动力电池系统数据采集系统
比亚迪e5车动力电池系统的故障排查方法

动力电池系统负责新能源汽车纯电行驶时的能量供给,它为整车驱动和其他用电器提供电能。
动力电池会出现哪些故障呢?出现故障后如何进行排查?本文以比亚迪e5车为例,阐述了动力电池系统的故障排查方法。
1 比亚迪e5车动力电池组的组成比亚迪e5车的动力电池系统由13个电池模组串联、13个电池信息采集器(BIC ),2个分压接触器(6号电池模组和10号电池模组内部各一个)、1个正极接触器(13号电池模组内部)、1个负极接触器(1号电池模组内部)、采样线束和电池模组连接片等组成(图1),其中13号电池模组在1号电池模组的上层,12号电池模组在11号电池模组的上层,6电池模组、7电池模组、8号电池模组分别在5号电池模组、4号电池模组、9号电池模组的上层。
2 比亚迪e5车动力电池管理系统的控制逻辑比亚迪e5车采用的分布式电池管理系统由电池管理控制器(BMC )、电池信息采集器(BIC )和动力电池采样线等组成。
电池管理控制器在车上的安装位置如图2所示。
电池管理控制器的主要功能如下:充放电管理、接触器控制、功率控制、电池异常状态报警和保护、SOC/SOH 计算、自检及通讯功能等;电池信息采集器的主要功能如下:电池电压采样、电池温度采样、电池均衡和采样线异常检测等;动力电池采样线的主要功能是连接电池管理控制器和电池信息采集器,实现两者之间的通讯及信息交换,电池管理系统控制逻辑示意图如图3所示。
3 比亚迪e5车动力电池系统相关连接器的端子接口定义(1)电池信息采集器的端子排列情况如图4所示,对应的端子定义见表1所列。
比亚迪e5车动力电池系统的故障排查方法佛山市顺德区中等专业学校 欧阳可良图1 比亚迪e5车的动力电池系统的组成图2 电池管理控制器(BMC )在车上的安装位置图3 电池管理系统控制逻辑(2)电池管理器端子排列情况如图5所示,对应的端子定义见表2所列。
4 比亚迪e5车动力电池系统常见故障代码比亚迪e5车动力电池系统常见故障代码及含义见表3所列。
动力电池系统故障诊断与预警功能设计

动力电池系统故障诊断与预警功能设计5.4.1 显示报警设计1.显示报警内容对于动力电池系统而言,电池管理系统(BMS)监测采集处理的数据量极为庞大,不同的数据对应着动力电池系统的不同状态,对于驾驶人而言,将BMS 所有处理的数据都进行观测再做出判断是不现实的,因此BMS需要将大量复杂的数据处理完之后,实时地提供一些数据给驾驶人用来判断下一步车辆操作是必要的,即BMS的显示报警设计涉及如何甄别什么数据才是驾驶人在行车过程中所必需的(即仪表板上需要动力电池系统什么信息)。
国际仪表要求见表5.14。
表5.14 国际仪表要求根据表5.14所示,BMS所需要显示的动力电池的状态为:当前的电压值、输出的电流值、温度状况、剩余电量、剩余容量,如果是在充电状态,表述为充电状态,发生故障时表述为故障与切断。
在动力电池系统实际的使用过程中,以上所述几个显示报警的状态是必需的。
然而,动力电池系统定义的警示内容比以上规定的要复杂很多,以下给出通常动力电池系统的警示内容,见表5.15。
表5.15 BMS警示内容2.显示报警分类设计根据前文所述的警示内容,从绝缘阻值往下,都是BMS无法自动处理的故障,需要维修。
对于驾驶人而言,除了在正常的驾驶过程中,需要知道剩余的电量(SOC)、当前的电压值、输出的电流值、温度状况、剩余容量等信息外,故障预警并不能以单一的信号灯表示示(亮起该信号灯说明故障,不亮则说明正常),也不能简单地以信号灯的颜色加以区分故障的严重性(有些动力电池系统简单的几种不同颜色的信号灯代表故障的程度),BMS的显示报警应当保证驾驶人可以充分认知动力电池系统的故障程度,以及在车辆所处的当前运行情况下需要采取的措施,具体做了以下分类设计,见表5.16。
表5.16 BMS显示报警内容5.4.2 电池故障报警设计1.电池故障报警预分析对于电池管理系统(BMS)而言,不仅需要准确估计电池系统状态,更为关键的功能在于通过对故障的有效检测和处理,确保高压系统的安全。
电动汽车动力电池管理系统(BMS)设计

电动汽车动力电池管理系统(BMS)设计摘要:本文主要从硬件系统设计、软件系统设计两个方面,对电动汽车中动力电池的内部管理系统(BMS)综合设计,进行了深度的分析与研究,以通过不断地实践研究,积极探索出电动汽车中动力电池的内部管理系统(BMS)最具高效性的综合设计方案,以充分提升电动汽车中动力电池的内部管理系统(BMS)的设计水准,确保电动汽车中动力电池的内部管理系统(BMS)各项功能能够满足于电动汽车实际的应用需求,为我国电动汽车行业的长期发展奠定基础。
关键词:电动汽车;动力电池;管理系统(BMS);设计前言:电动汽车(battery electric vehicle;BEV),主要是指以车载类电源为基本动力,利用电机来驱动车轮达到行驶目地,符合于我国安全法规与交管各项规定的车辆。
基于电动汽车有着环保性特征,所以,其在国内的发展前景相对较为良好。
但是,基于国内电动汽车相关技术还处于初步探索阶段,各项技术还不够成熟,若想实现突破性发展还需作出更多的努力。
电动汽车,它与传统汽车最大的不同之处就在于电动汽车内部包含着一种动力的电池。
在一定程度上,通过该动力电池可实现电动汽车节能化、环保化的行使。
那么,为了能够更好地助推我国电动汽车行业的发展,就需从其内部的动力电池入手,对其所在的管理系统(BMS),进行系统化的分析与研究。
从而能够设计出更具有功能特性的动力电池内部管理系统(BMS),为电动汽车提供强大动力电池内部管理系统支持,进一步推动我国电动汽车行业的快速发展,让其可稳步向着新的发展征程迈进。
1、硬件系统设计基于电池组主要是由多节电池的单体并联与串联而成,实现对所有电池单体实时化监控。
因而,如图1所示,电池内部管理系统主要应用了主从结构,以实现灵活性通讯,提升通讯实际速度。
从板均需具有电池单体的温度与电压检测、CAN总线的通讯等各项功能。
图1 BMS系统框图示图1.1 IMCU系统处理器系统处理器主要选用的是Freescale -9S12DT64型号的MCU系统处理器,该型号MCU系统处理器为16位系统的单片机,主要是由CAN系统的总线模块、PWM的调节器(1个)AD的转换器(2个)定时器(1个)外部串口(1个)内部串口(2个)。
电池管理系统BMS

一、整车上下电过程 1.低压供电及唤醒原理 2 )非充电模式下各控制器唤醒原理 非充电模式下控制器唤醒主要有ON 档继电器唤醒和VCU 唤醒 a. 由ON 档(IG1 )继电器唤醒的控制器有:整车控制器 VCU 、组合仪表ICM和数据采集终端(由黄色线所连 接);
一、整车上下电过程 1. 低压供电及唤醒原理
1 )整车低压供电原理 • 由蓄电池直接供电,主要有整车控制器VCU 、组合仪表ICM 、数 据采集终端RMS 、DC/DC 和电池管理系统BMS (P51由红色线所 连接);
•由ON 档(IG1 )继电器供电,当点火钥匙转到ON 档后,ON 档 继电器线圈被接通,从而将12V 蓄电池电压送到档位控制器和电动 助力EPS 控制器,给其供电(由黄色线所连接);
【任务描述】 客户委托: 检修车辆无法正常上电 车主小郑已使用6 个月的北汽EV200 ,车辆在启动时仪表 显示动力电池断开故障,整车故障灯点亮同时仪表报通讯 故障,隔一会儿再启动时仍报同样的故障,故联系北汽新 能源售后报修。
一、整车上下电过程 Ø 整车上下电包括低压供电与断电、唤醒与取消唤醒;高 压上电与下电,其控制功能涉及到整车所有控制单元,包 括整车控制器VCU 、电机控制器INV/MCU 、动力电池内 的高压板BCU 、空调AC 、DC/DC 、仪表ICM、远程终 端控制器RMS 、充电机CHG 等。
一、整车上下电过程: 2. 高压供电原理 1 )高压检测点的作用 ①高压检测点1 (V1) ) 位于高压总正、总负继电器内侧,测量动力电池包总电压,用于判 定MSD是否断路。
第2节-C50EB动力电池系统交底材料 动力电池及电池管理系统BMS

A1
Insulation
K3 K2
BMS
K1 V2
动力电池系统关键电气件配置表
部件名称
厂家
型号
重量 数量
电芯
CATL
42AH-NCM
0.85Kg 270
电池管理系统
CATL
定制
4kg
1套
电池
上盖
上海电巴
定制
85Kg 1个
箱体 下箱体
上海电巴
定制
1个
总正
泰科或宏发
EVC500或HFZ16200/B-P
BMS绝缘阻抗、绝缘耐压
电池巡检时间及巡检周期
BMS能达到的ASIL安全等级
测量精度
SOC估算精度
单体电压采集精度及范围
总电压采集精度及范围
温度采集精度及范围
电流采集精度及范围
通信方式
通信网络
BMU与HBCU之间的通信
HBCU对外通信
外观及防护等级
PCBA 尺寸
HBCU: BMU:
防护等级
环境条件
工作环境温度、储存温度
动力电池系统售后培训
编制:马建新 校对: 审核: 批准:
2015年9月15日
— C50EB
1
版本变更记录
日期 2015.09.15
版本 V1.0
变更事项 初版
责任人 马建新
备注
2
2016/4/13
2
0 纲要
1 动力系统概述 2 动力电池系统关键部件简介 3 动力电池系统控制策略简介 4 动力电池系统维护保养指导 5 动力电池系统常见故障及维修
50 ms / 12 CH; 50ms
NA
新能源汽车动力电池包的组成

新能源汽车动力电池包的组成
新能源汽车动力电池包一般由以下几个主要组成部分构成:
1. 电池单体:电池单体是动力电池包的基本组成单元,是多个电池模块串联组成电池包的基础。
电池单体一般由正负极材料、电解质和隔膜等组成。
2. 电池管理系统(BMS):电池管理系统是电池包的主控制
系统,负责监控电池单体的电压、温度、电流等状态,并进行数据采集、处理和控制。
BMS还能对电池包进行故障检测和
故障管理,从而确保电池包的安全性和性能。
3. 散热系统:新能源汽车动力电池包工作过程中会产生大量的热量,如果不能及时散热,会影响电池的寿命和性能。
因此,电池包通常还配备有散热系统,包括散热片、散热管路、冷却液等,以保持电池温度的稳定。
4. 结构支持和保护:电池包需要具备一定的结构强度和稳定性,以保护电池单体免受外界环境的影响和机械振动的冲击。
常见的结构支持和保护装置包括外壳、挡板、防护板等。
5. 充电和放电接口:电池包需要通过充电接口与外部电源相连接,以进行电池充电。
同时,电池包内部还需要提供放电接口,连接到动力系统,以将电能输出给电动机供动力使用。
总而言之,新能源汽车动力电池包的组成包括电池单体、电池管理系统、散热系统、结构支持和保护以及充放电接口等多个
组成部分。
这些部分相互配合,形成一个功能完整的电池系统,为电动汽车提供动力供应。
纯电动汽车学习入门(三)——动力电池系统(上)

◆文/北京 李玉茂纯电动汽车学习入门(三)——动力电池系统(上)李玉茂 (本刊编委会委员、特约编辑)中国汽车工程学会认证资深工程师、中国汽车工程学会汽车应用与服务分会特聘专家,从事汽车维修工作40余年,在大众车系电控系统故障诊断领域经验丰富。
现任北京市工业技师学院汽车技术应用系顾问,清华大学、北京理工大学师资培训基地汽车专业专家。
(接2021年第8期)一、单体锂电池1.组成与分类单体(Cell)也称电芯,是将化学能转化为电能的最小单元,单体锂电池由正极、负极、电解液、隔膜、外壳等组成,如图1所示。
锂电池按正极所用材料分类,有钴酸锂L i x C o O 2、锰酸锂Li x MnO 2、镍酸锂Li x Ni O 2、磷酸铁锂Li x Fe PO 4、三元锂Li(CoMnNi)O 2。
三元锂是钴、锰、镍按一定比例混合,这些锂化合物材料是晶状体结构材料。
负极材料为石墨,充电后成为锂-碳层间化合物Li X C 6。
液态锂离子电池的正极与负极之间是隔膜和电解液,隔膜只允许锂离子Li+往返通过,阻止电子e-通过,在正负极之间起到绝缘作用。
固态锂离子电池的隔膜、电解液由聚合物电解质膜代替, 聚合物可以是干态,也可以是胶态,目前大部分采用聚合物胶体电解质膜。
2.形状与包装单体电池的形状有方形、圆柱形、板状等,如图2所示。
方形又分方形叠片式、方形卷绕式;圆柱形又分圆柱叠片式、圆柱卷绕式。
包装类型有硬包、软包,硬包使用钢壳、铝壳,软包使用铝塑。
电动车大多采用方形硬包电池,特斯拉采用18650电芯, 18表示直径为18mm,65表示长度为65mm,0表示圆柱形电池。
笔记本电脑、手机采用板状软包电池。
锂单体电池标称电压3.7V ,一般正常电压范围3.2~4.2V 。
磷酸铁锂单体电池标称电压3.2V ,一般正常电压范围2.7~3.7V 。
比亚迪公司推出磷酸铁锂刀片电池,如图3所示,电芯长度可大于2m,宽度大于10cm,厚度不到2cm,优点:①电池能量密度比传统电池增加1/3以上;②材料成本降低1/4左右;③电池体积小,可为车辆节省空间;④电池重量轻,降低自身重量的能源消耗,续航里程增加。
电动汽车动力电池管理系统

电动汽车动力电池管理系统陈志楚;潘峰【摘要】Battery management system basically serves to monitor battery status, including voltage, current and temperature, which can predict the SOC of battery and manage the work status of the battery to avoid over discharge, overheating and failures, alarming in emergences in order to maximize using of battery storage capacity and cycle life. The monitor system employed ATmega16, ATmega8, LPC2368 as the core, its chip adopted the craft of CMOS and faces to monolithic machine with memory structure. 1-wire bus digital sensor was used, whose sensor is DS1 8B20 which can detect voltage,current, power consumption and temperature of the battery. The system can measure the single battery voltage, battery temperature, battery discharge current, battery, etc. and the measurement data and alarm parameters can be displayed on the LCD.%电池管理系统最基本的作用是监控电池的工作状态,包括电池的电压、电流和温度,预测蓄电池荷电状态,管理电池的工作情况,避免出现过放电、过热,对出现的问题应能及时报警,以便最大限度地利用电池的存储能力和循环寿命.本系统采用ATmega16、ATmega8、LPC2368单片机控制三个模块,传感器采用单总线数字化的传感器DSl8820,完成电池的电压、电流、电量及温度的检测.系统可以测量蓄电池的单体电压、电池温度、蓄电池放电电流、电池电量等,而且测量数据和报警参数可在LCD上显示.在电池电量测量方面系统还通过软件对传感器的非线性、温度等影响进行修正和补偿,与传统的检测装置相比具有稳定性好、准确性高等优点.同时还有声光报警功能,具有较高的实用价值.【期刊名称】《电源技术》【年(卷),期】2013(037)002【总页数】4页(P255-258)【关键词】电池管理系统;RS485;ATmega16;LPC2368;SOC【作者】陈志楚;潘峰【作者单位】湖北汽车工业学院电信学院,湖北十堰442001;湖北汽车工业学院电信学院,湖北十堰442001【正文语种】中文【中图分类】TM91在国内外大力发展纯电动汽车 (EV)、混合动力汽车(HEV)的过程中,高能量锂电池带来了电动汽车革命性的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最好仔细阅读后下载,感谢您的使用! 1 / 44 摘 要
随着石油等化石燃料的日益枯竭、环境问题越来越严重及人们环保意识的逐渐增强,准绿色新型产品-混合动力汽车登上历史舞台,电池是电动汽车的动力,也是电动汽车的关键部件,也是制约电动汽车发展的关键,新能源动力电池产业随同动力汽车获得飞速发展。制约电动汽车发展的重要因素之一是:1、动力电池的使用寿命和安全性;2、动力汽车的生产成本。动力电池的使用寿命能大大降低动力汽车的生产成本。 电池管理系统即BMS通过测量电池组工作时其电压、电流、温度等对电池组进行监测,保证电池组的工作运行良好高效,从而保证整个系统的正常运作。 本文介绍了以飞思卡尔单片机MC9S12XS128为主控单片机芯片,通过传感器DS2438对动力电池组进行电池电压、电流、温度测量、完成AD转换,STC89C52单片机对DS2438传输过来的数据进行读取和处理,通过CAN总线传输到主控单片机MC9S12XS128,MC9S12XS128单片机通过读取的数据完成对电池的SOC状态估计,同时,主控芯片将读取的数据通过RS232串口通信传输到VB界面显示。在系统的设计过程中,为建立简单有效的系统,需要建立良好的电池内部模型,以便于对系统做Simulink系统仿真时,主控单片机芯片对电池做SOC状态估计。
关键词 DS2438 STC89C52 飞思卡尔单片机MC9S12XS128 VB人机界面 最好仔细阅读后下载,感谢您的使用!
2 / 44 ABSTRACT
With the increasing depletion of oil and other fossil fuels, environmental issues
become more and more serious and the gradual increase of the awareness of environmental protection, new quasi-green products - hybrid cars will be on the historical stage and the battery is not only the power of electric vehicle, but also a key component of the electric car. At the same time it is the key to restricting the development of electric vehicles, new energy power battery industry, along with the development of.electric vehicle rapid. An important factor restricting the development of electric vehicles are battery life , security and electric vehicle production costs. The life of the power battery powered vehicles can greatly reduce the cost of production. BMS battery management systems work by measuring the battery voltage, current, and temperature monitoring of the battery pack. So that the battery pack can ensure a good and efficient operation of the work, so as to ensure the normal operation of the system. This paper introduces the Freescale MCU MC9S12XS128 as the main control chip microcontroller through the sensor DS2438 battery pack for battery voltage, current, temperature measurement, the completion of AD conversion, STC89C52 DS2438 microcontroller to read the data transmitted and processed through CAN bus to the host microcontroller MC9S12XS128, MC9S12XS128 microcontroller through the read data to complete the SOC of the battery state estimation, while the master chip will read the data through the RS232 serial communication transmitted to the VB interface display. In the system design process, in order to establish a simple and effective system, the need to establish a good battery internal model, in order to make the system Simulink system simulation, the host microcontroller chip on the battery do SOC state estimates.
Keywords DS2438 STC89C52 Freescale microcontroller VB interface最好仔细阅读后下载,感谢您的使用! 3 / 44 目 录
摘 要 ....................................................................................................................... 1 1.1 课题研究背景 ............................................................................................................................ 1 1.2 电池管理系统BMS在国内外的发展 ...................................................................................... 3 1.3 设计总体方案的确立 ................................................................................................................ 3 1.4 小章总结 .................................................................................................................................... 4
第二章 系统方案的确立 ............................................................................................. 5 2.1 传感器 ........................................................................................................................................ 5 2.2 光电隔离 .................................................................................................................................... 6 2.3 数据采集部分处理器 ................................................................................................................ 7 2.4 主控制器 .................................................................................................................................... 7 2.5 数据传输 .................................................................................................................................... 8 2.6 动力电池放电模型及SOC估计算法 ....................................................................................... 9 2.7 VB人机界面 ............................................................................................................................. 13 2.8 本章小结 .................................................................................................................................. 13 第三章 硬件电路模块 ................................................................................................................... 15 3.1 数据采集模块DS2438 ............................................................................................................ 15 3.2 STC89C52模块 ........................................................................................................................ 18 3.3 CAN及RS232串行通信模块 ................................................................................................. 20 3.4 本章小结 .................................................................................................................................. 22