数学建模常见评价模型简介

合集下载

数学建模评价类模型

数学建模评价类模型

数学建模评价类模型
数学建模评价类模型是指针对数学建模的模型进行评估的方法,是模型评价的一种重要方式。

传统的数学建模评价类模型一般由模型准确度、模型耗费以及模型质量三方面评价。

首先,模型准确度是评价模型质量的基础,是模型评价比较重要的指标之一。

它反映了模型拟合现实情况的精确程度,是选择和调整模型的关键点。

一般需要衡量模型的真实性和拟合度。

真实性测量模型的准确性,评价模型的输出能否真实反映现实情况;拟合度测量模型的契合度,评价模型对输入变量的拟合程度有多好。

一般模型评价准确度可以用均方差、拟合指标、距离指标等指标来衡量。

其次,模型耗费是另一个重要的指标。

它考察了模型处理工作量大小,表示模型的计算消耗,可衡量模型计算效率的高低,具有重要的实际意义。

一般模型耗费可以用计算量指标衡量,也可以用算法的执行时间进行评价。

最后,模型质量是衡量模型优劣的一个重要指标,指的是模型与实际运用的效果。

模型质量可以用实际结果与模型给出结果之间的偏差来衡量,也可以用效率指标,如模型预测准确度、预测时效性、分类准确率等来评价。

数学建模模型和技巧

数学建模模型和技巧

数学建模模型和技巧数学建模是指将实际问题转化为数学问题,并利用数学方法进行分析和求解的过程。

数学建模模型是对问题进行抽象和形式化的表示,而数学建模技巧则是在建立数学模型和解决问题时的常用方法和技术。

以下是一些常用的数学建模模型和技巧。

一、常用数学建模模型1.优化模型:优化模型利用数学方法求解最优解,包括线性规划、整数规划、非线性规划等。

这种模型通常用于求解资源分配、生产调度、物流优化等问题。

2.统计模型:统计模型通过概率统计方法对问题进行分析和预测,包括回归分析、时间序列分析、假设检验等。

这种模型通常用于市场调研、风险评估、金融预测等问题。

3.动力学模型:动力学模型描述系统随时间变化的规律,包括微分方程模型、差分方程模型等。

这种模型通常用于研究物理过程、生态系统、经济波动等问题。

4.图论模型:图论模型利用图的概念和算法解决问题,包括最短路径、流网络、最小生成树等。

这种模型通常用于网络优化、交通规划、电路设计等问题。

5.随机模型:随机模型描述随机变量的分布和统计性质,包括随机过程、蒙特卡洛模拟等。

这种模型通常用于风险评估、信号处理、金融衍生品定价等问题。

二、常用数学建模技巧1.合理假设:在建立数学模型时,需要根据实际情况进行适当的简化和假设。

通过合理的假设,可以使模型更易求解,同时保持对原问题的关键特征进行准确描述。

2.变量选择:选择合适的变量是建立数学模型的重要一步。

需要根据问题的特点和求解的目标选择与问题相关的变量,并对它们进行合理的定义和界定。

3.数据处理:在数学建模中,经常需要处理大量的数据。

这包括数据的清洗、转换、归一化等操作,以便更好地与模型对接和求解。

4.模型求解:根据模型的数学特征,选择适当的方法和算法进行求解。

这包括常见的数值求解方法、优化算法、统计推断等技术。

5.模型评价:在得到数学模型的解后,需要对解的可行性和有效性进行评价。

通常可以利用灵敏度分析、稳定性分析等方法对模型进行评价和优化。

数学建模评价类算法

数学建模评价类算法

数学建模评价类算法
数学建模评价类算法有许多种,下面列举几种常见的算法:
1. 主成分分析(Principal Component Analysis,简称PCA):PCA是一种常用的多变量数据降维算法,它可以将高维数据映射到低维子空间,从而提取数据中的主要成分。

在数学建模中,可以利用PCA算法对数据的维度进行降维,从而减少问题的复杂度。

2. 回归分析(Regression Analysis):回归分析是一种用来研究变量之间关系的统计方法,它可以通过拟合一个数学函数来预测和解释因变量的变化。

在数学建模中,可以利用回归分析来建立数学模型,从而预测和解释问题的特征和关系。

3. 时间序列分析(Time Series Analysis):时间序列分析是一种用来研究时间序列数据的统计方法,它可以用来预测未来的数据趋势和周期性。

在数学建模中,可以利用时间序列分析来建立时间序列模型,从而预测和解释问题的时间变化规律。

4. 神经网络(Neural Network):神经网络是一种模仿人脑神经元网络结构的数学模型,它可以通过训练和学习来提取和表示数据中的模式和关系。

在数学建模中,可以利用神经网络来建立复杂的映射关系,从而解决复杂的问题。

5. 遗传算法(Genetic Algorithm):遗传算法是一种通过模拟生物进化过程来解决优化问题的算法,它通过选择、交叉和变异等操作来搜索问题的最优解。

在数学建模中,可以利用遗传
算法来优化问题的目标函数,从而找到最优解。

这些算法在数学建模中都有广泛的应用,具体选择哪种算法取决于问题的特点和要求。

同时,也可以根据不同的问题将多个算法进行组合和集成,以达到更好的建模效果。

客户价值评价模型数学建模

客户价值评价模型数学建模

客户价值评价模型数学建模
客户价值评价模型是指通过数学建模的方式来评估客户对企业
的价值贡献程度。

这种模型可以帮助企业更好地了解和管理客户关系,从而提高客户满意度和忠诚度,促进企业的持续发展。

在数学
建模方面,客户价值评价模型通常涉及以下几个方面:
1. 客户生命周期价值(CLV)模型,客户生命周期价值是指客
户在其与企业关系的整个生命周期内对企业的贡献价值。

数学建模
可以基于客户的消费行为、购买频率、购买金额等指标来预测客户
未来的价值,并据此制定相应的营销策略和服务方案。

2. 客户细分模型,通过数学建模可以将客户按照其特征和行为
进行细分,从而更精确地了解不同客户群体的特点和需求。

这有助
于企业针对不同客户群体制定个性化的营销策略和服务方案,提高
客户满意度和忠诚度。

3. 风险评估模型,数学建模可以帮助企业评估客户的风险程度,包括违约风险、流失风险等。

通过建立相应的数学模型,企业可以
及时发现潜在的风险客户,并采取相应的措施进行风险防范和管理。

4. 响应模型,客户价值评价模型还可以通过数学建模来预测客户对不同营销活动和服务措施的响应程度。

这有助于企业优化营销资源配置,提高营销活动的效果和客户参与度。

总的来说,客户价值评价模型的数学建模是一个复杂而多维的过程,需要综合运用统计学、数据挖掘、机器学习等技术手段,以期更准确地评估客户的价值贡献和需求特征,为企业的营销和服务决策提供科学依据。

美赛数学建模常用模型及解析

美赛数学建模常用模型及解析

美赛数学建模常用模型及解析
数学建模是数学与实际问题的结合,解决实际问题的具体数学模型是数学建模的核心。

以下是一些美赛中常用的数学模型及其解析。

1. 线性规划模型
线性规划模型是一种最常见的优化模型,它的目标是在给定的约束条件下,寻找一个线性函数的最大值或最小值。

线性规划模型可以用于解决资源分配、生产计划、运输优化等问题。

2. 整数规划模型
整数规划是线性规划的一个扩展,它要求决策变量只能取整数值。

整数规划模型可以应用于旅行商问题、装配线平衡问题等需要整数解决方案的实际问题。

3. 动态规划模型
动态规划是一种将多阶段决策问题转化为单阶段决策问题求解的方法。

动态规划模型可以用于解决背包问题、序列对齐问题等需要在不同阶段做出决策的问题。

4. 排队论模型
排队论模型用于分析系统中的排队现象,包括到达率、服务率、系统稳定性等指标。

排队论模型可以用于研究交通流量、电话系统、服务器排队等实际问题。

5. 随机过程模型
随机过程模型用于描述随机事件的演变过程,其中最常见的是马尔可夫链和布朗运动。

随机过程模型可以用于模拟金融市场、天气预测、股票价格等随机变化的问题。

这些模型只是数学建模中常用的几种类型,实际问题通常需要综合运用多种模型进行分析和求解。

对于每个具体的问题,需根据问题的特点和要求选择合适的数学模型,进行合理的建模和求解。

数学建模评价模型方法

数学建模评价模型方法

数学建模评价模型方法目标评价方法是通过对建模目标进行分析和评价,从而确定模型的合理性和准确性。

常用的目标评价方法有以下几种:1.目标一致性评价:通过比较建模目标与实际需求的一致性,评估模型是否能够准确反映实际问题的特征。

可以通过专家访谈、问卷调查等方式,收集相关数据,然后通过定量或定性分析的方法来评价目标一致性。

2.目标完备性评价:评估模型是否能够完整地描述问题的各个方面。

可以通过检查模型的输入、输出和求解方法,判断是否包括了问题的所有关键要素,从而评价模型的完备性。

3.目标可行性评价:评估模型是否能够在给定的条件下实现。

通过对模型中所涉及的参数、约束条件和假设进行分析,判断模型是否符合实际操作的限制和要求。

效果评价方法是通过对模型的输出结果进行分析和评价,从而判断模型的有效性和可靠性。

常用的效果评价方法有以下几种:1.精度评价:评估模型的输出结果与实际观测值或已知数据之间的偏差程度。

可以采用各种统计指标,如均方根误差、平均绝对百分比误差等,来度量模型的精度。

2.稳定性评价:评估模型在不同条件下的输出结果是否稳定。

可以通过对输入条件的变化、参数的敏感性分析等方法,来评估模型的稳定性。

3.可行性评价:评估模型的输出结果是否满足实际的约束条件和要求。

可以通过比较模型的输出结果与给定的约束条件来判断模型的可行性。

在实际应用中,常常需要综合考虑目标评价和效果评价方法来对建模进行综合评价。

可以根据实际情况,确定评价指标的权重,并运用多指标综合评价方法来评价模型的综合效果。

总之,数学建模评价模型方法是评估模型合理性、准确性和可行性的重要手段。

通过目标评价和效果评价方法的综合应用,可以对建模过程和建模结果进行全面评估,为实际问题的求解提供科学的依据和方法。

学生成绩综合评价模型(数学建模)

设:第i个同学的因素集 ={平均分 ,学习波动度(标准差) ,平均进步率 },评语集 ={优 ,良 ,中 ,差 }
对于每名学生基于其四个学期成绩及成绩变化做单因素评价:
首先我们确定优良中差的比例固定为1:4:4:1,这样就能使学生评价处于平均,增强学生的学习动力。
1、对于平均分
因为不同基础的同学对某一得分同学的评价不同,所以当一名学生得60分时,得分大于80分的同学会认为其基础差。所以对学生的分数进行优良中差的比例分类:
预测成绩表
学生序号1 2 3 4 5 6 7 8 9 10
第5学期74.64 81.1866.6477.4878.7276.3467.7859.0367.4370.71
第6学期77.97 78.9669.7176.6777.8275.6168.3760.0671.9270.11
最后,我们对我们所建立的模型进行了客观的比较,并对其应用前景进行了展望。
4符号的说明
:学期
:学生序号
D:总评价得分
:第i个学生的第j学期的原始成绩。
:第 个决策单元
:因素集
:评语集
其他主要符号将在模型建立的时候详细说明。
5模型的建立
5.1数据标准化
为了避免现行评价方式中仅根据“绝对分数”评价学生学习状况,设计出一种新型的发展性目标分析法,必须考虑到户律基础条件的差异,学生原有的学习基础,也注意到学生学习的进步因素。
在本题中,附件给出了 名学生连续四个学期的综合成绩。要求我们做到以下三点:
1.根据附件数据,对这些学生的整体情况进行分析说明;
2.根据附件数据,采用两种及以上方法,全面、客观、合理的评价这些学生的学习状况;
3.根据不同的评价方法,预测这些学生后两个学期的学习情况。

教师评价模型 数学建模

教师评价模型一、 摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。

毫不夸张地说评价教师是学校里每个人的“日常功课”。

由于教师职业劳动的特殊性,它是复杂劳动。

不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。

评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。

所以教师评价的确定就显的很重要。

新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。

那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。

本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。

从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。

然后确定三方面的比重来评价教师。

同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。

在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。

161160iii P Q D ==∑ ( i ∈[1,16])(Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数 Di 表示对教师自评要求各项所加给的权重) 2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。

9ji ij i d c a ==∑ ija=ijnuija=A (U ,V )( U 为评价的主要因素,V 为评价因素分等。

C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。

数学建模评价类模型——模糊综合评价

数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。

该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。

它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。

大家想想,生活中,是不是有很多模糊的概念。

比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。

学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。

模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。

(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。

标准假如就是评上和评不上。

用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。

假如评上的隶属度高一些,那这名学生肯定是被评上咯。

(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。

数学建模系列-常用模型


性能,并根据评估结果进行模型优化或调整。
03
CATALOGUE
支持向量机模型
模型定义
线性分类器
支持向量机是一种线性分类器,通过找到一个超平面来分隔两个类 别的数据点。
核函数
支持向量机使用核函数将输入空间映射到一个高维特征空间,使得 线性分类器在高维空间中更容易找到分隔超平面。
间隔最大化
支持向量机旨在最大化间隔,即最小化分类错误的距离,以提高分类 器的泛化能力。
模型建立
数据预处理
对数据进行标准化或归一化处理,以确保不同特征的尺度不会影 响模型的性能。
核函数选择
选择合适的核函数,如线性核、多项式核、径向基函数等,以适 应不同的数据分布和问题类型。
参数调整
调整模型参数,如惩罚系数和核函数的参数,以获得最佳的分类 效果。
模型应用
二分类问题
支持向量机适用于解决二分类问题,如垃圾邮件分类、人脸识别 等。
05
CATALOGUE
主成分分析模型
模型定义
主成分分析(PCA)是一种常用的多 元统计分析方法,它通过线性变换将 多个相关变量转化为少数几个不相关 的变量,这些不相关的变量称为主成 分。
主成分分析旨在减少数据集的维度同 时保留数据集中的主要变化模式,以 便更好地理解数据的结构和关系。
模型建立
确定数据集
模型应用
总结词
K-均值聚类模型广泛应用于数据挖掘、模式识别、图 像处理等领域,可以用于市场细分、异常检测、分类 问题等。
详细描述
K-均值聚类模型的应用非常广泛,例如在市场细分中 ,可以将消费者按照购买行为、偏好等特征进行分类 ,帮助企业更好地理解客户需求和市场趋势。在异常 检测中,可以通过观察聚类结果中的离群点,发现数 据中的异常值。在图像处理中,可以将图像分割成不 同的区域,对每个区域进行特征提取和分析。此外, K-均值聚类模型还可以用于分类问题中,将数据点划 分为不同的类别。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。 步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干 元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构 步骤2构造比较矩阵 元素之间两两对比,对比采用美国运筹学家教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。 标度值 含义 1 两因素相比,具有同等重要性

3 两因素相比,前者比后者稍重要

5 两因素相比,前者比后者明显重要

7 两因素相比,前者比后者强烈重要

C5 旅途 选择旅游地 P2 黄山 P1 桂林 P3 北戴河 C3 居住 C1 景C2 费用 C4 饮食 目标层

准则层 方案层 9 两因素相比,前者比后者极端重要

2、4、6、8 表示上述相邻判断的中间值

以上各数值的倒数 若指标i与指标j比较相对重要性用上述之一数值标度,则指标j与指标i的相对重要性用上述数值的倒数标度 表1 1~9标度的含义 设要比较各准则nCCC,,,21对目标O的重要性,记判断矩阵为A





1135131112513131211714155712334211A

显然,A是正互反阵。 步骤3计算被比较元素对于该准则的相对权重 (1)一致阵的定义与性质 一致阵的定义 要由A确定nCCC,,,21对目标O的权向量,我们首先考察一致矩阵的性质。

称满足nkjiaaaikjkij,,2,1,,,的正互反阵为一致阵。例如





nnnnnnwwwwwwwwwwwwwwwwwwA

212221212111

一致矩阵的性质 矩阵A的秩为1,A的唯一非零特征根为n。 矩阵A的任一列向量是对应于n的特征向量。 矩阵A的归一化特征向量可作为权向量。 然而,我们构造的成对比较矩阵1135131112513131211714155712334211A中,由212112CCa,43113CCa可以得到83223CCa,而事实上723a。因此矩

阵A并不是一致阵,事实上在大多情况下我们构造的成对比较矩阵都不是一致阵。对于这样的矩阵我们如何来确定权向量呢我们通常的作法是:对于不一致(但在允许范围内)的成对比较阵A,建议用对应于最大特征根的特征向量作为权向量。 (2)一致性检验(确定成对比较阵不一致的允许范围),计算权向量。 已知n阶一致阵的唯一非零特征根为n,可证:n阶正互反阵最大特征根n, 且n时为一致阵。

一致性指标:1nnCI,CI 越大,不一致性越严重。 随机一致性指标:随机产生多个矩阵,将每个矩阵的一致性指标相加然后取平均值得到RI。

n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 表2 Saaty的随机一致性指标 注:标2中的n表示成对比较阵的维数。 一致性比率 如果1.0RICICR,构造的成对比较矩阵A通过一致性检验。 步骤4计算组合权向量 记第2层(准则层)对第1层(目标层)的权向量为 T

nwww)2()2(1)2(,,

同样求第3层(方案层)对第2层每一元素(准则层)的权向量 nkwwwTkmkk,,2,1,,,)3()3(1)3(

构造矩阵 )3()3(1)3(,,nwwW

则第3层(方案层)对第1层(目标层)的组合权向量 )2()3()3(wWw

以此类推,第s层对第1层的组合权向量 )2()3()1()()(wWWWwsss

其中pW是由第p层对第p-1层权向量按列组成的矩阵。 层次分析法的应用 1、应用领域:经济计划和管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。 2、处理问题类型:决策、评价、分析、预测等。 3、建立层次分析结构模型是关键一步,要有主要决策层参与。 4、构造成对比较阵是数量依据,应由经验丰富、判断力强的专家给出。 层次分析法的若干问题 2. 当层次结构不完全或成对比较阵有空缺时怎样用层次分析法 不完全层次结构 上层每一元素与下层所有元素相关联,这种层次结构称为完全层次结构,否则称为不完全层次结构,不完全层次结构又分为两种,一种为不完全层次出现在准则层与子准则层之间,这种不完全结构容易处理,我们将不支配的那些因素的权向量分别简单的置0,就可以用完全层次结构的办法处理,但如果不完全结构出现在准则层与方案层之间,则处理起来就有些麻烦,我们看下面的例子。 例 评价教师贡献的层次结构(图3),该图中21,CC支配元素的数目不等,此层次结构称为不完全层次结构。 设第2层对第1层权向量Twww22212,已定,第3层对第2层权向量 Twwww0,,,31331231131,T

www32432332,,0,0已得,讨论由323132,,wwWw计

算第3层对第1层权向量3w的方法。

图3评价教师贡献的层次结构 我们首先考察一个特例:若21,CC重要性相同, 则Tw21,212,4321,,,PPPP

能力相同, TTww21,21,0,0,0,31,31,313231,则公正的评价应为:1:2:1:1:::4321PPPP。

若不考虑支配元素数目不等的影响,仍用)2()3()3(wWw计算,则 Tw41,125,61,6

13

意味着支配元素越多权重越大,显然是不合理的。 用支配元素数21,nn对2w加权修正,修正为2w,再计算3w。

令)2(22)2(11)2(22)2(11)2((,~wnwnwnwnwT,再用)2()3()3(~wWw计算。本例中Twnn52,53~,2,3)2(21,计算得Tw51,52,51,5

13,表明支配元素越多权

重越小与公正的评价相吻合。

贡献O 教学C1 科研C2

P2 P1 P3 P4 成对比较阵残缺时的处理 专家或有关人士由于某种原因会无法或不愿对某两个因素给出相互对比的结果ija,于是成对比较阵出现残缺。如何对此作修正,以便继续进行权向量的计算呢

例 设一成对比较阵为121212121A,为残缺元素,试对此残缺阵进行处理。 解 构造辅助矩阵1212121211331wwwwC,因此由 wCwwAw (1) 但是,C中包含未知量31,ww,(1)式无法求解,进而将A修正为22102121022A,不难验证wwA,进而求得 T

w1429.0,2857.0,5714.0,3。

注:一般地,由残缺阵ijaA构造修正阵ijaA的方法是令





的个数行为第imjimajiajiaaiiijijijij,,1,,0,,

模糊综合评价模

相关文档
最新文档