高中物理生活中的圆周运动题20套(带答案)含解析
高中物理生活中的圆周运动试题(有答案和解析).docx

高中物理生活中的圆周运动试题( 有答案和解析 )一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在 B 点连接,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g 取 10 m/s 2.求:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【解析】【分析】【详解】(1)根据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能通过最高点,故mg m v22④R由②③④得W f=24 J(3)根据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从 B 至 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小2.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不相互重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块到达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【解析】【分析】【详解】(1)物块从 A 到 B 运动过程中,根据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,根据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,根据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.3.如图所示,竖直平面内的光滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止释放,自由下落至 A 点后进入圆形轨道,并能沿圆形轨道到达 B 点,且到达 B 处时小球对圆轨道的压力大小为mg,重力加速度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球通过 B 点后落到斜面上,h 应满足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【解析】【分析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球离开 B 点做平抛运动,经时间t ,下落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球下落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰好能通过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2可以证明小球经过 B 点后一定能落到斜面上设小球恰好落到 D 点,小球通过 B 点时速度为 v2,飞行时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应满足的条件为 3 R h 3R2【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.4.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平地面上。
高中物理生活中的圆周运动专项训练100(附答案)及解析

高中物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos 4α=对小球进行受力分析得cos mgT α=解得:415T =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3) (3)m m vm m gR++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v+=+++代入数值解得:45v gR≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg≤在最高点有:233(3)(3)m m vF m m gR+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v+=+++解得:82v gR≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR≤或4582gR v gR≤≤3.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.45m的圆环剪去左上角127°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P 点到桌面右侧边缘的水平距离为1.5R.若用质量m1=0.4kg的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=4t﹣2t2,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道.g=10m/s2,求:(1)质量为m2的物块在D点的速度;(2)判断质量为m2=0.2kg的物块能否沿圆轨道到达M点:(3)质量为m2=0.2kg的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s(2)不能沿圆轨道到达M点(3)2.7J【解析】【详解】(1)设物块由D点以初速度v D做平抛运动,落到P点时其竖直方向分速度为:v y22100.45gR=⨯⨯m/s=3m/syDvv=tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v ==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .4.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小5.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
高中物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高中物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
人教版高中物理必修第二册《6.4 生活中的圆周运动(课时1)》练习题(原卷版)

6.4 生活中的圆周运动(课时1)【四大题型】【人教版2019】【题型1 火车转弯问题】 ....................................................................................................................................... 3 【题型2 拱形桥和凹形桥问题】 ........................................................................................................................... 4 【题型3 航天器中的失重现象】 ........................................................................................................................... 6 【题型4 离心运动】 .. (7)知识点1:火车转弯问题1.转弯时的圆周平面:火车做圆周运动的圆周平面是水平面,火车的向心加速度和向心力均是沿水平方向指向圆心. 2.转弯速度:设转弯处的半径为R ,行驶的火车质量为m ,两轨所在平面与水平面之间的夹角为θ,如图所示.火车转弯时,重力mg 和支持力F N 的合力提供其所需要的向心力,即mg tan θ=m v 20R,解得v 0=gR tan θ,在转弯处轨道确定的情况下,火车转弯时的速度应是一个确定的值v 0(规定速度). 3.速度与轨道压力的关系(1)当v =v 0时,所需向心力仅由重力和弹力的合力提供,此时内外轨道对火车均无挤压作用.(2)当v >v 0时,外轨道对轮缘有侧压力. (3)当v <v 0时,内轨道对轮缘有侧压力.4.汽车、摩托车赛道拐弯处,高速公路转弯处设计成外高内低,也是尽量使车受到的重力和支持力的合力提供向心力.知识点2:汽车过桥问题1.分析汽车过桥这类问题时应把握以下两点: (1)汽车在拱桥上的运动是竖直面内的圆周运动.(2)向心力来源(最高点和最低点):汽车做圆周运动,重力和桥面的支持力的合力提供向心力. 2.汽车驶至凹形桥面的底部时,加速度向上,合力向上,此时满足F N -mg =m v 2R ,F N =mg +m v 2R >mg ,车对桥面压力最大.3.当车驶至凸形桥面的顶部时,加速度向下,合力向下,此时满足mg -F N =m v 2R ,F N =mg -m v 2R <mg ,车对桥面的压力最小. 知识点3:对离心运动的理解 1.离心运动的实质离心运动实质是物体惯性的表现.做圆周运动的物体,总有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切线方向拉到圆周上来.一旦作为向心力的合外力突然消失或不足以提供向心力,物体就会发生离心运动. 2.合外力与向心力的关系如图所示 (1)若F 合=mrω2或F 合=m v 2r,物体做匀速圆周运动,即“提供”满足“需要”.(2)若F 合>mrω2或F 合>mv 2r,物体做半径变小的近心运动,即“提供”大于“需要”.(3)若F合<mrω2或F 合<mv 2r,则外力不足以将物体拉回到原圆周轨道上,物体逐渐远离圆心而做离心运动,即“需要”大于“提供”或“提供不足”.(4)若F 合=0,则物体沿切线方向飞出,做匀速直线运动.【题型1 火车转弯问题】【例1】铁路在弯道处的内外轨高低是不同的。
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
高一下学期物理人教版 必修第二册6.4生活中的圆周运动同步训练(含答案)

2021—2022学年高中物理人教版(2019)必修第二册6.4生活中的圆周运动同步训练一、单选题1.广州市内环路上出口处常有限速标志。
某出口路面是一段水平圆弧轨道,雨天车轮与路面的动摩擦因数为0.4,汽车通过出口的最大速度为36km/h。
晴天车轮与路面的动摩擦因数为0.6,则晴天汽车通过出口的最大速度约为()A.44km/h B.54km/h C.24km/h D.30km/h2.如图所示是游乐场里的过山车,若过山车经过A、B两点的速率相同,则过山车()A.在A点时处于失重状态B.在B点时处于超重状态C.A点的向心加速度小于B点的向心加速度D.在B点时乘客对座椅的压力可能为零3.某同学经过长时间的观察后发现,路面出现水坑的地方,如果不及时修补,水坑很快会变大,善于思考的他结合学过的物理知识,对这个现象提出了多种解释,则下列说法中不合理的解释是()A.车辆上下颠簸过程中,某些时刻处于超重状态B.把坑看作凹陷的弧形,车对坑底的压力比平路大C.车辆的驱动轮出坑时,对地的摩擦力比平路大D.坑洼路面与轮胎间的动摩擦因数比平直路面大4.如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,重力加速度为g。
下列有关说法中正确的是()A .小球在圆心上方管道内运动时,对外壁一定有作用力BCD .若小球在最高点时的速度大小为则此时小球对管道外壁的作用力大小为3mg 5.如图所示,一倾斜的圆筒绕固定轴1OO 以恒定的角速度ω转动,圆筒的半径 1.5m =r 。
最大静摩擦力等于滑动摩擦力),转动轴与水平面间的夹角为60︒,重力加速度g 取210m/s ,则ω的最小值是( )A .1rad/sB rad/sCD .5rad/s 6.一长为l 的轻杆一端固定在水平转轴上,另一端固定一质量为m 的小球,轻杆随转轴在竖直平面内做匀速圆周运动,小球在最高点A 时,杆对小球的作用力恰好为零,重力加速度为g ,则小球经过最低点B 时,杆对小球的作用力为( )A .0B .2mgC .3mgD .6mg7.如图所示,山崖边的公路常被称为最险公路,一辆汽车欲安全通过此弯道公路(公路水平),下列说法不正确的是( )A.若汽车以恒定的角速度转弯,选择内圈较为安全B.若汽车以恒定的线速度大小转弯,选择外圈较为安全C.汽车在转弯时受到重力、支持力和摩擦力作用D.汽车在转弯时受到重力、支持力、摩擦力和向心力作用8.如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内外半径分别为r和2r。
专题 生活中的圆周运动、水平面内和竖直面内的圆周运动 高一物理 (人教版2019)(解析版)

专题06 生活中的圆周运动、水平面内和竖直面内的圆周运动一、火车、自行车、汽车转弯问题1.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。
弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。
当火车以规定速度通过弯道时,内低外高的轨道均不受挤压,则下列说法正确的是( )A .当火车以规定速度转弯时,火车受重力、支持力、向心力B .若要降低火车转弯时的规定速度,可减小火车的质量C .若要增加火车转弯时的规定速度,可适当增大弯道的坡度D .当火车的速度大于规定速度时,火车将挤压内轨 【答案】C【解析】A. 当火车以规定速度转弯时,火车受重力、支持力作用,二者的合力提供向心力,故A 错误;B.合力提供向心力,即2tan v mg m rθ=则tan v gr θ故B 错误;C.根据公式tan v gr θ=θ增大时,规定速度也增大,故C 正确;D.当火车的速度大于规定速度时,则受到外轨弹力与重力和支持力的合力一起提供向心力,使火车继续做圆周运动,所以火车将挤压外轨,故D 错误。
故选C 。
2.列车转弯时的受力分析如图所示,铁路转弯处的圆弧半径为R ,两铁轨之间的距离为d ,内外轨的高度差为h ,铁轨平面和水平面间的夹角为α(α很小,可近似认为tan sin αα≈),下列说法正确的是()A.列车转弯时受到重力、支持力和向心力的作用B.列车过转弯处的速度gRh vd =C.列车过转弯处的速度gRh vd <D.若减小α角,可提高列车安全过转弯处的速度【答案】B【解析】A.列车转弯时受到重力、支持力,重力和支持力的合力提供向心力,A错误;B.当重力和支持力的合力提供向心力时,则2tanv hm mg mgR dα==解得gRhvd=不会挤压内轨和外轨,B正确;C.列车过转弯处的速度gRhvd<转弯所需的合力tanF mgα<故此时列车内轨受挤压,C错误;D.若要提高列车速度,则列车所需的向心力增大,故需要增大α,D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3) (3)m m vm m gR++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v+=+++代入数值解得:45v gR≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg≤在最高点有:233(3)(3)m m vF m m gR+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v+=+++解得:82v gR≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR≤或4582gR v gR≤≤3.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.45m的圆环剪去左上角127°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P 点到桌面右侧边缘的水平距离为1.5R.若用质量m1=0.4kg的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=4t﹣2t2,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道.g=10m/s2,求:(1)质量为m2的物块在D点的速度;(2)判断质量为m2=0.2kg的物块能否沿圆轨道到达M点:(3)质量为m2=0.2kg的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s(2)不能沿圆轨道到达M点(3)2.7J【解析】【详解】(1)设物块由D点以初速度v D做平抛运动,落到P点时其竖直方向分速度为:v y22100.45gR=⨯⨯m/s=3m/syDvv=tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v ==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .4.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.5.如图所示,一质量M=4kg的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。
小车上表面由光滑圆弧轨道BC和水平粗糙轨道CD组成,BC与CD相切于C,圆弧BC所对圆心角θ=37°,圆弧半径R=2.25m,滑动摩擦因数μ=0.48。
质量m=1kg的小物块从某一高度处的A 点以v 0=4m/s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,最终与小车保持相对静止。
取g =10m/s 2,sin37°=0.6,忽略空气阻力,求:(1)A 、B 间的水平距离;(2)物块通过C 点时,轨道对物体的支持力; (3)物块与小车因摩擦产生的热量。
【答案】(1)1.2m (2)25.1N F N =(3)13.6J 【解析】 【详解】(1)物块从A 到B 由平抛运动的规律得:tan θ=0gt vx = v 0t 得x =1.2m(2)物块在B 点时,由平抛运动的规律得:0cos B v v θ=物块在小车上BC 段滑动过程中,由动能定理得: mgR (1-cos θ)=12mv C 2-12mv B 2 在C 点对滑块由牛顿第二定律得 2CN v F mg m R-= 联立以上各式解得:25.1N F N =(3)根据牛顿第二定律,对滑块有μmg =ma 1, 对小车有μmg =Ma 2当滑块相对小车静止时,两者速度相等,即 v C -a 1t 1=a 2t 1 由以上各式解得 1346t s =, 此时小车的速度为v =a 2t 134/s 物块在CD 段滑动过程中由能量守恒定律得:12mv C 2=12(M +m )v 2 + Q解得:Q =13.6J6.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.7.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)5;(2)62J 【解析】 【分析】 【详解】(1)由题知,物体刚好能经过D 点,则有:2Dv mg m R=解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=-p W E =解得:p E =62J8.如图所示,在竖直平面内有一“∞”管道装置,它是由两个完全相同的圆弧管道和两直管道组成。