聚氨酯泡沫塑料的阻燃及热解性能

合集下载

聚氨酯泡沫火灾危险性及防火对策

聚氨酯泡沫火灾危险性及防火对策

聚氨酯泡沫火灾危险性及防火对策一、火灾危险性“聚氨酯”全称为聚氨基甲酸酯,用这种材料做成的泡沫塑料具有优越的绝缘、保温和隔音性能。

聚氨酯泡沫塑料,俗名海绵塑料(以下简称聚氨酯泡沫),是生产、生活中广泛利用的畅销制品。

聚氨酯泡沫成品是多孔性的固体,导热性极差,容易造成热量积聚。

硬质泡沫塑料的闪点为310℃,自燃温度为416℃,每燃烧1千摩尔泡沫塑料可放出3073.53KJ的热量。

未经阻燃处理的成品,氧指数为20左右;经阻燃处理的在23~27之间,个别也可达30左右。

在200℃时发生热降解,放出CO和醇类等低分子物。

对于软质聚氨酯泡沫,根据火险参数差热分析的测定结果,其初始分解温度为260℃以上,激烈分解温度为280℃,自燃温度在330℃以上,极易造成自燃和分解性燃烧。

燃烧后,会分解产生氰化氢、一氧化碳等剧毒性气体,使人吸入后几秒钟就中毒身亡,且燃烧产生大量烟气,降低空间能见度,使人失去逃生能力。

二、火灾特性聚氨酯泡沫火灾与其他可燃固体火灾相比,存在有不同的独特个性。

主要表现在:1、易产生阴燃实验证明,某些标准规格的聚氨酯泡沫,即使在单独存放的情况下,也可发生阴燃。

软质聚氨酯泡沫在静止空气中,产生阴燃的最高温度不超过400℃,而且阴燃的时间能持续数个小时。

硬质聚氨酯泡沫的阴燃只发生在表面上,阴燃的最高温度约500℃左右。

2、燃烧速度极快,火焰温度高在实验中采用150×50×15mm规格的聚氨酯泡沫试样测定,燃烧速度为1.5~2.0mm/s;燃烧中辐射热极强,经测试火焰温度高达2000℃左右,热值为28~23MJ/kg,根据消防部队战斗经验表明,500公斤聚氨酯泡沫堆积引燃后,战斗还未展开、水枪还没出水就全部燃尽了,可见其燃烧的猛烈程度。

分析认为,聚氨酯泡沫燃烧速度快、温度高,主要是因为聚氨酯泡沫在温度作用下,具有急剧分解的特性。

分解出的多种小分子可燃气体,当其温度达到燃点,浓度达到燃烧极限时,就会发生爆燃性的全面猛烈燃烧,使燃烧进入“轰燃”状态。

硬质聚氨酯泡沫塑料

硬质聚氨酯泡沫塑料

硬质聚氨酯泡沫塑料 Revised by Hanlin on 10 January 2021硬质聚氨酯泡沫塑料硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。

有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。

另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。

聚氨酯泡沫塑料有聚酯与聚醚型之分。

通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受到限制。

1.硬质聚氨酯泡沫塑料的主要性能硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5s后离火,在1~2s内自熄。

耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。

各种绝热材料性能对比见表5—1。

表5-1各种绝热材料性能2.硬质聚氨酯泡沫塑料原料的性质、规格与选择硬质聚氨酯泡沫塑料是以多元羟基化合物和异氰酸酯为主要原料。

在催化剂、发泡剂的作用下,经加成聚合发泡而成。

主要反应力异氰酸酯与多元羟基化合物中的羟基反应生成聚氨酯。

催化剂主要有叔胺和有机锡等。

发袍反应为异氰酸酯与水反应,产生二氧化碳气体和脲。

反应产物脲及叔胺等物对此反应有催化作用。

反应所产生的二氧化碳气体被用来发泡。

但水发泡的最大缺点是耗费昂贵的异氰酸酯。

也常用低沸点氟氯烷化合物(即F-113等),利用聚合过程中的反应热汽化,使物料在逐步固化前形成泡沫,发泡剂用量可根据所需泡沫体密度来决定。

(1)聚酯。

硬质泡沫聚氨酯所用的聚酯,其羟值通常控制在300~500之间。

456聚酯指标如下。

聚氨酯泡沫塑料的火灾危险特性及安全对策.doc

聚氨酯泡沫塑料的火灾危险特性及安全对策.doc

聚氨酯泡沫塑料的火灾危险特性及安全对策四川省公安消防总队 祁晓霞 王宁 李方敏 摘要:本文通过热分析方法,对聚氨酯泡沫塑料的火灾危险性进行了分析,提出了相应的消防安全对策。

关键词:聚氨酯 火灾危险性 安全对策聚氨酯泡沫塑料是聚氨基甲酸酯泡沫塑料的简称,其热导率仅为软木或聚苯乙烯泡沫塑料的40%左右,有足够的强度、耐油性和粘接能力,是优良的防震、隔热、隔音材料,广泛用于家具装饰、床垫、海绵、玩具、服装及医用包扎品,工业环境实验室、建筑通风空调管道以及食品行业冷冻库(间)的保温隔热材料,坚硬性聚氨酯泡沫体还可用于建筑物绝缘结构。

但在使用中如不加注意,也极易引发火灾事故。

今年4月22日,山东省青州市丰旭实业有限公司青州分公司肉食鸡加工车间发生大火,造成38人死亡,20人受伤的特大恶性事故,经查明火灾原因是灯泡引燃聚氨酯泡沫塑料所致。

我省也曾出现过一星级宾馆餐厅地下室速冻间因酒精棉燃烧,烤热作为通风空调管保温材料的聚氨酯泡沫塑料,分解出易燃易爆气体,爆燃引发重大火灾事故的案例。

因此,作为消防监督检查人员,应该对聚氨酯泡沫塑料的火灾危险性有所了解,加强安全防范。

聚氨酯泡沫塑料是以聚醚树脂或聚酯树脂为主要原料,与异氰酸酯定量混合,进行发泡制成的一种泡沫塑料,其化学结构式为:H U GU U G U GUU GU G U H这里 COU N N CO G =-O -CH 2-CH 2-CH 2-CH 2-O - = O -CH 2-CH 2-CH 2-CH 2 X O -链段的构造:聚氨酯泡沫塑料热力学方面的理化参数在许多参考资料上都未提及。

以下是我们对某宾馆聚氨酯泡沫塑料火灾后,从生产厂家取样送公安部四川消防科学图1:热重曲线—16—图2:热差分析曲线研究所进行的测试分析,其结果有助于对聚氨酯泡沫塑料火灾危险性的认识。

对试样用水平燃烧法测试燃烧速度,试件尺寸125×12×12mm,在燃烧过程中有大量的烟产生,并有卷曲,试件燃烧长度超过100mm线,试件燃烧速度为265mm/min(GB2408-80)。

聚氨酯泡沫阻燃剂热分解温度

聚氨酯泡沫阻燃剂热分解温度

聚氨酯泡沫阻燃剂热分解温度
聚氨酯泡沫阻燃剂是一种添加到聚氨酯泡沫材料中,用来提高其防火性能的化学添加剂。

这类阻燃剂能够在材料受热时发挥抑制火焰蔓延、延缓燃烧速度、降低烟气毒性及减少热量释放的作用。

聚氨酯泡沫阻燃剂的热分解温度取决于具体的阻燃剂种类和配方。

不同的阻燃剂有不同的分解温度,一般来说,聚氨酯泡沫中添加的无机阻燃剂如氢氧化铝、氢氧化镁等,其分解温度较高,通常在300℃以上;而有机阻燃剂如磷系阻燃剂、氮系阻燃剂的分解温度可能稍低一些。

聚氨酯泡沫本身的分解温度也会影响阻燃剂的选择和效果,聚氨酯泡沫在没有添加阻燃剂时,其开始分解的温度大约在200℃至250℃之间。

当加入阻燃剂后,理想的阻燃剂应在聚氨酯泡沫开始分解之前或初始分解阶段就开始发挥阻燃作用,通过吸热、稀释可燃气体浓度、形成保护炭层等方式阻止火焰蔓延和热量传递。

根据阻燃机理和化学成分的不同,聚氨酯泡沫阻燃剂大致可以分为以下几类:
1.无机阻燃剂:如氢氧化铝(Al(OH)3)、氢氧化镁
(Mg(OH)2)等,主要通过吸热降温、稀释氧气浓度以及在
燃烧过程中形成隔离膜来达到阻燃效果。

2.有机卤素阻燃剂:如多溴联苯醚(PBDEs)、氯化石蜡等,通
过释放出自由卤素离子打断燃烧链式反应来阻燃,但由于环
保问题和生态毒性,此类阻燃剂的使用正逐渐受到限制。

3.磷系阻燃剂:包括红磷、聚磷酸铵、有机膦酸酯等,它们能
在材料表面形成碳化保护层,阻止热量与氧气接触,从而实现阻燃。

高回弹聚氨酯泡沫的研究和应用

高回弹聚氨酯泡沫的研究和应用

高回弹聚氨酯泡沫的研究和应用聚氨酯泡沫是一种性能优异的保温材料,它具有质量轻、耐高温、保温隔热、施工方便等优点,所以受到了广大消费者的喜爱。

然而在发泡时,很容易产生大量的气体。

那么如何才能更好地解决这个问题呢?下面就让我来谈一谈我对这个问题的认识。

一、高回弹聚氨酯泡沫的特点1、优良的隔热性能聚氨酯泡沫的导热系数比普通的发泡聚苯乙烯和挤塑板低得多,仅为0。

03-0。

048W/(m·k),为普通发泡聚苯乙烯的一半。

其隔热性能是目前所有建筑材料中最好的。

2、突出的阻燃性能聚氨酯泡沫与其他建筑材料相比具有卓越的阻燃性能。

试验表明,将一般泡沫材料置于距离火焰30厘米处灼烧3小时,泡沫不会熔化或燃烧;而当采用聚氨酯泡沫材料制成的保温层与其它材料复合时,其芯材部分也能达到此要求。

3、优异的防水性能除其自身的防水性外,由于其闭孔率>98%,还能有效地阻止水蒸汽渗透,因此它还具有较强的抗水压、抗风压的能力。

4、热稳定性好聚氨酯泡沫属于硬质闭孔发泡体,具有化学结构稳定、不吸水、不燃烧、不产生有毒气体、耐老化、不变形、不塌陷、使用寿命长等特点。

5、聚氨酯泡沫可进行二次利用聚氨酯泡沫具有良好的保温、隔热和隔音性能,可作为墙体保温层,还可进行二次加工改造,用作保温门窗、室内装饰板等。

二、高回弹聚氨酯泡沫的应用聚氨酯泡沫主要用于冷库保温、家用电器、木地板保温、太阳能反射镜、冰箱、冷藏车及冷冻设备、船舶、铁路机车、航空航天等领域。

三、高回弹聚氨酯泡沫的研究现状国际上,德国、日本、美国、法国等许多国家都投入巨资开展了聚氨酯泡沫的科技攻关项目。

我国从20世纪80年代初期起步,经过十几年的努力,已逐渐掌握了聚氨酯泡沫的配方、生产工艺、质量检测手段、专业人员培训等基础理论知识和实践操作技术。

近些年来,我国又陆续引进了国外先进的聚氨酯泡沫生产线,并且取得了显著的经济效益和社会效益。

但是,由于我国尚未正式颁布《聚氨酯泡沫》标准,致使我们无法参照国外的生产工艺规范进行生产,只能依靠企业摸索着走。

无卤低烟低毒阻燃聚氨酯泡沫塑料

无卤低烟低毒阻燃聚氨酯泡沫塑料

!!江苏化工!"""年#月无卤、低烟、低毒阻燃聚氨酯泡沫塑料$欧育湘(北京理工大学阻燃材料实验室,"###$")目前,我国生产的阻燃聚氨酯泡沫塑料多以液态的含卤磷酸酯为阻燃剂,此类阻燃剂的阻燃效率尚不够令人满意,材料燃烧时生成的烟量及有毒和腐蚀性气态产物较多,对环境不友好。

最近,德国%&’()’*+公司推出了,类无卤磷系阻燃剂-".,一类以聚磷酸铵(/00)为基,牌号为123&)+/00,有$个品种;一类以无卤有机磷化合物(40)为基,牌号为123&)+40,有5个品种;一类以红磷(60)为基,牌号为123&)+60,有"#个品种。

其中的123&)+/05!!、5!,及57!,123&)+4088#,123&)+6078!均已用于阻燃聚氨酯泡沫塑料,123&)+/058!(90)及:8#正试验用于阻燃聚氨酯泡沫塑料,但123&)+/058!(90)目前还只是试生产产品,不过短期内即可工业化。

$%&’()*系列无卤阻燃剂的特点及组成123&)+系列无卤阻燃剂是最近二三年才正式销售的,其中有些牌号仍处于试生产和试用阶段,但从已有的应用结果来看,此系列阻燃剂具有下述特点-!.:(")以其阻燃的高聚物燃烧或受高热时产生的烟量及腐蚀性和有毒气体量均很低;(!)阻燃效率高,用量低,对基材性能影响小;(,)与基材相容性好,渗出性低;(5)抗老化性能甚佳,被阻燃材料在使用期间性能稳定;(8)有利于阻燃材料的回收处理。

123&)+无卤阻燃剂的组成、特性和应用范围见表"。

!阻燃软质聚氨酯泡沫塑料以123&)+4088#阻燃的软质聚氨酯泡沫塑料(聚醚型),阻燃性持久,在制品使用期间一直保持原有的阻燃性能,渗出性极低。

同时,阻燃塑料的机械性能仅比未阻燃者略有下降,燃烧或受高热时生成的烟量及腐蚀性和有毒气体量也较低。

聚氨酯泡沫阻燃

聚氨酯泡沫阻燃

聚氨酯泡沫塑料的阻燃阻燃原理一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。

也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。

阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。

在聚氨酯泡沫中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。

含卤素阻燃剂主要在气相中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。

据有关资料,为使泡沫获得较满意的阻燃性能,泡沫体中溴(Br)质量分数应达12%~14%,或氯(Cl)质量分数达18%~20%。

当磷-卤联用时,由于存在一定的协同效应,故0.5%P+(4%~5%)Br或1%P+(8%~12%)Cl即可使聚氨酯泡沫具有自熄性。

典型的磷-氮阻燃体系可由聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气;在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。

氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。

同时,它也是一种烟气抑制剂。

添加阻燃剂制备阻燃泡沫塑料人们发现,含磷、氮、卤素、锑、铝、硼等元素的塑料制品具有较好的阻燃性能。

一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。

选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。

聚氨酯泡沫塑料的用途

聚氨酯泡沫塑料的用途

聚氨酯泡沫塑料的用途
聚氨酯泡沫塑料是一种高分子聚合物,具有多种优良特性,广泛应用于多个领域。

以下是其主要用途:
保温隔热:聚氨酯泡沫塑料是一种优秀的保温材料,其闭孔结构使得热传导系数较低,具有良好的保温性能。

这种材料广泛应用于建筑、冷库、船舶、汽车等领域的保温隔热。

吸音降噪:由于聚氨酯泡沫塑料的多孔性,它可以吸收声波,达到降低噪音的效果。

密封防水:聚氨酯泡沫塑料具有良好的密封性能,可以有效地防止水和潮气的侵入。

这种性能使其在建筑、水利工程、隧道等领域得到广泛应用。

增强支撑:聚氨酯泡沫塑料具有一定的强度和支撑能力,可以增强建筑物的结构稳定性。

防火隔热:聚氨酯泡沫塑料具有优良的阻燃性能,能在火灾中起到一定程度的隔热和防火效果。

抗震缓冲:由于其轻质、多孔的结构,聚氨酯泡沫塑料可以有效地吸收地震能量,起到抗震缓冲的作用。

填充材料:聚氨酯泡沫塑料可以作为填充材料用于汽车、飞机、船舶等交通工具的内部结构中,起到减重、隔音、保温等作用。

制作家具:聚氨酯泡沫塑料还常用于沙发家具、枕头、坐垫、玩具等的制作,因其具有良好的弹性和柔软性。

此外,聚氨酯泡沫塑料还可以用于精密仪器、贵重器械、高档工艺品的缓冲包装或衬垫缓冲材料的制作,以及精致的、保护性极好的包装容器的制作。

总之,由于其多种优良性能,聚氨酯泡沫塑料在许多领域都有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 000
3 000
2 000
l 000

波数/cm-1
4 000
3 000
2 000
1 000

波数/cm_1
a MUF阻燃试样
b AIFR阻燃试样
Fig.3
图3阻燃FPUF试样焙烧残炭的FTIR谱图 FTIR spectra of residue char of the flame retardant FPUF after burning
处是P_“伸缩振动引起的.1 由图3b看出,25℃试样的谱线中,在964 cm。1 193 c一处是仁习
伸缩振动引起的,在300℃以上试样的谱线中, 这两处峰均消失了。与图2相同点是焙烧试样中
万方数据
合成树脂及塑料
2009年第26卷
有宽大的羟基峰,不同的是300℃焙烧残炭谱 图中醚键(C~0一C)已消失了.取而代之的是 1 089 cm一与】049 CD/I。1处较弱的峰.它们是C一0 的伸缩振动峰。这说明AIFR使FPUF的热解行为 发生了变化,醚键首先断裂,生成了不饱和烯烃。 这是AIFR分解产生的磷酸、偏磷酸及聚磷酸等 物质催化热解的结果。 2.4 SEM分析
330 331 355
0.765 0.773 0.621
0.6 2.0 11.2
万方数据
第1期
高明等.聚氨酯泡沫塑料的阻燃及热解性能
37
程,但最后阶段(600~700℃)又发生了很明显的热 失重,这是由于残炭的进一步氧化,最后剩炭率为
0.6%。 由图1和表2还看出,MUF的加入对FPUF
热解影响较小,最后阶段(600~700℃)仍出现较明 显的热失重,但最终剩炭率有所提高(2.0%)。而加 入AIFR试样的热解过程则表现出了明显的不同: (1)主要热解阶段分成了2个阶段。出现了1个新 的缓慢热解阶Y段(170—320 oC),最大热失重速率降 低0.144%/s;(2)主要热解阶段失重降低;(3)热解 最终剩炭率提高10.6%;(4)热失重速率峰值对应 温度升高。这说明AIFR的加入改变了FPUF的分 解方式,热解提前说明了AIFR对FPUF热解的催 化作用。其主要原因是由于含磷阻燃剂热解首先 发生脱磷酸、酸催化FPUF脱水和重排交联炭化 反应[1.目,对应出现的新的缓慢热解阶段.结果使 FPUF热解中间产物热稳定性增加。快速热解阶段 缩短,热失重速率也降低,说明了其较好的阻燃 性。从残余量上看,AIFR的加入使FPUF的剩炭 有较大的提高,说明AIFR在凝聚相成炭阻燃作 用较强,是以成炭作用模式起阻燃作用的。 2.3残炭的FTIR分析
垂直燃烧实验按照美国联邦航空局fFAA)颁 布条例FAR25.853对飞机座椅的阻燃性能要求[61
收稿日期:2008—10—23;修回日期:2008—12一01。 作者简介: 高明,1974年生,博士,讲师,2008年毕业于 北京理工大学材料学专业.主要从事阻燃高分子材料研究。 联系电话:1 3700349661;E~mail:gaoming@ncist.edu.cn。
烧光 烧光 烧光 烧光 烧光
离火自熄 离火自熄
2.2 TG分析 从图1和表2可以看出,FPUF热解可分为3
个阶段:(1)解聚反应(25~250℃),主要由于分子 断裂为异氰酸酯和醇,试样失重率约为5.5%。 (2)主要热解阶段(250~390℃),分解的主要是异 氰酸酯[7】,分解时产生黄烟,失重率达73.7%。(3)炭 化阶段(390~700 cCl。热失重较缓慢,主要为多 元醇分子间的交联、炭化进一步脱掉小分子的过
fAIFR)阻燃软质聚氨酯泡沫塑料(FPUF)的阻燃、热解性能。结果表明,w(AIFR)为15%以上时,阻燃FPUF的垂直燃 烧性能达到美国联邦航空局颁布的条例FAR25,853的要求。AIFR阻燃FPUF热解首先发生脱磷酸、酸催化FPUF
脱水和重排交联炭化反应.使其热解中间产物热稳定性增加.热失重速率降低0.144%/s,剩炭率提高10.6%,AIFR
由图2可知.300℃焙烧时.1 104 em。1处的 醚键有所减弱。1 401 cm。1处有2个距离非常接近 的小峰,是由0一N的伸缩振动引起的。这是由于 FPUF由分解产生异氰酸酯及异氰酸酯的缩合产物。 1 630 c一处的峰是共轭G二C的特征振动。3 095 c一 处的峰为双键碳上的C—H伸缩振动。表明热解 产生了烯烃,800 cC此峰仍然较强,此时已变成 非晶态碳的双键振动。2925 c一与2972c一处的峰
分别是一CH,和一CH,的不对称伸缩振动引起 的,随着温度的升高,2个峰慢慢消失了f见图2中
400℃与800℃谱线)。1 512 cm--处的峰是仲胺 基的N-一H弯曲振动引起的,在300 oC与400℃
的谱线中仍然存在,但在800℃的谱线上消失。 3 444 cm。1处的强峰是~OH与~NH,的伸缩振动 偶合而成的。从峰形上看,此峰较宽,正是羟基峰 的特征,因为聚氨酯裂解时产生了多元醇,但随着 温度升高。羟基峰仍未消失,说明异氰酸酯成分首
a纯FPUf’
b AIFR阻燃
图4纯FPUF和AIFR阻燃的FPUF的残炭的SEM照片 Fig.4 SEM photos of the pure FPUF and the AIFR retarded FPUF
2结果与讨论 2.1阻燃性能
FAR25.853要求烧焦长度小于152 mm,离火 燃烧时间小于15 S,熔滴燃烧时间小于或等于3 S。 由表1看出.分别采用MUF和AIFR作为阻燃剂添 加到FPUF中,MUF阻燃效果差,w(MUF)为40% 时仍达不到FAR25.853要求,也未能改善FPUF 燃烧滴落问题。AIFR阻燃性能较好,w(AIFR)为 15%以上时,阻然FPUF的垂直燃烧性能可达到 FAR25.853要求,且改善了FPUF燃烧滴合成树脂及塑料
2009年第26卷
进行。泡沫试样厚度13 mm,施加火焰时间12 S, 每种配方准备3个试样.取3个试样测试结果的 平均值作为最后结果。热重(TG)分析:试样粒径 为5 ̄6¨n升温速率为10 K/min,空气介质,仅—A1203 参比。N2气氛焙烧实验:温度分别为25,300, 400,800℃.保温10 min.对焙烧后的残炭试样 进行傅里叶变换红外光谱(FrIR)分析。将试样于 600℃的马弗炉焙烧,烧10 min,取其残炭用SEM 观察。
热解过程失鳍%分解砌℃最嚣率歇篙群7鬻
第l阶段 第2阶段 第3阶段 第l阶段 第2阶段 第3阶段 第1阶段 第2阶段 第3阶段
5.5 73.7 20.2
9.3 61.2 27.5
5.3 52.9 30.6
25~249 250~389 390~700
25~249 250~379 380~700
25~184 185~372 373~700
研究与开发
合成树脂及塑料,2009,26(1):35 CHINA SYNTHETIC RESIN AND PLASTICS
聚氨酯泡沫塑料的阻燃及热解性能
高 明,
武伟红z 孙彩云·
(1.华北科技学院,河北燕郊,065201;2.河北农业大学理学院,河北保定,071000)
摘要: 采用热重分析仅、傅里叶变换红外光谱仪和扫描电子显微镜研究了氨基树脂型高分子膨胀阻燃剂
一乙.艰),料嘲栅水
试样
a TG
b微分热重(DTG)
Fig.1
图1 FPUF试样的TG和DTG曲线
foams TG and DTG curves of the flame retardant FPUF
表2阻燃FPⅦ的TG和DTG分析参数
Tab.2 TG and DTG parameters of the flame retardant FPUF foams
表1 阻燃FPUF试样的垂直燃烧测试结果 Tab.1 Vertical burn data of the flame retardant
FPUF foams
阻燃剂嚣篡篙。点三。鬣箩备注
MUF
20
30
40
AIFR


12
15
18 21
>15 >15 >15 >15 >15 >15
2 0 0
100 90 60 60
膨胀型阻燃剂(IFR)是以磷、氮为主要组成的 阻燃剂。它不含卤素,也不采用氧化锑作为协效 剂,是一种阻燃效率高的环保型阻燃剂。用IFR 处理的聚合物燃烧时,聚合物表面形成一层均匀 的炭质泡沫层。该层在凝聚相中起到隔热、隔氧、 抑烟和防止熔滴的作用,且低烟、低毒、无腐蚀性 气体产生。因此,膨胀阻燃技术被公认为是实现阻 燃剂无卤化很有希望的途径之一㈣。然而.一般小 分子IFR与聚合物相容性差而使聚合物的物理机 械性能大幅度下降,单组分IFR价格偏高,导致工 程上难于应用阳]。目前,主要采用偶联剂处理膨 胀阻燃体系中各主要组分和合成大分子IFR,以 改善IFR与聚合物的相容性,但都有很大的局限 性.而大分子IFR尚存在价格高的问题[4J。虽然大 分子氨基树脂具有一定的阻燃性,但其效果并不 理想。因此,廉价、高效且与聚合物相容性好的大 分子IFR已经成为当今阻燃领域研究的热点。
先挥发,残留的主要是多元醇。1 600 cm。处是苯
环仁C的伸缩振动。因此,高温剩炭是含有C--C、
一0H、一NH,和N一0的稳定结构。
4000
3 000
2 000
1 000

波数/cm.1
图2纯FPUF试样焙烧残炭的FTIR谱图 Fig.2 FTIR spectra of residue char of the pure FPUF
本课题组采用季戊四醇二磷酸酯对三聚氰 胺一尿醛树脂fMUF)改性,已成功合成了一种新型、 廉价的氨基树脂型高分子膨胀阻燃剂(AIFR)圈。本 工作将AIFR应用于软质聚氨酯泡沫塑料(FPUF), 采用热重分析仪、扫描电子显微镜(SEM)等研究了 AIFR对FPUF的阻燃和热解性能。
相关文档
最新文档