风力发电的变桨距控制研究

风力发电的变桨距控制研究
风力发电的变桨距控制研究

定距桨变距桨与风力发电机组

桨距 螺旋桨的桨叶都与旋转平面有一个倾角。 假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。 同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。 这个“距”,就是桨叶旋转形成的螺旋的螺距。 桨距指的是直升机的旋翼或固定翼的螺旋桨旋转一周360 度,向上或向前行走的距离(理论上的)。就好比一个螺丝钉,您拧一圈后,能够拧入的长度。桨距越大前进的距离就越大,反之越小!然而要测量实际桨距的大小是比较困难的,所以一般固定翼飞机使用桨距不变的螺旋桨上都会标明其直径和桨距的大小(单位以英寸居多),以便于和合适的发动机配套使用。绝大多数的固定桨距的直升机桨一般是专为某一级别的飞机定制的,所以只标明直径。可变桨距直升机可以非常容易的通过测量桨叶的攻角(迎风角度)大小来体现桨距的大小,和变化幅度。 l 定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69 ,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/ 小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。 2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“, 直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用 OptitiP 技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组

风力发电机变桨控制系统培训教材

变桨控制系统培训教材 1. 变桨控制系统概述 变桨轴承 限位开关装 图1 变桨系统 变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变 桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺

桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1.通过调整叶片角把风机的电力速度控制在规定风速之上的一 个恒定速度。 2.当安全链被打开时,使用转子作为空气动力制动装置把叶子转 回到羽状位置(安全运行)。 3.调整叶片角以规定的最低风速从风中获得适当的电力。 4.通过衰减风转交互作用引起的震动使风机上的机械载荷极小

化。 2.变桨轴承 变桨驱动装 变桨轴承 图2 变桨轴承和驱动装置 安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱 动装置啮合运动,并与叶片联接。 工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.概述 双馈风机

风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率.

变桨控制原理

变速恒频风电机组额定风速以上恒功率控制 2007-4-13 15:50:35 【文章字体:大中小】打印收藏关闭 风能作为一种取之不尽、清洁无污染的可再生能源,它的开发利用已经受到了世界各国的普遍重视。作为风力资源丰富的国家之一,我国在风力发电机组的国产化方面取得了较快的进展,“九五”期间实现了600kW风力发电机组96%的国产化率,成功开发了600kW失速型风力发电机组控制系统这一关键技术。目前,我们承担了国家863“兆瓦级变速恒频风力发电机组电气控制系统”的研制攻关任务,研制工作正在积极有效地开展中。 变速恒频风力发电机组与失速型风力发电机组相比,其中一个很大的优点是额定风速以上输出功率平稳。变速恒频风力发电机组运行在额定风速以上时,既要使额定功率点以上输出功率平稳,避免波动,又要使发电机组传动系统具有良好的柔性,同时还要考虑对风电机组实现有效保护。目前我们研制的兆瓦级变速恒频风电机组主要采用了变桨距控制技术。变桨距控制技术是在风速过高时,通过调整桨叶节距,改变气流对叶片功角,从而改变风电机组获得的空气动力转距,使机组功率输出保持稳定。本控制策略采用了功率反馈闭环控制系统,来实现变速恒频机组额定风速以上的控制目标。变桨距机构介绍变桨距执行机构是由机械和液压系统组成,它沿着风机的纵向轴调节风机的桨叶。因为桨叶的惯量很大,且变桨距执行机构不应该消耗大量的功率,所以执行机构具有的限制能力,其动态特性是在桨距角和桨距速率上均具有饱和限制的非线性动态,当桨距角和桨距速率小于饱和限度时,桨距动态呈线性。变桨执行机构如图1所示。 执行机构的模型描述了来自控制器的桨距角指令到该指令的激励之间的动态。其数学模型可以描述成如下的一阶系统

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

基于pcs7的变桨距风力发电机组偏航控制系统设计电气工程与自动化本科论文

编号:( )字 号 本科生毕业设计 题目: 姓名: 学号: 班级: 二〇一四年六月 基于PCS7的变桨距风力发电机组 偏航控制系统设计

xx 矿业大学 本科生毕业设计 姓名:学号: 学院:信息与电气工程学院 专业:电气工程与自动化 设计题目:基于PCS7变桨距风力发电机组偏航控制系统设计指导教师:职称:教授 二〇一四年六月徐州

xx矿业大学毕业设计任务书 学院信电学院专业年级电气工程与自动化2010级姓名 任务下达日期:2013年12月30日 毕业设计日期:2013年12月30日至2014年6月10日 毕业设计题目:基于PCS7变桨距风力发电机组偏航控制系统设计毕业设计专题题目: 毕业设计主要内容和要求: 1、了解风力发电机组工作的基本原理; 2、掌握WinCC和STEP 7软件; 3、掌握基本过程控制策略; 4、构建偏航控制系统及其控制策略; 5、翻译英文文献一篇。 院长签字:指导教师签字: 年月日

xx矿业大学毕业设计指导教师评阅书 指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力; ③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

xxx矿业大学毕业设计评阅教师评阅书 评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度; ⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字: 年月日

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

风力发电变桨系统浅析

风力发电变桨系统浅析 摘要:变速变桨距风力发电机组目前已成为大型风力发电机组研发和应用的主流机型。变桨距机构就是在额定风速附近,依据风速的变化随时调节桨距角,控制吸收的机械能,一方面保证获取最大的能量(与额定功率对应),同时减少风力对风力机的冲击。在并网过程中,变桨距控制还可实现快速无冲击并网。 关键词:变桨、限位开关、羽状位置、变频 一、变桨系统概述 变桨控制系统实现风力发电机组的变桨控制,在额定功率以上通过控制叶片桨距角使输出功率保持在额定状态。变桨控制柜主电路采用交流--直流--交流回路,由逆变器为变桨电机供电,变桨电机采用交流异步电机,变桨速率由变桨电机转速调节。 二、机械和电气部分 1、变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 2、变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 3、变桨控制系统有四个主要任务: (1)通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。 (2)当安全链被打开时,使用转子作为空气动力制动装置把叶片转回到羽状位置(安全运行)。 (3)调整叶片角以规定的最低风速从风中获得适当的电力。 (4)通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。 4、变桨轴承

风力发电变桨距控制系统研究

毕业论文 风力发电变桨距控制系统研究 学生姓名:XXXX学号:XXXXXX 系部:自动化 专业:自动化 指导教师:XXXXX 二〇一一年六月

诚信声明 本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。 本人签名: 年月

摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等优点,所以其受到世界各国的重视。 可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。所以对风力发电机组尤其是大型风电机组的控制技术的深入研究就具有相当重要的意义。 本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。 关键词:风力发电,变桨距控制,伺服系统

Abstract Energy and environment is the human survival and development of the pressing problems which should be solved. The traditional fossil fuel can solve the energy shortage, but give environment caused the most damage, and wind have clean, renewable and low cost, so its advantages by world attention. Reliable and efficient wind power generation system research and development have already become the hot new energy technologies. However, because the wind is instability, energy density characteristics such as low and randomness, and wind power plant are usually located in remote areas and even at sea, natural condition is poor, so ask its control system must be able to realize automatic operation, and asked for the control system had high reliability. So for WTG especially large wind generator control technology research is of vital significance. This paper firstly in the principle of wind power generation, based on the study of the wind generator from getting away from a wind turbine propeller air dynamics research, analyses from the basic control variable OARS, coupled with the current domestic law change from the mainstream of the OARS were designed control technology from control hydraulic change propeller, electric control scheme of variable propeller from last, based on this, advances a more ideal control strategy - half oar active stall control. Keywords: Wind power, From control variable oar ,Servo system

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机变桨系统

风力发电机变桨系统 摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

变桨系统

风力发电变桨系统 摘要:变桨系统是风力发电机的重要组成部分,本文围绕风力发电机变桨系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机变桨系统DOC

风力发电机变桨系统 1、综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2、变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 SSB变桨系统为寒冷环境设计。环境温度定义如下 工作温度为 -30 ~ +40 ℃ 静态温度为 -40 ~ +50 ℃ 在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。在每个柜体的温度到达 5 ℃一段时间后,系统被启动,这个默认的时间是60分钟。 在这段可调整的时间过后,这个系统被释放和通电。 3、主要部件 电控柜(一个主控柜、三个轴柜)4套 变桨电机(配有变桨系统主编码器:A编码器)3套 备用电池3套 直流电机3个 机械式限位开关3套(6个) 冗余编码器(B编码器)3套

风力发电机组变桨控制

2.风力发电机组控制原理—变桨距控制对象特点 a)气动非线性 变桨距控制实质是通过改变攻角来控制风力机的驱动转矩,风能利用系数曲线对桨距角和叶尖速比的变化规律具有很强的非线性。 b)工况频繁切换 由于自然风速大小随机变化,各风速段机组控制目标不同,导致变速风力发电机组随风速在各个运行工况之间频繁切换。 c)多扰动因素 影响风力发电机组性能变化的不确定干扰因素很多,风速的变化(尤其是阵风)对风力发电机组的功率影响最大。 d)变桨距执行系统的大惯性与非线性 常用的液压执行机构和电机执行机构,驱动时呈现出非线性的性质。随着风力机容量的不断增大,变桨距执行机构自身的原因引入的惯量也越来越大,使动态性能变差,表现出了大惯性对象的特点。

2.风力发电机组控制原理—变桨距控制系统 目前并网型风力发电机组的变桨距控制系统根据机组并网前、后的工况主要包含两种工作方式:并网前转速控制和并网后功率控制。 变桨距风力发电机组变桨控制系统图

2.

2.

3 风电场接入电网的有关规定内容 1.技术要求规范性引用文件 GB/T 12325-2008 电能质量供电电压偏差 GB 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 15543-2008 电能质量三相电压不平衡 DL 755-2001 电力系统安全稳定导则 SD 325-1989 电力系统电压和无功技术导则 GB/T 20320-2006 风力发电机组电能质量测量和评估方法DL/T 1040-2007 电网运行准则

风电机组变桨距系统

作者:中国科学院电工研究所李建林张雷鄂春良来源:赛尔电力自动化总第78期 摘要:在风力发电系统中,变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率,而且有效的降低的噪音,稳定发电机的输出功率,改善桨叶和整机的受力状况。变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性,现代的大型风力发电机大多采用变桨距控制。本文针对国外某知名风电公司液压变桨距风力机,采用可编程控制器(PLC)作为风力发电机的变桨距控制器。这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。本文介绍了液压变桨距系统的工作原理,设计了变桨控制器的软件系统。最后在国外某知名风电公司风力发电机组上做了实验,验证了将该变桨距控制器可以在变桨距风力机上安全、稳定运行的。 关键词:变桨距;风力发电机;可编程控制器 1引言 随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出:既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,使整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持最佳转换效率,使输出功率最大,从而提高系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前变桨执行机构主要有两种:液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。在统一变桨基础上发展起来的独立变桨距技术,每支叶片根据自己的控制规律独立地变化桨距角,可以有效解决桨叶和塔架等部件的载荷不均匀问题,具有结构紧凑简单、易于施加各种控制、可靠性高等优势,越来越受到国际风电市场的欢迎。 兆瓦级变速恒频变桨距风电机组是目前国际上技术比较先进的风力机型,从今后的发展趋势看,必然取代定桨距风力机而成为风力发电机组的主力机型。其中变桨距技术在变速恒频风力机研究中占有重要地位,是变速恒频技术实现的前提条件。研究这种技术,提高风电机组的柔性,延长机组的寿命,是目前国外研究的热点,但是国内对此研究甚少,对这一前瞻性课题进行立项资助,掌握具备自主知识产权的独立变桨控制技术,对于打破发达国家对先进的风力发电技术的垄断,促进我国风力发电事业的进一步发展具有重要意义。 为了获得足够的起在变桨距系统中需要具有高可靠性的控制器,本文中采用了OMRON 公司的CJ1M系列可编程控制器作为变桨距系统的控制器,并设计了PLC软件程序,在国外某知名风电公司风力发电机组上作了实验。 2变桨距风力机及其控制方式 变桨距调速是现代风力发电机主要的调速方式之一,如图1所示为变桨距风力发电机的简图。调速装置通过增大桨距角的方式减小由于风速增大使叶轮转速加快的趋势。当风速增大时,变桨距液压缸动作,推动叶片向桨距角增大的方向转动使叶片吸收的风能减少,维持风轮运转在额定转速范围内。当风速减小时,实行相反操作,实现风轮吸收的功率能基本保持恒定。液压控制系统具有传动力矩大、重量轻、刚度大、定位精确、液压执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距[4][5]。目前国内生产和运行的大型风力发电机的变距装置大多采用液压系统作为动力系统。

风力发电的变桨距控制研究

风力发电的变桨距控制方法研究 目录 一概论 1.1风力发电变桨距控制研究的背景与意义 1.2国内外风力发电变桨距控制研究现状 二风力发电的控制系统介绍 2.1控制系统的重要性 2.2控制系统的功能 2.2.1启动控制 2.2.2并/ 脱网控制 2.2.3制动控制 三风力发电机的变桨距控制系统 3.1变桨距机构 3.1.1变桨距调节的工作原理 3.1.2变桨距机构的组成 3.2(电动)变桨距装置 3.2.1变桨距驱动装置 3.2.1变桨距执行机构 四风电机组变桨距控制方法研究 4.1变桨距控制的研究方法 4.2风力发电的变桨距功率控制法 4.2.1变桨距功率控制法模型 4.1.2系统的软件设计 五功率控制法的改进

一概论 1.1风力发电变桨距控制研究的背景与意义 近几年来,世界各国大型风电力发电机组得到了迅猛发展,大型MW级风电机组在世界主要国家已经投入产业化生产。目前,国际主流的大型风电机组 2.5MW、3MW以及5MW 的大型风电机组已推向市场,10MW超巨型风电机组正在试验当中。机组单机容量从2MW 到3MW的风电机组已经成为世界各国研发的主力机型,单机容量从3MW到5MW的机组已经成为海上风电场的主力机型,10MW的超大型海上风电机组也已经研制成功。尤其是欧洲各国,风电技术和风电产业发展居于世纪领先地位,比如:2006 年,德国REPOWER 公司就已在海上安装了两台5MW海上风电机组;2007年,德国Enercon公司安装了一台6MW的海上风力发电机组;2009 年比利时WindVision公司在比利时安装了11 台7MW 的直驱风力发电机组。 同世界发达国家的水平相比,我国的风机生产水平也有很大差距。目前,我国并网型风电机的主要提供商为Bonus、Vestas、NEG-Micom、Nordtank、Nordex、Gamesa等国外厂家。由此可见,我国的主流风电机型仍然依赖进口,或者与外商合作生产。而相对国外的这些产品来说,我国风力发电设备的国产化水平不高,恰恰这些进口设备的造价又昂贵,再加上地域和文化的差异等原因,维护工作也往往不能及时进行。对我国风电的产业化进程形成了严重障碍。 随着风电机组大型化的发展,风机的叶片直径在不断的增大,叶片、传动轴和塔架等风机主要部件的柔性和弹性都相应变大、阻尼变小,导致大型风电机组的低频模态越来越密集,各阶模态的交叉耦合几率加大,使得大型风电机组承受的不平衡载荷更加复杂。尤其是风轮直径增加后,风轮叶片承受来流时变、风切变、塔影效应等影响产生的不平衡载荷更加明显,引起桨叶产生大范围的挥舞和摆振,严重影响到风电机组传动机构等部件的机械应力和疲劳寿命。由此,变桨控制技术得到世界共识并快速发展。变桨距控制的优点是具有较高的风能利用系数,能够确保高风速段的额定功率,提高风力机组起动性能与制动性能,提高风机的整体柔性度,减小整机和桨叶的受力状况等。因此,国际风力发电市场的主流产品大都应用变桨距控制。从目前看,变桨距控制有两种,一种是统一变桨控制,另一种是独立变桨控制。统一变桨采用三个桨叶统一控制的方式,叶片桨距角的调节主要根据风能利用系数和功率输出,无法兼顾风轮旋转平面内因风况、风速的不同对桨叶产生的轴向拍打和震动,尤其是对大型风电机组,叶片的直径大都在几十米以上,风切变效应和塔影效应的影响是无法避免的,从而使得每个桨叶的受力不同,而且在风轮的连续旋转下,桨叶受力处于持续的波动之中,对风机的稳定性和使用寿命产生不良影响。此外,由于叶片尺寸较大,每个叶片有十几吨甚至几十吨重,叶片在运行的不同位置受力状况也是不一样的,所以,叶片重力对风轮力矩的影响也是不能忽略的。 独立变桨距控制是在统一变桨距控制的基础上发展起来的,每个桨叶都由独立的变桨距执行机构控制,按照各个桨叶所处的不同位置和不同风速分别进行调节,不仅能够跟踪最大风能的捕获和稳定发电机的输出功率,而且能够有效减小桨叶的拍打震动以及风机的其他扰动影响。甚至其中一个变桨距执行机构出现故障,其它两个桨叶仍能调节桨距角实现功率控制,从而大大提高风机的稳定性和耐疲劳寿命。由此,独立变桨距控制技术成为当今世界各国大型风电机组控制技术研究的热点,也是现代风机控制理论研究的难点。独立变桨系统按照原理又分为电动变桨和液压变桨两种,主要是动力不一样。电动变桨用伺服电机驱动,液

相关文档
最新文档