机器人的组成系统
工业机器人的系统组成及各部分作用

工业机器人的系统组成及各部分作用一、引言工业机器人是一种自动化操作装置,主要用于工业生产中重复性高、作业环境危险的工作。
它的出现不仅提高了生产效率,而且还减少了人力成本和劳动强度。
要了解工业机器人的系统组成及各部分作用,我们需要从整体系统结构、各部分功能和作用等方面进行深入分析。
二、系统组成1. 机械结构机械结构是工业机器人的主体框架,它由基座、臂部、手部等部分组成,用于支撑和连接其他各部分。
其中,基座是机器人的底部支撑,臂部是机器人的动作执行部分,手部是机器人的操作器具,通过各部件的灵活组合,可以完成各种工业操作任务。
2. 控制系统控制系统是工业机器人的大脑,包括传感器、控制器、执行器等组成部分。
传感器用于获取外部环境的信息,控制器用于对机器人的动作进行指令和控制,执行器则是根据控制器的指令完成各项操作任务。
三、各部分作用1. 机械结构机械结构的作用是支撑和连接机器人的各部分,使之能够进行灵活的运动和操作。
通过合理的结构设计,可以实现机器人的高效作业和灵活操作,提高生产效率。
2. 控制系统控制系统的作用是实现机器人的自动化操作,传感器用于获取外部环境信息,控制器通过对信息的处理和分析,指挥执行器完成任务。
这种自动化操作不仅可以提高生产效率,还可以降低人力成本和减少劳动强度,同时也能保证生产过程中的安全性。
四、个人观点和理解通过对工业机器人的系统组成及各部分作用进行全面分析,我们可以深刻理解工业机器人的工作原理和作用。
我认为,工业机器人的出现标志着人类生产方式的进步和自动化水平的提高,它不仅可以大幅度提高生产效率,还可以降低生产成本,实现可持续发展和智能制造。
五、总结与展望通过本文的探讨,我们对工业机器人的系统组成及各部分作用有了更深入的了解。
在未来,随着科技的发展和人工智能技术的应用,工业机器人的性能和作用将会不断提升,我们期待工业机器人能够在更多领域发挥作用,为人类生活和生产带来更多便利。
工业机器人的系统组成及各部分作用是一个复杂而又精密的系统工程,它的实现对于提高整个生产效率和改善生产环境起着至关重要的作用。
机器人系统的组成

机器人系统的组成机器人系统通常由以下几个组成部分构成:1. 机械结构:包括机器人的物理外形和各个部件的机械结构,如关节、链条、连接器、传感器等。
这些结构决定了机器人的动作范围和运动能力。
2. 电气控制系统:包括电机、驱动器、传感器、计算机等电子设备,用于控制机器人的运动和感知环境。
电气控制系统接收来自计算机的指令,并将其转化为机械动作。
3. 计算机控制系统:包括嵌入式系统、单片机、PLC等,用于控制机器人的运动和执行任务。
计算机控制系统负责运算、决策和监控机器人的各种功能。
4. 感知系统:包括各种传感器,如摄像头、激光雷达、红外传感器等,用于感知机器人周围的环境信息。
感知系统可以获取到环境中的物体位置、距离、光照强度等数据,以辅助机器人的决策和动作。
5. 控制算法:包括路径规划、运动控制、动作规划等算法,用于指导和控制机器人的各项动作。
控制算法可以使机器人对特定任务做出适当的反应和行动。
6. 用户界面:通常是一台显示屏或者计算机界面,与机器人进行通信,可以通过界面对机器人进行控制和监控。
用户界面还可以提供机器人的工作状态、故障报警等信息。
这些组成部分相互配合,共同组成一个完整的机器人系统,实现使用者对机器人的控制和监控,并执行各种任务。
另外还有一些可选的组成部分,可以根据具体的机器人应用需求进行选择和配置:1. 操作系统:机器人可能运行一个特定的操作系统,如Linux 或Windows,用于管理和协调机器人系统的各项功能。
2. 数据存储和通信设备:机器人可能需要具备一定的存储和通信能力,以便存储和传输数据。
例如,机器人可以存储感知到的环境信息和任务执行过程中的数据。
3. 电源系统:机器人通常需要电源来驱动各个部件的工作,可以采用电池、电源适配器等不同形式的供电方式。
4. 人机交互接口:机器人可以配备触摸屏、声音识别、手势识别等人机交互设备,以便用户能够与机器人进行沟通和交互。
需要注意的是,不同类型的机器人系统在组成部分上可能会有所不同。
机器人四大系统组成部分

机器人四大系统组成部分机器人是一种具备自主行动和人工智能的机械装置。
它可以执行各种任务,无论是在工业生产中还是在日常生活中。
机器人的功能和性能很大程度上取决于其系统的组成部分。
一个完整的机器人系统通常由以下四大系统组成:感知系统、控制系统、执行系统和智能系统。
一、感知系统感知系统是机器人系统的重要组成部分,它使机器人能够感知和理解外部环境。
感知系统使用各种传感器和感知器件来获取信息,并将其转化为数字信号供控制系统和智能系统使用。
感知系统可以包括视觉传感器、声音传感器、触觉传感器、力传感器等。
视觉传感器能够帮助机器人识别和跟踪对象,通过摄像头获取图像,并将图像转化为数字信号以便机器人进行处理。
声音传感器可以帮助机器人感知声音信号,如语音识别和声音指令等。
触觉传感器可以让机器人感知外部的接触力和压力,从而更好地进行操作。
力传感器可测量机器人施加的力或受到的力,以确保安全和精确度。
感知系统的作用是为机器人提供与环境的交互和理解能力,使其能够做出相应的反应和决策。
二、控制系统控制系统是机器人系统的核心,它负责接收并解释感知系统提供的信息,并针对性地生成控制信号以操纵执行系统。
它基于机器人的操作目标和任务要求,通过算法和规划,将高级指令转化为底层的动作和运动。
控制系统通常包括硬件和软件两个方面。
硬件方面,它包括控制器、运动控制器、逻辑电路等。
软件方面,它包括运动规划算法、决策算法等。
控制系统的设计和优化是确保机器人能够准确执行任务的关键。
三、执行系统执行系统是机器人系统的执行力部分,它将控制系统提供的控制信号转化为机械运动。
执行系统通常由电动机、液压系统或气动系统组成,根据机器人的具体用途和任务要求进行选择。
执行系统的功能是根据控制信号实现机器人的准确运动和操作。
它可以实现机器人的各种机械动作,如移动、抓取、举起等。
四、智能系统智能系统是机器人系统的大脑,它赋予机器人智能和学习能力。
智能系统通过处理和分析感知系统提供的信息,并采取适当的决策和行动。
机器人的组成结构(PPT52页)

• 机器人一环境交互系统 机器人一环境交互系统是实现机器人与外部环境中的设备相 互联系和协调的系统.机器人与外部设备集成为一个功能单 元,如加工制造单元、焊接单元、装配单元等
度,即重复度。
培训专用
工作空间(Working space):机器人手腕 参考点或末端操作器安装点(不包括末端 操作器)所能到达的所有空间区域,一般 不包括末端操作器本身所能到达的区域。
培训专用
工业机器人的机械结构
工业机器人的机械本体类似于具备上肢机能的机械手 ,由 手部、腕部、臂、机身(有的包括行走机构)组成。
培训专用
• 正弦波电动机(交流无刷伺 服电动机):顾名思义,它 是由正弦波电流驱动的。对 三相情况,电流相位差 120。,而且这三相电流是 随转子位置不同而不同的, 也就是说,转子的位置检测 需更精确,驱动电路也比梯 形波电动机的更复杂,但却 代表着无刷电动机最高水平, 因为它能保持恒定转矩输出
培训专用
加入速度反馈。一般直流电动机和位置反馈、速度反馈形成 一个整体,即通常所说的直流伺服电机。由于采用闭环伺 服控制,所以能实现平滑的控制和产生大的力矩
• 当今大部分机器人都采用直流伺服电机驱动机器人的各个关节, 但它们也有一些缺点,如转速不能太高
• 近年来,新发展起来的无刷直(交)流伺服电动机克服了 上述缺点,并保留了直流伺服电动机的优点,因此无刷电 动机逐渐取代了直流伺服电动机
培训专用
相关术语及性能指标
人形机器人结构组成

人形机器人结构组成
人形机器人的结构由以下几个主要组成部分组成:
1. 机器人身体:机器人身体是机器人的主要结构框架,通常由金属或者合金材料制成,具有足够的强度和稳定性保证机器人的稳定运动以及承受外部负载。
身体也通常包括机器人的关节,使机器人能够进行各种运动和姿势。
2. 机器人头部:机器人头部通常包括人偶化的外观,用于模拟人的面部表情和头部动作。
头部通常包括人工智能控制系统,能够识别音频和视觉输入,以及生成适当的响应。
3. 传感器:机器人通常配备多种传感器,例如摄像头、微型麦克风、录音仪等,用于感知周围环境和人与物体的交互。
这些传感器使机器人能够感知和理解外部世界,并根据不同的输入做出适当的反应。
4. 电动驱动器:电动驱动器提供了机器人进行各种运动的动力和力量。
这些驱动器通常包括电机、线性执行器或气压作用单元,用于控制机器人的运动。
5. 控制系统:控制系统是机器人的大脑,通常由微型计算机和各种传感器和执行器组成。
控制系统负责接收和处理感知输入,决定机器人的运动和行为,并生成适当的响应。
6. 电源:机器人通常需要电源来供给电动驱动器和控制系统。
电源可以是电池、电缆或连接到外部电源的插头。
总而言之,人形机器人的结构是一个复杂的系统,涉及到机械设计、电子控制和软件编程等多个领域。
这些组成部分共同协作,使机器人能够模拟人的外观和动作,并具有感知、理解和交互的能力。
机器人的组成结构

常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。
描述出机器人的基本组成

描述出机器人的基本组成一、机器人的机械结构机器人的机械结构就像是它的身体,这部分可重要啦。
它有好多不同的部件呢。
比如说,机器人的外壳,就像我们穿的衣服一样,起到保护内部零件的作用,而且还能让机器人看起来更酷。
再就是关节部分,这就好比我们的关节,能让机器人灵活地转动和弯曲,做出各种动作。
还有机器人的手臂,有的机器人手臂特别强壮,可以抓起很重的东西;有的则很灵活,能做一些精细的操作,就像做手术的机器人手臂一样。
机器人的腿也很关键,如果是那种需要移动的机器人,腿就决定了它能走多快、多稳,能不能适应不同的地形。
像有的机器人腿是轮子的,在平地上跑得飞快;有的是像人腿一样的结构,就能在崎岖的路面上行走。
二、机器人的动力系统这就像是机器人的“能量源”。
有的机器人是靠电池提供动力的,就像我们的手机一样,不过机器人的电池一般都更大、更耐用。
这样它就能持续工作一段时间而不用总是充电。
还有些机器人可能是通过外部的电源连接来获取动力的,就像我们插着电使用的电器一样。
另外,有一些特殊的机器人会使用其他的能源,比如太阳能。
如果机器人是在户外工作,太阳能电池板就可以把阳光转化成电能,这可环保啦。
不过太阳能也有缺点,要是天气不好,没有太阳,那机器人的动力可能就会受到影响。
三、机器人的控制系统这个控制系统相当于机器人的“大脑”。
它能告诉机器人该做什么,怎么做。
控制系统里面有各种电路板和芯片,这些小零件可都是高科技。
通过编写程序,可以让机器人按照我们的要求去行动。
比如说,我们可以编写一个程序,让机器人在看到障碍物的时候绕开。
这个控制系统还能接收传感器传来的信息,然后根据这些信息做出决策。
就像我们的大脑接收眼睛、耳朵等器官传来的信息然后做出反应一样。
四、机器人的传感器传感器就像是机器人的感觉器官。
有视觉传感器,就像机器人的眼睛,能让它看到周围的环境,识别出不同的物体。
比如说在工厂里,机器人可以通过视觉传感器找到要搬运的零件在哪里。
还有触觉传感器,这就像我们的皮肤一样,能让机器人感觉到它是不是碰到了东西,碰到的东西是硬的还是软的。
机器人机械系统的组成

机器人机械系统的组成机器人是现代工业智能化生产的重要工具之一,其作为代替人类完成重复性、高风险、精度高的工作的机械装置已经广泛应用到了各个领域。
机器人的核心是机械系统,这个系统是由多个组成部分构成的,本文将对机器人机械系统的组成进行深入的探讨。
1. 电机系统电机系统是机器人机械系统的核心之一,负责驱动整个机械系统运动。
电机的种类主要有直流电机、交流电机和步进电机等。
每种电机都有自己的一些特点和适用范围。
直流电机体积较小,转换速度快,因此较为适合在小型机器人中使用。
交流电机能承载较大的负荷,适用范围较广,常用于大型机器人和重载机器人中。
步进电机体积小、声音低,可控性较强,精度也较高,适用于高精度应用场合。
2. 传感器系统传感器系统是机器人机械系统的另一个核心部分,主要用于获取机器人周围环境的信息,为机器人行动提供必要的数据。
传感器的种类多种多样,包括激光雷达、视觉摄像头、力传感器、触觉传感器等。
每种传感器都可以用来感知并记录不同的物理量,以便机器人更好地完成任务。
3. 运动结构机器人的运动结构对机器人整体的性能和精度有着重要的影响。
常见的运动结构包括直线运动结构和转动运动结构。
直线运动结构通常采用滑轨、钢珠丝杆和齿轮等部件驱动机器人在直线方向上运动。
转动运动结构主要采用旋转关节和舵机等部件带动机器人在不同的方向上进行转动。
4. 控制系统控制系统是机器人机械系统中关键的组成部分,主要是对机器人的运动思想、工作方式进行统一、系统化的控制。
机器人的控制系统通常分为硬件控制和软件控制两部分。
硬件控制负责对机器人运动的各种信号进行处理,将数据实时传输到控制器,并通过控制器对机器人进行实时的反馈。
软件控制部分则负责编写机器人运动的程序和运行参数,以便机器人能够按照编写的程序进行各种动作。
5. 机械结构机械结构是机器人机械系统的基础,它包括机器人整体的框架、底座、机械臂、执行器等部分。
不同种类的机器人结构各自特点,有的机器人适合在水下作业,有的适合在高温场合作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人的组成系统一.工业机器人组成系统工业机器人由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。
驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。
控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。
点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。
工业机器人按程序输入方式区分有编程输入型和示教输入型两类。
编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。
示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。
在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。
示教输入程序的工业机器人称为示教再现型工业机器人。
几个问题:(1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型?(2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆?(3)能不能控制机器人中每一个电机的输出功率或扭矩?(4)机器人每一个关节从驱动电机到执行机构的传递效率有没有?二.工业机器人的主体机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。
共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。
机器人采用电机驱动,电机分为步进电机或直流伺服电机。
直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。
各部件组成和功能描述如下:(1)基座:基座是机器人的基础部分,起支撑作用。
整个执行机构和驱动装置都安装在基座。
(2)腰部:腰部是机器人手臂的支撑部分,腰部回转部件包括腰部支架、回转轴、支架、谐波减速器、制动器和步进电机等。
(3)大臂:大臂和传动部件(4)小臂:小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端固定驱动手腕三个运动的步进电机。
(5)手腕部件:手腕壳体、传动齿轮和传动轴、机械接口等。
(6)末端执行器:根据抓取物体的形状、材质等选择合理的结构。
目前,在工业机器人中广泛采用的机械传动单元是减速器,与通用减速器相比,机器人关节减速器要求具有传动链短、体积小、功率大、质量轻和易于控制等特点。
常用的减速器主要有:RV减速器和谐波减速器。
RV减速器一般用在腰关节、肩关节和肘关节等重载位置处,而谐波减速器用于手腕的三个关节等轻载位置处。
(1)谐波减速器谐波减速器由固定的刚性内齿轮、一个工作时可产生径向弹性变形并带有外齿的柔轮和一个装在柔轮内部、呈椭圆形、外圈带有柔性滚动轴承的波发生器等3个基本构件组成。
当波发生器转入柔轮后,迫使柔轮的剖面由原先的圆形变为椭圆形,其长轴两端附近的齿与刚轮的齿完全啮合,而短轴两端附近的齿则与刚轮完全脱开,周长上其他区段的齿处于啮合和脱离的过渡状态。
(2)RV减速器与谐波减速器相比,RV减速器具有较高的疲劳强度和刚度以及较长的寿命,而且回差精度稳定,不想谐波传动,随着使用时间的增长,运动精度就会显著降低,故高精度机器人传动多采用RV减速器,且有逐渐取代谐波减速器的趋势。
RV减速器是由第一级渐开线圆柱齿轮行星减速机构和第二级摆线针轮行星减速机构组成,是一封闭差动轮系。
目前,在工业机器人中常用的驱动电机是交流伺服电机。
交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
交流伺服电机具有较强的过载能力,具有速度过载和转矩过载能力,其最大转矩可达额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。
电机的输出扭矩与功率的关系:T = 9550 P / n 。
T,扭矩,Nm;P,功率,KW;n,转速,r/min;9550是系数。
扭矩、功率、转速之间,有关系。
三.工业机器人的示教器示教器也称示教编程器或示教盒,主要由液晶屏幕和操作按键组成,可由操作者手持移动。
它是机器人的人机交互接口,机器人的所有操作基本上都是通过示教器完成的,如点动机器人,编写、测试和运行机器人程序,设定、查阅机器人状态设置和位置等。
四.工业机器人的技术指标机器人的技术指标反映了机器人的适用范围和工作性能,是选择、使用机器人必须考虑的问题。
(1)最大负载:作用于机器人手腕末端,且不会使机器人性能降低的最大载荷(2)定位精度:又称绝对定位精度,是指机器人末端执行器实际到达位置与目标位置之间的差异。
(3)重复定位精度:指机器人重复到达某一目标位置的差异程度;或在相同的位置指令下,机器人连续重复若干次其位置的分散情况。
一般而言,工业机器人的绝对定位精度要比重复定位精度低一到两个数量级,其原因是未考虑机器人本体的制造误差、工件加工误差及工件定位误差情况下使用机器人的运动学模型来确定机器人末端执行器的位置。
(4)最大工作速度。
在各轴联动情况下,机器人手腕中心所能达到的最大线速度。
最大工作速度越高,生产效率就越高。
五.工业机器人的控制系统机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。
机器人控制器是根据指令以及传感信息控制机器人完成一定动作或作业任务的装置。
工业机器人控制技术的主要任务就是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。
具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。
其基本功能如下:(1)示教功能。
分为在线示教和离线示教两种方式。
(2)记忆功能。
存储作业顺序、运动路径和方式及与生产工艺有关的信息等。
(3)与外围设备联系功能。
包括输入/输出接口、通信接口、网络接口等。
(4)传感器接口。
位置检测、视觉、触觉、力觉等。
(5)故障诊断安全保护功能。
运行时的状态监视、故障状态下的安全保护和自诊断。
其关键技术包括:(1)开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。
机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。
机器人控制器(RC)的主计算机完成机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。
(2)模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。
整个控制器软件系统分为三个层次:硬件驱动层、核心层和应用层。
三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次内部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。
(3)机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。
(4)网络化机器人控制器技术:当前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。
控制器上具有串口、现场总线及以太网的联网功能。
可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。
根据计算机结构、控制方式和控制算法的处理方法,机器人控制器又可分为集中式控制和分布式控制。
(1)集中式控制器。
利用一台微型计算机实现系统的全部控制功能。
其优点是硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的硬件扩展方便。
其缺点是灵活性、可靠性、实时性较差。
(2)分布式控制器。
主要思想是“分散控制,集中管理”,分布式系统常采用两级控制方式,由上位机和下位机组成。
上位机(机器人主控制器)负责整个系统管理以及运动学计算、轨迹规划等,下位机由多CPU组成,每个CPU 控制一个关节运动。
上、下位机通过通信总线相互协调工作。
其优点是系统灵活性好、可靠性提高、响应时间短,有利于系统功能的并行执行。
工业机器人的控制系统需要由相应的硬件和软件组成,硬件主要由传感装置、控制装置及关节伺服驱动部分组成,软件包括运动轨迹规划算法和关节伺服控制算法与相应的工作程序。
传感装置分为内部传感器和外部传感器,内部传感器主要用于检测工业机器人内部的各关节的位置、速度和加速度等,而外部传感器是可以使工业机器人感知工作环境和工作对象状态的视觉、力觉、触觉、听觉、滑觉、接近觉、温度觉等传感器。
控制装置用于处理各种感觉信息,执行控制软件,产生控制指令。
关节伺服驱动部分主要根据控制装置的指令,按作业任务的要求驱动各关节运动。
六.工业机器人的运动轨迹与位置控制机器人的作业实质是控制机器人末端执行器的位姿,以实现点位运动或连续路径运。
(1)点位运动(PTP)。
点位运动只关心机器人末端执行器运动的起点和目标点位姿,而不关心这两点之间的运动轨迹。
(2)连续路径运动(CP)。
连续路径运动不仅关系机器人末端执行器达到目标点的精度,而且必须保证机器人能沿所期望的轨迹在一定精度范围内重复运动。
机器人连续路径运动的实现是以点位运动为基础,通过在相邻两点之间采用满足精度要求的直线或圆弧轨迹插补运算即可实现轨迹的连续化。
机器人再现时,主控制器(上位机)从存储器中逐点取出各示教点空间位姿坐标值,通过对其进行直线或圆弧插补运算,生成相应路径规划,然后把各插补点的位姿坐标值通过运动学逆解运算换成关节角度值,分送机器人各关节或关节控制器。
工业机器人控制方式有不同的分类,如按被控对象不同可分为位置控制、速度控制、加速度控制、力控制、力矩控制、力和位置混合控制等,而位置控制是工业机器人的基本控制任务。
问题:1.要求机器人系统模块化,我们可以给机器人系统中各模块发送指令,并获取各模块的输出。
机器人系统部分非核心模块应该可以关闭或打开,被关闭的模块即使接受到指令也应处非活跃状态。
2.我们可以写自己的模块,并通过个人编写的模块调用系统模块,实现对系统模块的控制。
3.机器人路径规划一般给定起始点和终止点,然后通过插补运算得到路径,但我希望能将路径规划模块化,我可以给路径规划模块实时发送终止点指令,获得规划路径。
将路径送入运动学逆解求解模块获取关节的转动角度,将该转动角度与期望速度和加速度(速度、加速度可以实时调整)相结合控制机器人的操作空间动力学模型。