牛顿第二定律应用(求瞬时加速度)

合集下载

专题9牛顿第二定律应用(瞬时性问题)

专题9牛顿第二定律应用(瞬时性问题)

专题9 牛顿第二定律应用(瞬时性问题)在实际解题中,我们经常遇到“不可伸长的绳”一类问题.不可伸长的绳又称为“刚性绳”,它是由绳子产生弹力时形变极小而认为无形变所得到的理想模型.弹簧产生弹力时,弹簧要有明显的形变,弹力要发生变化,弹簧长度就要发生变化,即弹簧的弹力要发生变化需要有一过程,而不能立即完成. 刚性绳可认为其劲度系数为无穷大,它产生弹力和弹力变化时绳长不变,立即完成.【例题1】如图所示,将质量均为m的小球A、B用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P处或剪断弹簧上的Q处,下列对A、B加速度的判断正确的是()A.剪断P处瞬间,A的加速度为零,B的加速度为gB.剪断P处瞬间,A的加速度为2g,B的加速度为零C.剪断Q处瞬间,A的加速度为零,B的加速度为零D.剪断Q处瞬间,A的加速度为2g,B的加速度为g【例题2】在如图所示的装置中,小球m用两根绳子拉着,绳子OA水平,若将绳子OA剪断,问剪断瞬间小球m的加速度大小?方向如何?【例题3】如图所示,底板光滑的小车上用两个量程为20N,甲乙完全相同的弹簧秤甲和乙系住一个质量为1kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10N,当小车做匀加速直线运动时,弹簧秤甲的示数变为8N。

这时小车运动的加速度大小是【】A.2m/s2B.4m/s2C.6m/s2D.8m/s2课堂练习:1. 如图所示,质量均为m的A、B两球之间系着一条不计质量的轻弹簧,放在光滑的水平面上,A球紧靠墙壁.仅用水平力F将B球向左推压弹簧,平衡后,突然将力F撤去的瞬间.A.A的加速度为F/2m B.A的加速度为零C.B的加速度为F/2m D.B的加速度为F/m2.如图所示,一轻质弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4cm,再将重物向下拉1cm,然后放手,则在刚释放的瞬间重物的加速度是(g取10m/s2)A.2.5m/s2 B.7.5m/s2C.10m/s2 D.12.5m/s23.如图所示,吊篮A、物体B、物体C的质量相等,弹簧质量不计,B和C分别固定在弹簧两端,放在吊篮的水平底板上静止不动.将悬挂吊篮的轻绳剪断的瞬间A.吊篮A的加速度大小为g B.物体B的加速度大小为gC.物体c的加速度为3/2g D.A、B、C的加速度大小都等于g4.如图所示,物体甲、乙质量均为m,弹簧和悬线的质量可以忽略不计.当悬线被烧断的瞬间,甲、乙的加速度数值应是下列哪一种情况:A.甲是0,乙是g;B.甲是g,乙是g;C.甲是0,乙是0;D.甲是g/2,乙是g.5.如图所示,自由下落的小球开始接触竖直放置的弹簧到弹簧被压缩到最短的过程中,小球的速度和所受合力的变化情况是A.合力变小,速度变小B.合力变小,速度变大C.合力先变小后变大,速度先变大后变小D.合力先变小后变大,速度先变小后变大6.如图所示,一根轻弹簧上端固定,下挂一质量为M的平盘,盘中有一物体质量为m.当盘静止时弹簧长度伸长了L,今向下拉盘使弹簧再伸长ΔL后,松手放开,设弹簧总处在弹性限度内,则刚松手时盘对物体的支持力等于A.(1+ΔL/L)mg B. (1+ΔL/L)(M+m)gC. mgΔL/LD.(M+m)gΔL/L7.如图所示,质量为M的框架放在水平地面上.一轻质弹簧上端固定在框架上,下端固定一个质量为m的小球,小球上下振动时,不与框架接触,且框架始终没有弹起,则当框架对地压力为零时,小球的加速度大小为A.gB.(M-m)g/MC. 0D.(M+m)g/m8.如图所示,质量分别为m A=10kg和m B=5kg的两个物体A和B靠在一起放在光滑的水平面上,现给A、B一定的初速度,当弹簧对物体A有方向向左、大小为12N的推力时,A对B的作用力大小为A.3N B.4N C.6N D.12N9.如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是a A= ,a B=10.如图所示,以水平向右的加速度a向右加速前进的车厢内,有一光滑的水平桌面,在桌面上用轻弹簧连结质量均为m的两小球相对车静止.当剪断绳子瞬间,A、B两球加速度分别为(取向右方向为正方向)a A= ,a B=11.光滑的水平面上有一质量为m=1kg的小球,小球与水平轻弹簧和与水平面成θ=30°的角的轻绳的一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断绳的瞬间,小球的加速度大小及方向如何?此时轻弹簧的弹力与水平面对球的弹力的比值为多少?(g=10m/s2)。

牛顿第二定律的瞬时性问题

牛顿第二定律的瞬时性问题
马鞍山中加双语学校 高一物理组
绳子未断时,受力如图,由共点力平衡条件得
刚剪短弹簧Ⅰ瞬间,细绳弹力突变为0,故小球只受重力,加速度为g,竖直向下,故A 正确,C错误; 刚剪短细线瞬间,弹簧弹力和重力不变,受力如图
由几何关系,F合=T1sinθ=T2=ma,因而
因而B正确,D错误;
故选A、B.
马鞍山中加双语学校 高一物理组
课题导入
专题:瞬时加速度
马鞍山中加双语学校 高一物理组
上午7时7分40秒
目标引领
1、理解a与F合的瞬时对应关系
2、会分析瞬时问题的两种模型 3、学会解决此类问题的基本方法
马鞍山中加双语学校 高一物理组
上午7时7分40秒
独立自学
【例题】 小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静止, 如图所示,在剪断细线瞬间,A、B 的加速度各是多少?方向如何?
(3)求物体在状态变化前后所受的合外力,利用牛顿第二 定律,求出瞬时加速度。
马鞍山中加双语学校 高一物理组
• 2-1:如下图所示,A、B两木块间连一轻 质弹簧,A、B质量相等,一起静止地放在
一块光滑木板上,若将此木板突然抽去, 在此瞬间,A、B两木块的加速度分别是
• A.aA=0,aB=2g • B.aA=g,aB=g • C.aA=0,aB=0 • D.aA=g,aB=2g
突变 压力
微小不
既可有拉力也可有
可以突变

支持力
马鞍山中加双语学校 高一物理组
实例分析
如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另 一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大 小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a应是( ) A.若断Ⅰ,则a=g,竖直向下 B.若断Ⅱ,则a= T2 /m ,方向水平向左 C.若断Ⅰ,则a= T1 /m ,方向沿Ⅰ的延长线 D.若断Ⅱ,则a=g,竖直向下

3-2_牛顿第二定律—瞬时性问题、等时性问题

3-2_牛顿第二定律—瞬时性问题、等时性问题

R+ r g ,即所用的时间t与倾角θ无关,所以t1=t2,B项正
第三章 牛顿运动定律
第22页
金版教程 · 高三一轮总复习 · 新课标 · 物理
主干回顾固基础 典例突破知规律 特色培优增素养 高考模拟提能训 限时规范特训
(1)物体沿着位于同一竖直圆上的所有过圆周最低点的光 滑弦由静止下滑, 到达圆周最低点的时间均相等, 且为 t=2 (如图甲所示). (2)物体沿着位于同一竖直圆上的所有过顶点的光滑弦由 静止下滑,到达圆周低端时间相等为 t=2 R g (如图乙所示). R g
间,木块 1 、 2 的加速度大小分别为 a1 、
a2.重力加速度大小为g.则有( )
A. a1=0,a2=g B. a1=g,a2=g m+ M C. a1=0,a2= M g m+ M D. a1=g,a2= M g
[解题探究]
提示:不变
(1)木板抽出后的瞬间,弹簧的弹力变吗?
提示:
木块1
木块2
[尝试解答] 选 C. 依题意可知,小球受重力 mg、弹簧的弹力 F1 和细线的拉 力 F2 作用处于平衡状态,根据共点力的平衡知识可得 F1 = 4 mg 5 mgtan53° = mg,F2= = mg,故选项 A、B 均错误;细 3 cos53° 3 线烧断的瞬间,弹簧对小球的弹力不变,此时重力与弹簧弹力 5 5 的合力 F′=F2= mg,由牛顿第二定律可得加速度 a= g,故 3 3 选项 C 正确;
物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速
度,此类问题应注意以下几种模型:
特性 模型 轻绳 橡皮绳
受外力时 的形变量 微小不计 较大
力能 否突变 可以 不能
产生拉力 或支持力 只有拉力 没有支持力 只有拉力没 有支持力 既可有 拉力也可 有支持力 既可有 拉力也可 有支持力

高中物理第四章用牛顿定律解决问题三瞬时加速度及多过程问题

高中物理第四章用牛顿定律解决问题三瞬时加速度及多过程问题

§4.8 用牛顿定律解决问题(三)——瞬时加速度及多过程问题【学习目标】1.进一步熟悉和掌握利用牛顿运动定律解决问题的基本方法。

2.能结合物体的运动情况对物体进行受力分析。

3.学会解决瞬时加速度及多过程问题。

【学习重点】解决瞬时加速度及多过程问题【学习难点】规范解题过程【学习流程】【自主先学】1.匀变速直线运动的规律:(1)速度公式v=_______________,(2)位移公式x=________________,(3)速度位移公式___________________。

2.牛顿第二定律的表达式F=ma,其中加速度a与合外力F存在着_________对应关系,a与F同时产生、___________、同时消失;a的方向始终与合外力F的方向__________.3.解决动力学问题的关键是做好两个分析:____________分析和____________分析,同时抓住联系受力情况和运动情况的桥梁:_______________。

【组内研学】知识点1 瞬时加速度问题根据牛顿第二定律,加速度a与合外力F存在着瞬时对应关系:合外力恒定,加速度____________;合外力变化,加速度___________;合外力等于___________,加速度等于零.所以分析物体在某一时刻的瞬时加速度,关键是分析该时刻_________________及__________,再由牛顿第二定律求出__________.两类基本模型:(1)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的.例1:图中小球M处于静止状态,弹簧与竖直方向的夹角为θ,烧断BO绳的瞬间,试求小球M的加速度大小和方向.【交流促学】变式1:如图,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木坂上,并处于静止状态。

现将木板沿水平方向突然抽出,求抽出后的瞬间,木块1、2的加速度大小分别为a1、a2(重力加速度大小为g)。

牛顿第二定律及其应用

牛顿第二定律及其应用

m
a
M
F
【例】如图所示,放在水平地面上的木板长1 米 , 质 量 为 2kg , B 与 地 面 间 的 动 摩 擦 因 数 为 0.2.一质量为3kg的小铁块A放在B的左端,A、 B之间的动摩擦因数为0.4.当A以3m/s的初 速度向右运动后,求最终A对地的位移和A对B 的位移.
类型三:整体法与隔离法在连接体问题中的灵活应用 【例 3】 如图 3-2-11 所示,光滑水平面上放置质
,已知汽车的质量为4000kg,则汽
车在BC段的加速度大小为
,O
A段汽车的牵引力大小为

v/m·s-
1
10
A
B
C
0 10 20 30 40 t/ s
牛顿第二定律的题型
两种类型: (1)已知运动情况求受力情况
(2)已知受力情况求运动情况
解题关键: 利用
牛顿第二定律 运动学公式
求a
一、力和加速度、速度的关系 力的大小和方向
A.任一时刻A、B加速度的大小相等
(ABD)
B.A、B加速度最大的时刻一定是A、B速度相等的时
皮带传动物体时摩擦力的判定问题
物体与传送带无相对滑动时:
a
A
(1)a=gsinθ时,f=0
B
θ
(2)a>gsinθ时,f沿斜面向下
(3)a<gsinθ时,f沿斜面向上
例、如图所示,一平直传送带以速率V0=2 m/s匀速运行,传送带把A处的工件运送到B处, A、B相距L=10m,从A处把工件轻轻搬到传送 带上,经过时间t =6s能传送到B处。如果提高 传送带的运行速率,工件能较快地从A处传送 到B处。要让工件用最短的时间从A处传送到B 处,说明并计算传送带的速率至少应 为多大?

牛顿第二定律的应用(经典、全面、实用)

牛顿第二定律的应用(经典、全面、实用)

t2
1
FN
F阻
t
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
解:滑雪的人滑雪时受力如图,
将G分解得: F1= mgsinθ F 1-F 阻=m a
① ②
θ mg
2 m ( x - v 0 t)
FN
F1
θ
F阻 F2
由①②③得F阻=F1-m a = mgsinθ-
代入数据可得: F阻=67.5N
37 °
例4:如图所示,传送带与地面倾角为37 ° ,从A到B长度为16m,传送带以v= 20m/s,变:(v= 10m/s)的速率逆时针 转动.在传送带上端A无初速地放一个质量 为m=0.5kg的物体,它与传送带之间的动 摩擦因数为μ=0.5.求物体从A运动到B 所需时间是多少.(sin37°=0.6)
B.tl>t2>t3
C.tl<t2<t3
D.t3>tl>t2
练习 如图,底板光滑的小车上用两 个量程为20N,完全相同的弹簧甲和乙 系住一个质量为1Kg的物体,当小车在 水平路面上匀速运动时,两堂皇秤的读 数均为10N,当小车做匀加速运动时, 甲的读数是8N,则小车的加速度 是 ,方向向 。(左、 右)
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传送 带上,经时间t=6s能传送到B处,欲用最短时间 把工件从A处传到B处,求传送带的运行速度至少 多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方向 匀速转动,传送带传送带右端有一与传 送带等高的光滑水平面,一物体以恒定的 速率V’=4m/s沿直线向左滑上传送带,求 物体的最终速度多大?

2024届高考一轮复习物理课件(新教材粤教版):牛顿第二定律的基本应用


超重和失重问题
梳理 必备知识
1.实重和视重 (1)实重:物体实际所受的重力,与物体的运动状态 无关 (选填“无关” 或“相关”). (2)视重:当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计 或台秤的示数称为视重.
2.超重、失重和完全失重的对比
名称
超重
失重
完全失重
现象 视重 大于实重 视重 小于 实重
(3)运动员滑上水平雪道后,在t′=2.0 s内 滑行的距离x. 答案 59 m
运动员滑到B点时的速度vB=v0+at=30 m/s 在水平雪道上运动员受力如图乙所示,建立如图乙 所示的直角坐标系,设运动员的加速度为a′, 根据牛顿第二定律,x方向上有-μFN′=ma′, y方向上有FN′-mg=0,又x=vBt′+ 12a′t′2 , 联立解得x=59 m.
开始弹簧处于拉伸状态,伸长量为x,设弹簧的 劲度系数为k,则kx=0.5mg,剪断细线后a向下 做加速运动,a向下运动x时弹簧恢复原长,然 后a继续向下做加速运动,弹簧被压缩,弹簧弹力向上,开始弹簧弹 力小于a的重力沿斜面方向的分力F1=2mgsin 30°=mg,物块继续向下 做加速运动,设弹簧压缩量为x′时物块a所受合力为零,则kx′=F1 =mg,x′=2x,当物块a所受合力为零时速度最大,在此过程物块a 下滑的距离s=x+x′=3x,D正确.
例7 (2023·四川金堂县淮口中学高三检测)如图所示,ABC是一雪道, AB段为长L=80 m、倾角θ=37°的斜坡,BC段水平,AB与BC平滑相连. 一个质量m=75 kg的滑雪运动员(含滑雪板),从斜坡顶端以v0=2.0 m/s 的初速度匀加速滑下,经时间t=5.0 s到达斜坡底端B点.滑雪板与雪道间 的动摩擦因数在AB段和BC段均相同(运动员可视为质点).取g=10 m/s2, sin 37°=0.6,cos 37°=0.8.求: (1)运动员在斜坡上滑行时的加速度大小a; 答案 5.6 m/s2

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题13牛顿运动定律的运用(解析版)

2023高考一轮知识点精讲和最新高考题模拟题同步训练第三章牛顿运动定律专题13 牛顿第二定律的应用第一部分知识点精讲1. 瞬时加速度问题(1)两类模型(2). 在求解瞬时加速度时应注意的问题(i)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析。

(ii)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变。

(3)求解瞬时加速度的步骤2.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。

第二类:已知运动情况求物体的受力情况。

不管是哪一类动力学问题,受力分析和运动状态分析都是关键环节。

(1)解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:作为“桥梁”的加速度,既可能需要根据已知受力求解,也可能需要根据已知运动求解。

(2)动力学两类基本问题的解题步骤(3)掌握动力学两类基本问题的“两个分析”“一个桥梁”,以及在多个运动过程之间建立“联系”。

(i )把握“两个分析”“一个桥梁”(ii)找到不同过程之间的“联系”,如第一个过程的末速度就是下一个过程的初速度,若过程较为复杂,可画位置示意图确定位移之间的联系。

3.物体在五类光滑斜面上运动时间的比较第一类:等高斜面(如图1所示)由L =12 at 2,a =g sin θ,L =h sin θ可得t =1sin θ 2h g, 可知倾角越小,时间越长,图1中t 1>t 2>t 3。

第二类:同底斜面(如图2所示)由L =12 at 2,a =g sin θ,L =d cos θ可得t = 4d g sin 2θ, 可见θ=45°时时间最短,图2中t 1=t 3>t 2。

第三类:圆周内同顶端的斜面(如图3所示)在竖直面内的同一个圆周上,各斜面的顶端都在竖直圆周的最高点,底端都落在该圆周上。

由2R ·sin θ=12·g sin θ·t 2,可推得t 1=t 2=t 3。

牛顿第二定律_例题详解

牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。

B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。

(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。

B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。

不能承受压力。

C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。

【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。

专题七: 瞬时加速度的求解

略 首先根据剪断前求得弹簧上的弹力(大小和方向) ,其次分析剪断后物体的受力, 然后根据牛顿第二定律求解. 规律 3 匀变速运动系统在细线剪断瞬间,远离细线且和弹簧相连物体加速度不变. 典例 1 如右图,质量分别为 m 和 M 的物体 A 和 B 之间用一轻弹簧相连,再 用细线 连接到箱顶上,它们以加速度向下做匀加速运动.若,求细线被剪断瞬间 A 、B 的加速度. 2.2 细线类问题 只需根据细线被剪断后系统的运动变化规律来进行分析求解即可. 典例 2 如右图所示, 2 个质量分别为和的物体 A 和 B 用细线连接到箱顶上, 以加速度 a 向上做匀加速运动. 求 A 和 B 在细线 1 被剪断瞬间的加速度 典例 3(2001 年上海物理)如图 A 所示,一质量为 m 的物体系于长度分别为 l1、l2 的两根细线上,l1 的一端悬挂在天花板上,与竖直方向夹角为θ ,l2 水平拉直,物体处于平衡状态。现将 l2 线剪断。 (1)求剪断瞬时物体的加速度。 (2)若将图 A 中的细线 l1 改为长度相同、质量不计的轻弹簧,如图 B 所示,其他条件不变, 你认为给与 1 中的情况结果相同吗?请说明理由。
A.a1=0, a2=g C.a1=0, a2=
mM g M
mM g M
图1
同类高考题 1. (2010 上海浦东模拟)如图所示,质量为 m 的物体 A 系于两根轻弹簧 l1、l2 上,l 1 的一端悬挂在天花板上 C 点,与竖直方向夹角为 θ,l2 水平拉直, 左端固定于墙上 B 点,物体处于静止状态.则 A.若将 l2 剪断,则剪断瞬间物体的加速度 α=gtanθ,方向沿 B→A 方向 B.若将 l2 剪断,则剪断瞬间物体的加速度 α=gsinθ,方向垂直于 AC 斜 向下 C.若将 l1 剪断,则剪断瞬间物体的加速度 α=g,方向竖直向下 D.若将 l1 剪断,则剪断瞬间物体的加速度 α=g/cosθ,方向沿 C→A 方向 同类高考题 2.如图所示,小球用两根轻质橡皮条悬吊着,且 AO 呈水平状态,BO 跟竖直方 向的夹角为 α,那么在剪断某一根橡皮条的瞬间,小球的加速度情况 是( ) A.不管剪断哪一根,小球加速度均是零 B.剪断 AO 瞬间,小球加速度大小 a=gtanα C.剪断 BO 瞬间,小球加速度大小 a=gcosα D.剪断 BO 瞬间,小球加速度大小 a=g/cosα 同类高考题 3 如右图,竖直光滑杆上套有 1 个小球和 2 根弹簧,两弹簧的一端各与小球相连, 另一端分别用销钉 M、N 固定于杆上,小球处于静止状态. 设拔去销钉 M 瞬 间, 小球加速度为,在不拔去销钉 M 而拔去 N 瞬间,小球加速度可能( A.竖直向上; B.,竖直向下; 1.2 细线类问题 典例 1 质量为 m 的箱子 C ,顶部悬挂质量也为 m 的小球 B ,B 的下方通过 一轻弹簧与质量为 m 的球 A 相连,箱子用轻线悬于天花板上而处于平衡状 态, 如右图所示. 现剪断轻线 ,则在剪断的瞬间小球 A、B 和箱子 C 的加速 度各为多大? )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档