缺乏母题思想。
接下来通过鸡兔同笼问题为广大考生介绍何为母题思想。
【母题】有鸡和兔子放在同一个笼子里,数数头一共有10个,数数脚一共有26只,问鸡和兔子各有几只?
解析:假设10个头全部为鸡的头,每只鸡有两只脚,所以一共应有20只脚,事实上一共有26只脚,故少算了6只脚。
之所以少算是因为把一部分的兔子假设成鸡了,而一只兔子假设成一只鸡就少算2只脚,故少算的6只脚是3只兔子给少的,因此兔子有3只,鸡有7只。
【变式一】小明去参加数学竞赛考试,一共回答了20道题。
已知答对一题得3分,答错一题扣1分。
考试结束,小明一共得了40分,问小明答对了几道题?
解析:题目很容易判断为鸡兔同笼问题,答对的题目是“鸡”,答错的题目是“兔子”。
假设20道题均答对,每道题得3分,则小明应该得60分,事实上小明只得了40分,所以多算了20分,之所以多算是因为把答错的题目当成了答对的题目,而一道题目答对与答错里外里差4分,故20分是5道题给差出来的。
所以,小明答错了5道题,答对了15道题。
【变式二】小王培育1000亩树苗,培育成功一亩可以赚2元,培育失败一亩不仅不赚还要倒赔2元,所有树苗培育完成后,小王一共得到1600元。
问小王培育成功多少亩树苗?
解析:题目为鸡兔同笼问题,培育成功的树苗为“鸡”,培育失败的树苗为“兔子”。
假设1000亩树苗均培育成功,每亩赚2元,则小王可以赚2000元,事实上小王只得到了1600元,所以多算了400元。
之所以多算是因为把培育失败的树苗当成了培育成功的树苗,而树苗培育成功与失败里外里差4元,故400元是100亩树苗给差出来的。
所以小王培育失败了100亩树苗,成功了900亩树苗。
【变式三】有甲乙两个教室,每个教室均有5排座位,甲教室每排可以坐10人,乙教室每排可以坐9人。
已知当月在两个教室一共举办讲座27场,场场座无虚席,共培训1290人,请问在甲教室举办了几场讲座?
解析:题目为鸡兔同笼问题,甲教室为“鸡”,乙教室为“兔子”。
假设27场讲座均在甲教室举办的,甲教室每排坐10人,有5排,故每场讲座可以容纳50人,则27场讲座一共可以培训1350人,事实上只培训了1290人,所以多算了60人。
之所以多算是因为把在乙教室培训的当成了在甲教室培训,一场在乙办的讲座与在甲办的,里外里差5人,故60人是12场讲座差出来的,所以在乙教室培训了12场,甲教室培训了15场。
总结以上题目可知,数量关系只要广大考生掌握了母题思想,学会归类,通过一道题目整理一类题目,加以练习一定可以让大家的成绩得到很大的提升。
最后,预祝广大考生备考成功。