2019年江苏省无锡市中考数学试题(含答案解析)

合集下载

2019年江苏省中考数学真题分类汇编 专题10 图形的性质之选择题(解析版)

2019年江苏省中考数学真题分类汇编 专题10 图形的性质之选择题(解析版)

专题10 图形的性质之选择题参考答案与试题解析一.选择题(共19小题)1.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.2.(2019•常州)如图,在线段P A、PB、PC、PD中,长度最小的是()A.线段P A B.线段PB C.线段PC D.线段PD【答案】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.3.(2019•苏州)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【答案】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【点睛】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.4.(2019•宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【答案】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点睛】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(2019•徐州)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点睛】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.6.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【答案】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.7.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【答案】解:根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.8.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【答案】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点睛】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2 B.C.3 D.【答案】解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE AC=1.5.故选:D.【点睛】此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.10.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于()A.B.C.D.3【答案】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.∵E(﹣2,0),F(0,6),∴OE=2,OF=6,∴EF2,∵∠FGE=90°,∴FG≤EF,∴当点G与E重合时,FG的值最大.如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.∵P A=PB,BE=EC=a,∴PE∥AC,BJ=JH,∵四边形ABCD是菱形,∴AC⊥BD,BH=DH,BJ,∴PE⊥BD,∵∠BJE=∠EOF=∠PEF=90°,∴∠EBJ=∠FEO,∴△BJE∽△EOF,∴,∴,∴a,∴BC=2a,故选:A.【点睛】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.11.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【答案】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE BC=6x,∴AD=CE BE=6x,AB=AE+BE=x+6x x+6,∴梯形ABCD面积S(CD+AB)•CE(x x+6)•(6x)x2+3x+18(x ﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点睛】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.12.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【答案】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC AC=2,OB=OD BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'10;故选:C.【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.13.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.【点睛】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.14.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【答案】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵,∴∠CAB∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.(2019•宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6πB.62πC.6πD.62π【答案】解:6个月牙形的面积之和=3π﹣(22π﹣62)=6π,故选:A.【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.16.(2019•苏州)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【答案】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC∠AOB=27°;故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.17.(2019•连云港)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM 折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC MP;④BP AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM AD x,∴CM x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP x,∴PN=CP﹣CN x,∴PM x,∴,∴PC MP,故③错误;∵PC x,∴PB=2x x x,∴,∴PB AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.【点睛】本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.18.(2019•无锡)如图,P A是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B 的度数为()A.20°B.25°C.40°D.50°【答案】解:连接OA,如图,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B∠AOP50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.19.(2019•常州)判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2 B.C.0 D.【答案】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.。

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。

【2019年中考数学】江苏省无锡市新吴区2019年中考数学二模试卷(含答案)

【2019年中考数学】江苏省无锡市新吴区2019年中考数学二模试卷(含答案)

江苏省无锡市新吴区2019年中考数学二模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.﹣4的倒数是()A.4 B.C.﹣D.﹣4【分析】根据求一个整数的倒数,就是写成这个整数分之一,可得结论.【解答】解:﹣4的倒数是﹣,故选C.【点评】本题考查了倒数,明确倒数的定义是关键.2.下列运算正确的是()A.a6÷a2=a3B.a3•a2=a6C.(3a3)2=6a6D.a3﹣a3=0【分析】根据同底数幂的除法,同底数幂的乘法,积的乘方,合并同类项,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A不符合题意;B、同底数幂的乘法底数不变指数相加,故B不符合题意;C、积的乘方等于乘方的积,故C不符合题意;D、系数相加子母机指数不变,故D符合题意;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.2015年10月成立的无锡市新吴区总面积220平方公里,常住人口约55万人,下辖6个街道;2016年末,新吴区实现地区生产总值约1302亿元,用科学记数法表示该地区生产总值应记为()A.1302×109B.1.302×103C.1.302×1010D.1.302×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1302亿用科学记数法表示为:1.302×1011.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值为()A.﹣5 B.5 C.﹣9 D.9【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=3代入方程得:6﹣m=3﹣2,解得:m=5,故选B【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.十边形的内角和为()A.1900°B.1620°C.1440°D.1260°【分析】根据多边形的内角和计算公式(n﹣2)×190°进行计算即可.【解答】解:十边形的内角和等于:(10﹣2)×190°=1440°.故选C.【点评】本题主要考查了多边形的内角和定理,关键是掌握多边形的内角和的计算公式.6.sin45°的值是()A.B.C.D.【分析】将特殊角的三角函数值代入求解.【解答】解:sin45°=.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.9.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.【分析】主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.【解答】解:从上面看易得俯视图为:,从左面看易得左视图为:,从正面看主视图为:,故选:A.【点评】本题考查了几何体的三视图,解答本题的关键是掌握三视图的观察方向.9.下列说法正确的是()A.“明天降雨的概率是90%”表示明天有90%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为90%”指的是明天下雨的可能性是90%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.9.如图,⊙A经过点E、B、C、O,且C(0,9),E(﹣6,0),O(0,0),则cos∠OBC 的值为()A.B.C.D.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,由C(0,9),E(﹣6,0),O(0,0),可得OC=9,OE=6,根据勾股定理可求EC=10,然后由圆周角定理可得∠OBC=∠OEC,然后求出cos∠OEC的值,即可得cos∠OBC的值.【解答】解:连接EC,∵∠COE=90°,∴EC是⊙A的直径,∵C(0,9),E(﹣6,0),O(0,0),∴OC=9,OE=6,由勾股定理得:EC=10,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC==.故选A.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.10.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣1【分析】如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG中,∠BED=45°,则GE=GB.设DF=x,CE=DE=y,则BD=﹣x,想办法构建方程组即可解决问题.【解答】解:如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG中,∠BED=45°,则GE=GB.在Rt△AFC中,∠A=45°,AC=,则AF=CF==1,在Rt△BFC中,∠ABC=30°,CF=1,则BC=2CF=2,BF=CF=,设DF=x,CE=DE=y,则BD=﹣x,∴△CDF∽△BDG,∴==,∴==,∴DG=,BG=,∵GE=GB,∴y+=,∴2y2+x(﹣x)=﹣x,在Rt△CDF中,∵CF2+DF2=CD2,∴1+x2=4y2,∴+x(﹣x)=﹣x,整理得:x2﹣(2+2)x+2﹣1=0,解得x=1+﹣或1+﹣(舍弃),∴BD=﹣x=﹣1.故选D.【点评】本题考查相似三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考选择题中的压轴题.二、填空题(本小题共9小题,每小题2分,共16分)11.若有意义,则x的取值范围是x≠2.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.【点评】本题考查了分式的定义,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.分解因式:a2﹣2a+1=(a﹣1)2.【分析】观察原式发现,此三项符合差的完全平方公式a2﹣2ab+b2=(a﹣b)2,即可把原式化为积的形式.【解答】解:a2﹣2a+1=a2﹣2×1×a+12=(a﹣1)2.故答案为:(a﹣1)2.【点评】本题考查了完全平方公式分解因式,熟练掌握完全平方公式的结构特点是解题的关键.13.在一次信息技术考试中,某兴趣小组9名同学的成绩(单位:分)分别是:9,10,9,9,9,9,9,9,则这组数据的中位数是9.5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有9个,按从小到大排列后为:9、9、9、9、9、9、9、10.故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数,故这组数据的中位数是×(9+9)=9.5.故答案为:9.5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.14.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c<5.【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.【点评】主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.15.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是 3.6.【分析】算出扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长为=9.2π,∴圆锥的底面半径是9.2π÷2π=3.6.故答案为:3.6.【点评】考查圆锥的计算;用到的知识点为:圆锥的弧长=圆锥的底面周长.16.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=36度.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=92°,∴∠C=190°﹣92°=109°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.19.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是1+.【分析】根据反比例函数图象上点的坐标特征由A点坐标为(﹣2,2)得到k=﹣4,即反比例函数解析式为y=﹣,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B′的坐标可表示为(﹣,t),于是利用PB=PB′得t﹣2=|﹣|=,然后解方程可得到满足条件的t的值.【解答】解:如图,∵点A坐标为(﹣2,2),∴k=﹣2×2=﹣4,∴反比例函数解析式为y=﹣,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣2=|﹣|=,整理得t2﹣2t﹣4=0,解得t1=1+,t2=1﹣(不符合题意,舍去),∴t的值为1+.故答案为1+.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质;会用求根公式法解一元二次方程.19.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=9,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是4.【分析】连接CE,根据∠DCE=90°,F是DE的中点,可得CF=DE,再根据当AD⊥BC时,AD最短,此时DE最短,根据直角三角形的面积以及相似三角形的性质,求得DE的最小值,即可得出CF的最小值.【解答】解:如图,连接CE,∵△ABC∽△ADE,∴∠ACD=∠AEG,又∵∠AGF=∠DGC,∴△AGE∽△DGC,∴=,又∵∠AGD=∠EGC,∴△AGD∽△EGC,∴∠ADG=∠ECG,又∵Rt△ADE中,∠ADG+∠AEG=90°,∴∠ECG+∠ACD=90°,即∠DCE=90°,∵F是DE的中点,∴CF=DE,∵△ABC∽△ADE,∴当AD⊥BC时,AD最短,此时DE最短,当AD⊥BC时,AD==4.9,∵=,即=,∴DE=9,∴CF=×9=4.故答案为:4.【点评】本题主要考查了相似三角形的判定与性质,以及直角三角形斜边上中线的性质的应用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是利用垂线段最短得到线段的最小值.三、解答题(本大题共10小题,共94分)19.(9分)计算:(1)+()﹣1﹣cos60°(2)(2x﹣y)2﹣(x+y)(x﹣y)【分析】(1)原式利用算术平方根定义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=2+2﹣=3;(2)原式=4x2﹣4xy+y2﹣x2+y2=3x2﹣4xy+2y2.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.解方程:x2﹣6x﹣6=0;(2)解不等式组:.【分析】(1)利用求根公式即可直接求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)a=1,b=﹣6,c=﹣6,则△=b2﹣4ac=36+24=60>0,则x=,则x1=3+,x2=3﹣;(2),解①得:x≤1,解②得:x>﹣2,则不等式组的解集是:﹣2<x≤1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.21.(6分)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为9时,求△FED的面积.【分析】(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.【解答】(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FBC=S▱ABCD,∴=,∴=,∴=,∴△FED的面积为:2.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FBC=S平行四边形ABCD是解题关键.22.(6分)2019无锡国际马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明、小刚和小芳参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.【分析】(1)利用概率公式直接计算即可;(2)列表或画树形图得到所有可能的结果,即可求出小芳和小刚被分配到半程马拉松和迷你马拉松项目组的概率.【解答】解:(1)∵共有A,B,C三项赛事,∴小明被分配到“迷你马拉松”项目组的概率是,故答案为:;(2)设三种赛事分别为1,2,3,列表得:所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),小芳和小刚被分配到半程马拉松和迷你马拉松项目组的情况有2种,所有其概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(9分)“知识改变命运,科技繁荣祖国”,某区中小学每年都要举办一届科技比赛,如图为某区某校2019年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图.(1)该校参加机器人、建模比赛的人数分别是4人和6人;(2)该校参加科技比赛的总人数是24人,电子百拼所在扇形的圆心角的度数是120°,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取95人,其中有34人获奖.2019年某区中小学参加科技比赛人数共有3625人,请你估算2019年参加科技比赛的获奖人数约是多少人?【分析】(1)由图知参加机器人、建模比赛的人数;(2)参加建模的有6人,占总人数的25%,根据总人数=参加航模比赛的人数÷25%,算出电子百拼比赛的人数,再算出所占的百分比×360°;(3)先求出随机抽取90人中获奖的百分比,再乘以我市中小学参加科技比赛比赛的总人数.【解答】解:(1)由条形统计图可得:该校参加机器人、建模比赛的人数分别是4人,6人,故答案为:4人,6人;(2)该校参加科技比赛的总人数是:6÷25%=24,电子百拼所在扇形的圆心角的度数是:(24﹣6﹣6﹣4)÷24×360°=120°,故答案为:24,120°,条形统计图补充如下:(3)34÷95=0.4,0.4×3625=1450(人).答:今年参加科技比赛比赛的获奖人数约是1450人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(9分)如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.9米,这时汽车车头与斑马线的距离x是多少?【分析】根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF 中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF﹣EF求得汽车车头与斑马线的距离.【解答】解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.9=0.9米.答:这时汽车车头与斑马线的距离x是0.9米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.25.(10分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上:根据报名人数,若都买一等座单程火车票需19010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(部分)如表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)w与m之间的函数关系式.(3)按第(2)小题中的购票方案,请你做一个预算,购买这次单程火车票最少要花多少钱?最多要花多少钱?【分析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组:,求出方程组的解即可;(2)有两种情况:①当190≤x<210时,学生都买学生票共190张,(x﹣190)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票,得到解析式:y=51×190+69(x﹣190)+91(210﹣x),②当0<x<190时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,得到解析式是y=﹣30x+19010;(3)由(2)小题知,当190≤x<210时,y=﹣13x+13950和当0<x<190时,y=﹣30x+19010,分别讨论即可.【解答】解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买三等座学生票,依题意得:,解得,则2m=20,答:参加社会实践的老师、家长与学生分别有10人、20人、190人.(2)解:由(1)知所有参与人员总共有210人,其中学生有190人,①当190≤x<210时,最经济的购票方案为:学生都买学生票共190张,(x﹣190)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=51×190+69(x﹣190)+91(210﹣x),即y=﹣13x+13950(190≤x<210),②当0<x<190时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=51x+91(210﹣x),即y=﹣30x+19010(0<x<190),答:购买火车票的总费用(单程)y与x之间的函数关系式是y=﹣13x+13950(190≤x<210)或y=﹣30x+19010(0<x<190).(3)由(2)小题知,当190≤x<210时,y=﹣13x+13950,∵﹣13<0,y随x的增大而减小,∴当x=209时,y的值最小,最小值为11233元,当x=190时,y的值最大,最大值为11610元.当0<x<190时,y=﹣30x+19010,∵﹣30<0,y随x的增大而减小,∴当x=199时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16990元.所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16990元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16990元.【点评】本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识,解题的关键是理解题意,学会构建方程组或一次函数解决问题,属于中考常考题型.26.(10分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.【分析】(1)证明△ABP∽△PCE,利用比例线段关系求出y与x的函数关系式;(2)根据(1)中求出的y与x的关系式,利用二次函数性质,求出其最大值,列不等式确定m的取值范围;(3)根据翻折的性质及已知条件,构造直角三角形,利用勾股定理求出BP的长度.解答中提供了三种解法,可认真体会.【解答】解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP,又∵∠B=∠C=90°,∴△ABP∽△PCE,∴,即,∴y=x2+x.(2)∵y=x2+x=(x﹣)2+,∴当x=时,y取得最大值,最大值为.∵点P在线段BC上运动时,点E总在线段CD上,∴≤1,解得m≤.∴m的取值范围为:0<m≤.(3)由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE,又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB.∵∠BAG=90°,∴AG∥BC,∴∠GAP=∠APB,∴∠GAP=∠APG,∴AG=PG=PC.解法一:如解答图所示,分别延长CE、AG,交于点H,则易知ABCH为矩形,HE=CH﹣CE=2﹣y,GH=AH﹣AG=4﹣(4﹣x)=x,在Rt△GHE中,由勾股定理得:GH2+HE2=GE2,即:x2+(2﹣y)2=y2,化简得:x2﹣4y+4=0 ①由(1)可知,y=x2+x,这里m=4,∴y=x2+2x,代入①式整理得:3x2﹣9x+4=0,解得:x=或x=2,∴BP的长为或2.解法二:如解答图所示,连接GC,过点G作GN⊥PC于点N,则GN=2,PN=PC﹣CN=4﹣2x.∵AG∥PC,AG=PC,∴四边形APCG为平行四边形,∴AP=CG.易证△ABP≌GNC,∴CN=BP=x.在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,即:(4﹣2x)2+22=(4﹣x)2,整理得:3x2﹣9x+4=0,解得:x=或x=2,∴BP的长为或2.解法三:过点A作AK⊥PG于点K,∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG﹣PK=4﹣2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4﹣2x)2+22=(4﹣x)2,整理得:3x2﹣9x+4=0,解得:x=或x=2,∴BP的长为或2.【点评】本题是代数几何综合题,考查了全等三角形、相似三角形、勾股定理、梯形、矩形、折叠、函数关系式、二次函数最值等知识点,所涉及考点众多,有一定的难度.注意第(2)问中求m取值范围时二次函数性质的应用,以及第(3)问中构造直角三角形的方法.29.(12分)如图,一次函数y=x+m与坐标轴交于A,B两点,点C在直线AB上,且AC=2AB,以A为旋转中心,逆时针旋转线段AC,使得点C恰好落在Y轴正半轴上点C′处.(1)求∠CAC′的正切值;(2)点E是直线AC′上一点,连接CE,BE,若△ACE与△BCE相似,且m=1,求此时点E 的坐标;(3)在(2)的条件下,作CD垂直于X轴,将△AOC′沿Y轴向下以每秒2个单位长度的速度向下运动,将△ACD沿着CA方向在直线AC上衣每秒单位长度的速度运动,求出在此运动过程中两三角形重叠部分面积的最大值以及当时的t值.【分析】(1)由题意A(﹣2m,0),B(0,m),C(2m,2m),C′(0,4m),推出AO=2m,OB=m,C′B=3m.作C′H⊥AC于H,由△AOB∽△C′HB,可得C′H=m,BH=m,根据tan∠CAC′=,计算即可;(2)设E(n,2n+4),由EC2=(n﹣2)2+(2n+4﹣2)2,AB=BC=,由△CAE∽△CEB,推出EC2=CB•CA,可得(n﹣2)2+(2n+4﹣2)2=10,解方程即可解决问题;(3)分三种情形讨论即可①如图1中,当0<t<1时,重叠部分是四边形MNBK.②如图2中,当1≤t<时,重叠部分是四边形MNCD.③当≤t≤时,重叠部分是△MND.分别求解即可解决问题.【解答】解:(1)由题意A(﹣2m,0),B(0,m),C(2m,2m),C′(0,4m),∴AO=2m,OB=m,C′B=3m.作C′H⊥AC于H,由△AOB∽△C′HB,可得C′H=m,BH=m,∵AB=m,∴AH=,∴tan∠CAC′==.(2)当m=1时,A(﹣2,0),B(0,1),C(2,2),C′(0,4),∴直线AC′的解析式为y=2x+4,设E(n,2n+4),∴EC2=(n﹣2)2+(2n+4﹣2)2,AB=BC=,∵△CAE∽△CEB,∴EC2=CB•CA,∴(n﹣2)2+(2n+4﹣2)2=10,解得n=,∴点E坐标为(,)或(,).(3)①如图1中,当0<t<1时,重叠部分是四边形MNBK.S=S△ABK﹣S△AMN=﹣t2+2t+1,当t=时,S最大值=.②∵直线A′C′的解析式为y=2x+4﹣2t,直线AC的解析式为y=x+1,由,解得x=,当点C在直线A′C′上时,2﹣2t=,解得t=,∴当1≤t<时,重叠部分是四边形MNCD,S=S△ACD﹣S△AMN=﹣t2+t+1,当t=1是,S最大值=.③∵点D在直线y=x﹣1上运动,由,解得x=,当点D在直线A′C′上时,2﹣2t=,解得t=,∴当≤t≤时,重叠部分是△MND,S=S△MND=t2﹣20t+16,当t=时,S 最大值=1,综上所述,重叠部分的面积的最大值为,此时t=.【点评】本题考查一次函数综合题、待定系数法、解直角三角形、二次函数的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会圆分类讨论的思想思考问题,学会构建一次函数利用方程组确定灵活函数图象的交点,属于中考压轴题.29.(9分)给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为3,点C(﹣2,3)和射线OA之间的距离为;(2)如果直线y=x+1和双曲线y=之间的距离为,那么k=﹣4;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【分析】(1)只需根据新定义即可解决问题;(2)过点O作直线y=x+1的垂线,与双曲线y=交于点E、F,过点E作EG⊥x轴,如图1,根据新定义可得直线y=﹣x和双曲线y=之间的距离就是线段EF的长,如何只需求出点E 的坐标,运用待定系数法就可求出k的值;(3)①过点O分别作射线OE、OF的垂线OH、OG,如图2,根据新定义可得图形M为x 轴的正半轴、∠GOH的边及其内部所有的点;②设直线y=﹣2x﹣4与射线OH的交点为M,与射线OG的交点为N,先求得M、N的坐标,得出x的范围,如图2,图形N上点的坐标可设为(x,﹣2x﹣4),根据新定义可得图形W与图形N之间的距离为d=的最小值.利用二次函数的增减性求出d=的最小值,就可解决问题.【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为=,故答案分别为:3,;(2)∵直线y=x+1和双曲线y=之间的距离为,∴k<0(否则直线y=x+1和双曲线y=相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y=交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF==,∴OE=OF+EF=2,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2,则有OG=EG=OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直),;②由①知OH所在直线解析式为y=﹣x,OG所在直线解析式为y=x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为=,即图形W和图形N之间的距离.【点评】本题属于新定义型,考查了用待定系数法求反比例函数的解析式、抛物线的增减性、勾股定理、求直线与抛物线的交点等知识,解决本题的关键是对新定义的理解.。

2019年中考数学试题含答案 (13)

2019年中考数学试题含答案 (13)

2019年中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S=6,找出所有可△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,=AB•BC=6.∴AC==5,S△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S=S△ABC=×6=4.32;等腰△ABP④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即即可得S△AOC可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴=()2,∵点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,∴S=,S△AOC=2,△OBD∴=,∴tan∠OAB==.故选:A.【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为正整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S=AB•AC④OE=AD⑤S△APO=,正确的个数平行四边形ABCD是()A.2 B.3 C.4 D.5【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC==和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;=S△EOC=OE•OC=,⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=,代入可得结论.【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,=S△EOC=OE•OC==,∴S△AOE∵OE∥AB,∴,∴=,∴S===;△AOP故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。

2019年中考数学试题含答案

2019年中考数学试题含答案

2019年中考数学试题含答案一、选择题1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 2.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B .5C .22D.36.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A 、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.127.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan tanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,正比例函数1y=k x与反比例函数2ky=x的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.若一个数的平方等于5,则这个数等于_____.19.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.24.解方程:3x x +﹣1x =1. 25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 2.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分) 1. 下列运算正确的是( )A. (x 3)4=x 7B. (−x)2⋅x 3=x 5C. (−x)4÷x =−x 3D. x +x 2=x 32. 若式子√a −3在实数范围内有意义,则a 的取值范围是( )A. a >3B. a ≥3C. a <3D. a ≤3 3. 下列不等式变形正确的是( )A. 由 a >b ,得 a −2<b −2B. 由 a >b ,得|a|>|b|C. 由 a >b ,得−2a <−2bD. 由 a >b ,得 a 2>b 2 4. 已知点A (m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A. 6B. −1C. 2或3D. −1或65. 如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A. (−4,−3)B. (−3,−4)C. (−3,−3)D. (−4,−4)6. 使得关于x 的不等式组{−2x +1≥4m −1x>m−2有解,且使分式方程1x−2−m−x 2−x=2有非负整数解的所有的m的和是( )A. −1B. 2C. −7D. 07. 若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是( )A. 427B. −427C. −5827D. 58278. 如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限的图象经过点A (m ,2)和CD 边上的点E (n ,23),过点E 作直线l ∥BD 交y 轴于点F ,则点F 的坐标是( )A. (0,−73) B. (0,−83) C. (0,−3)D. (0,−103)9. 如图,半径为R 的⊙O 的弦AC =BD ,AC 、BD 交于E ,F 为BC⏜上一点,连AF 、BF 、AB 、AD ,下列结论:①AE =BE ;②若AC ⊥BD ,则AD =√2R ;③在②的条件下,若CF⏜=CD ⏜,AB =√2,则BF +CE =1.其中正确的是( ) A. ①② B. ①③ C. ②③ D. ①②③10. 已知△ABC 中,∠ABC =45°,AB =7√2,BC =17,以AC 为斜边在△ABC外作等腰Rt △ACD ,连接BD ,则BD 的长为( ) A. 25 √2B. 17√74C. 25√22D. 17√72二、填空题(本大题共8小题,共16.0分)11. 用四舍五入法对437540取近似数,精确到千位为______(用科学记数法表示)12. 已知线段a =4cm ,线段b =7cm ,线段c 是线段a ,b 的比例中项,则线段c =______. 13. 如图,点P 在△ABC 的边AC 上,要使△ABP ∽△ACB ,添加一个条件______.14. 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为______.15. 有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.则tan ∠HDG 的值为______. 16. 已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且-4≤x ≤1时,y的最大值为7,则a 的值为______.17. 如图,等腰直角三角形ABC 中,∠C =90°,D 为BC 的中点.将△ABC 折叠,使A 点与点D 重合.若EF 为折痕,则sin ∠BED 的值为______,DEDF 的值为______.18. 图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).将三角尺移向直径为4cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′恰好与⊙O 相切(如图2).则边B ′C ′的长______.三、计算题(本大题共2小题,共16.0分) 19. 计算:(1)tan30°-(-2)2-|2-√3|. (2)(2x -1)2+(x -2)(x +2). 20. (1)解方程:1x−3=2+x3−x(2)解不等式组:{x −3(x −2)≤41+2x 3>x −1.四、解答题(本大题共8小题,共68.0分)21. 已知:如图,在平行四边形ABCD 和矩形ABEF 中,AC 与DF 相交于点G .(1)试说明DF =CE ;(2)若AC =BF =DF ,求∠ACE 的度数.22. 母亲节到了,小明准备为妈妈煮四个大汤圆作早点:一个芝麻馅,一个牛肉馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)分别用A ,B ,C 表示芝麻馅、牛肉馅、花生馅的大汤圆,求妈妈吃前两个汤圆刚好都是花生馅的概率(请用“画树状图”或“列表”等方法,写出分析过程,并给出结果);(2)若花生馅的大汤圆的个数为n 个(n ≥2),则妈妈吃前两个汤圆都是花生馅的概率是______(请用含n 的式子直接写出结果)23. 如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC .(注:顶点均在网格线交点处的三角形称为格点三角形.) (1)△ABC 是______三角形(填“锐角”、“直角”或“钝角”); (2)若P 、Q 分别为线段AB 、BC 上的动点,当PC +PQ 取得最小值时, ①在网格中用无刻度的直尺,画出线段PC 、PQ .(请保留作图痕迹.) ②直接写出PC +PQ 的最小值:______.24. 如图1,△ABC 内接于⊙O ,AC 是直径,点D 是AC 延长线上一点,且∠DBC =∠BAC ,tan ∠BAC =12.(1)求证:BD 是⊙O 的切线; (2)求DCAC 的值;(3)如图2,过点B作BG⊥AC交AC于点F,交⊙O于点G,BC、AG的延长线交于点E,⊙O的半径为6,求BE的长.25.某调查公司对本区域的共享单车数量及使用次数进行了调查发现,今年3月份第1周共有各类单车1000辆,第2周比第1周增加了10%,第3周比第2周增加了100辆,调查还发现某款单车深受群众喜爱,第1周该单车的每辆平均使用次数是这一周所有单车平均使用次数的2.5倍,第2、第3周该单车的每辆平均使用次数都比前一周增长一个相同的百分数m,第3周所有单车的每辆平均使用次数比第1周增加的百分数也是m,而且第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一.(注:总使用次数=每辆平均使用次数×车辆数)(1)求第3周该区域内各类共享单车的数量;(2)求m的值.26.已知:如图,一次函数y=-2x与二次函数y=ax2+2ax+c的图象交于A、B两点(点A在点B的右侧),与其对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D,点C与点D关于x轴对称,且△ACD的面积等于2.①求二次函数的解析式;②在该二次函数图象的对称轴上求一点P(写出其坐标),使△PBC与△ACD相似.27.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC⏜、CB⏜、BA⏜,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点I为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为______;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为______(请用含n的式子表示)28.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.答案和解析1.【答案】B【解析】解:A、(x3)4=x12,故本选项错误;B、(-x)2•x3=x2•x3=x5,故本选项正确;C、(-x)4÷x=x4÷x=x3,故本选项正确;D、x+x2不能合并,故本选项错误.故选:B.利用幂的乘方、同底数幂的除法以及合并同类项的知识求解即可求得答案.此题考查了幂的乘方、同底数幂的除法以及合并同类项.注意掌握符号与指数的变化是解此题的关键.2.【答案】B【解析】解:由题意得,a-3≥0,解得a≥3.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.3.【答案】C【解析】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a-2>b-2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以-2,不等式的符号方向改变,即-2a<-2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.根据不等式的性质进行分析判断.考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】A【解析】解:∵点A(m2-2,5m+4)在第一象限角平分线上,∴m2-2=5m+4,∴m2-5m-6=0,解得m1=-1,m2=6,当m=-1时,m2-2=-1,点A(-1,-1)在第三象限,不符合题意,所以,m的值为6.故选:A.根据第一象限角平分线上点的横坐标与纵坐标相等列方程求解,再根据第一象限点的横坐标与纵坐标都是正数作出判断.本题考查了点的坐标,熟记第一象限平分线上的点的横坐标与纵坐标相等是解题的关键,易错点在于要注意对求出的解进行判断.5.【答案】A【解析】解:如图,点P的坐标为(-4,-3).故选:A.延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.【答案】C【解析】解:∵关于x的不等式组有解,∴1-2m>m-2,解得m<1,由得x=,∵分式方程有非负整数解,∴x=是非负整数,∵m<1,∴m=-5,-2,∴-5-2=-7,故选:C.根据不等式组的解集的情况得出关于m的不等式,求得m的解集,再解分式方程得出x,根据x是非负整数得出m所有的m的和.本题考查了分式方程的解以及不等式的解集,求得m的取值范围以及解分式方程是解题的关键.7.【答案】C【解析】解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴+====-.故选:C.根据根与系数的关系可得出α+β=-、αβ=-3,将其代入+=中即可求出结论.本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.8.【答案】A【解析】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n ,),∴n=2+m,即E点坐标为(2+m ,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=-,∴直线l的解析式为y=x-当x=0时,y=-,∴点F的坐标为(0,-),故选:A.由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.9.【答案】D【解析】解:①∵弦AC=BD,∴=,∴=,∴∠ABD=∠BAC,∴AE=BE;②连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R;③设AF与BD相交于点G,连接CG,∵=,∴∠FAC=∠DAC,∵AC⊥BD,∵在△AGE和△ADE中,,∴△AGE≌△ADE(ASA),∴AG=AD,EG=DE,∴∠AGD=∠ADG,∵∠BGF=∠AGD,∠F=∠ADG,∴∠BGF=∠F,∴BG=BF,∵AC=BD,AE=BE,∴DE=CE,∴EG=CE,∴BE=BG+EG=BF+CE,∵AB=,∴BE=AB•cos45°=1,∴BF+CE=1.故其中正确的是:①②③.故选:D.①由弦AC=BD ,可得=,继而可得=,然后由圆周角定理,证得∠ABD=∠BAC,即可判定AE=BE;②连接OA,OD,由AE=BE,AC⊥BD,可求得∠ABD=45°,继而可得△AOD是等腰直角三角形,则可求得AD=R;③设AF与BD相交于点G,连接CG,易证得△BGF是等腰三角形,CE=DE=EG,继而求得答案.此题考查了圆周角定理、弧与弦的关系、等腰直角三角形的性质与判定以及全等三角形的判定与性质等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.10.【答案】C【解析】解:以AB为腰作等腰Rt△ABE,连接CE.∵△ADC是等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠DAB.∴△EAC∽△BAD.∴.作EF⊥BC,交BC延长线于F点,∴△EFB为等腰Rt△,EF=BF==7.∴EC==25.∴BD=EC=.故选:C.以AB为腰作等腰Rt△ABE,连接CE,证明△EAC∽△BAD,得到BD与EC数量关系,作EF⊥BC,交BC延长线于F点,在Rt△EFC中利用勾股定理求出EC长,则可求BC长.本题主要考查了等腰直角三角形的性质、勾股定理、相似三角形的判断和性质,正确作出辅助线是解题的关键.11.【答案】4.38×105【解析】解:用四舍五入法对437540取近似数,精确到千位为4.38×105.故答案为:4.38×105.一个近似数精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,再进行四舍五入.本题主要考查了科学记数法与精确度,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数;一个近似数,四舍五入到哪一位,就叫精确到哪一位.12.【答案】2√7【解析】解:∵线段c是线段a,b的比例中项,∴c2=ab,∵a=4cm,b=7cm,c>0,∴c=2(cm),故答案为2.根据比例中项的定义,构建方程即可解决问题.∵本题考查比例中项的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC【解析】解:在△ABP和△ACB中,∵∠A=∠A,∴当∠ABP=∠C或∠APB=∠ABC或=即AB2=AP•AC时,△ABP∽△ACB,故答案为∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC.根据相似三角形的判定方法,即可解决问题.本题考查相似三角形的判定,解题的关键是记住相似三角形的判定方法,属于基础题中考常考题型.14.【答案】2√2cm【解析】解:作OC⊥AB于C,如图,∵将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴OC等于半径的一半,即OA=2OC,∴∠OAC=30°,∴∠AOC=60°,∴∠AOB=120°,弧AB的长==2π,设圆锥的底面圆的半径为r,∴2πr=2π,解得r=1,∴这个圆锥的高==2(cm).故答案为:2cm.作OC⊥AB于C,如图,根据折叠的性质得OC等于半径的一半,即OA=2OC,再根据含30度的直角三角形三边的关系得∠OAC=30°,则∠AOC=60°,所以∠AOB=120°,则利用弧长公式可计算出弧AB的长=2π,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到圆锥的底面圆的半径为1,然后根据勾股定理计算这个圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【答案】13【解析】解:∵在正方形ABCD,正方形EFGH中,∠B=∠C=90°,∠EFG=90°,∴BC=CD,GH=EF=FG.又∵点F在BC上,点G在FD上,∴∠DFC+∠EFB=90°,∠DFC+∠FDC=90°,∴∠EFB=∠FDC,又∵∠B=∠C=90°,∴△EBF∽△FCD;∵BF=3,BC=CD=12,∴CF=9,DF===15,∵△EBF∽△FCD,∴=,∴BE===,∴GH=FG=EF==,∴DG=DF-FG=15-=,∴tan∠HDG===.故答案为:.根据正方形的性质可得∠B=∠C=90°,∠EFG=90°,BC=CD,GH=EF=FG,然后求出∠EFB=∠FDC,再根据有两组角对应相等的两个三角形相似证明,求出CF,再利用勾股定理列式求出DF,然后根据相似三角形对应边成比例求出BE,再根据锐角的正切等于对边比邻边列式计算即可得解.本题考查了相似三角形的判定与性质,正方形的性质,勾股定理,熟记各性质以及相似三角形的判定方法是解题的关键.16.【答案】-1【解析】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2-a+3,∴该函数的对称轴为直线x=-1,∵当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,∴a<0,当x=-1时,y=7,∴7=a(x+1)2+3a2-a+3,解得,a1=-1,a2=(舍去),故答案为:-1.根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】352√23【解析】解:设Rt△ABC的直角边AC=a,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵△DEF是△AEF沿EF 折叠而成,∴∠A=∠FDE=∠B=45°,∵∠2+∠B=∠1+∠FDE,∠FDE=∠B=45°∴∠1=∠2,∵D是BC的中点,∴CD=,设CF=x,则AF=DF=a-x,在Rt △CDF 中,由勾股定理得,DF2=CF2+CD2,即(a-x)2=x2+()2,解得x=,∴DF=a-x=a-=,∴sin ∠1===,∴sin∠2=,即sin∠BED的值为;过D作DG⊥AB,∵BD=,∠B=45°,∴DG=BD•sin∠B=×=,∵∠2=∠1,∠C=∠DGE,∴△EDG∽△DFC,∴===.故答案为:,.先设Rt△ABC的直角边AC=a,根据△ABC是等腰直角三角形可知∠A=∠B=45°,再根据图形折叠的性质可知∠A=∠EDF=45°,由三角形外角的性质可知∠1+∠EDF=∠B+∠2,可求出∠1=∠2,在直角三角形CDF中设CF=x,利用勾股定理即可求解;过D作DG⊥AB,在Rt△BDG中利用勾股定理可求出DG的长,再用相似三角形的判定定理可求出△EDG∽△DFC,由相似三角形的对应边成比例即可求解.本题考查的是图形翻折变换的性质、锐角三角函数的定义、全等三角形的判定与性质及勾股定理,涉及面较广,难度适中.18.【答案】(3+√3)cm【解析】解:过O作OD⊥A′C′于D,交AC于E,∵AC∥A′C′,∴AC⊥OD,∵A′C′与⊙O相切,AB为圆O的直径,且AB=4cm,∴OD=OA=OB=AB=×4cm=2cm,在Rt△AOE中,∠A=30°,∴OE=OA=×2cm=1cm,∴DE=OD-OE=2cm-1cm=1cm,则三角尺的宽为1cm,∵在Rt△ACB中,AB=4cm,∠BAC=30°,∴BC=AB=2cm,AC=BC=2cm,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1cm,得到AM=2AH=2cm,∴MN=AM+AC+CN=(3+2)cm,在Rt△MB′N中,∵∠B′MN=30°,∴B′N=MN×tan30°=(3+2)×=(+2)cm,则B′C′=B′N+NC′=(3+)cm,故答案为:(3+)cm.过O作OD⊥A′C′于D,交AC于E,由AC与A′C′,根据与平行线中的一条直线垂直,与另一条也垂直,得到OD与AC垂直,可得DE为三角尺的宽,由A′C′与圆O相切,根据切线的性质得到OD为圆的半径,根据直径AB的长,求出半径OA,OB及OD的长,在直角三角形AOE中,根据∠A=30°,利用直角三角形中,30°角所对的直角边等于斜边的一半可得出OE等于OA的一半,由OA的长求出OE的长,再由OD-OE求出DE的长,即三角尺的宽为1,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1,得到AM=2AH=2,可计算出MN,在Rt△MB′N中利用含30°的直角三角形三边的关系得到B′N长,即可得出答案.本题考查了切线的性质,含30°直角三角形的性质,以及平行线的性质,当直线与圆相切时,圆心到切线的距离等于圆的半径,熟练掌握切线的性质是解本题的关键.19.【答案】解:(1)原式=√33-4-2+√3=4√33-6;(2)原式=4x2-4x+1+(x2-4)=4x2-4x+1+x2-4=5x2-4x-3.【解析】(1)原式利用特殊角的三角函数值,乘方的意义,以及绝对值的代数意义计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.此题考查了平方差公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【答案】解:(1)去分母得:1=2x-6-x,解得:x=7,经检验x=7是分式方程的解;(2){x−3(x−2)≤4①1+2x3>x−1②,由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵四边形ABEF是矩形,∴AB=EF,AB∥EF,∴DC=EF,DC∥EF,∴四边形DCEF是平行四边形,∴DF=CE;(2)解:如图,连接AE,∵四边形ABEF是矩形,∴BF=AE,又∵AC=BF=DF,∴AC=AE=CE,∴△AEC是等边三角形,∴∠ACE=60°.【解析】(1)根据平行四边形对边平行且相等可得AB=DC,AB∥DC,矩形的对边平行且相等可得AB=EF,AB∥EF,从而得到DC=EF,DC∥EF,再根据一组对边平行且相等的四边形是平行四边形可得四边形DCEF是平行四边形,然后根据平行四边形对边相等证明即可;(2)连接AE,根据矩形的对角线相等可得BF=AE,然后求出AC=AE=CE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°解答.本题考查了矩形的性质,平行四边形判定与性质,等边三角形的判定与性质,熟记平行四边形的判定方法并准确识图是解题的关键.22.【答案】n(n−1)(n+2)(n+1)【解析】解:(1)画树状图为:,共有12种等可能的结果数,其中妈妈吃前两个汤圆刚好都是花生馅的结果数为2,所以妈妈吃前两个汤圆刚好都是花生馅的概率==;(2)若花生馅的大汤圆的个数为n 个(n≥2),则妈妈吃前两个汤圆都是花生馅的概率=.故答案为.(1)画树状图展示所有12种等可能的结果数,再找出妈妈吃前两个汤圆刚好都是花生馅的结果数,然后根据概率公式求解;(2)若花生馅的大汤圆的个数为n个(n≥2),则共有(n+2)(n+1)种可能的结果数,其中妈妈吃前两个汤圆都是花生馅的结果数为n(n-1),然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】直角85√5【解析】解:(1)结论:直角三角形;理由:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为直角.(2)①线段PC、PQ如图所示;②设AB交CC′于O.由△AOC∽△CQC′,可得=,∴C′Q=.∴PC+PQ的最小值=C′Q=.故答案为.(1)利用勾股定理的逆定理判断即可;(2)①作点C关于AB的对称点C′,作C′Q⊥BC于Q,交AB于P,此时PC+PQ的值最小;②利用相似三角形的性质,构建方程即可解决问题;本题考查作图与应用与设计,轴对称的性质,相似三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.24.【答案】(1)证明:如图1中,连接OB.∵AB是直径,∴∠ABC=90°,∵OB=OA=OC,∴∠A=∠OBA,∠OBC=∠OCB,∵∠A=∠DBC,∠A+∠BCA=90°,∴∠DBC+∠OBC=90°,∴∠OBD=90°,即OB⊥BD,∴DB是⊙O的切线.(2)解:∵∠D=∠D,∠DBC=∠A,∴△DBC∽△DAB,∴DB AD =DCBD=BCAB,在Rt△ABC中,∵tan∠BAC=BCAB =1 2,∴BD AD =DCBD=12,设CD=a,则BD=2a,AD=4a,AC=3a,∴CD AC =1 3.(3)解:如图2中,连接CG.在Rt△ABC中,∵AC=12,BC:AB=1:2,∴BC=125√5,AB=245√5,∵AC⊥BG,∴BF=FG,∴AB=AG=245√5,BC=CG,∵∠E=∠E,∠ECG=∠EAB,∴△ECG∽△EAB,∴EC AE =EGEB=CGAB=12,设EC=y,则AE=2y,EG=2y-245√5,EB=y+125√5,∵BE=2EG,∴y+125√5=2(2y-245√5),∴y=4√5,∴EB=4√5+125√5=325√5.【解析】(1)连接OB.欲证明BD是切线,只要证明DB⊥OB即可;(2)由△DBC∽△DAB,推出==,在Rt△ABC中,由tan∠BAC==,推出= =,设CD=a,则BD=2a,AD=4a,AC=3a,由此即可解决问题;(3)如图2中,连接CG.由△ECG∽△EAB,推出===,设EC=y,则AE=2y,EG=2y-,EB=y+,由此想办法列出方程即可解决问题;本题考查相似三角形综合题、切线的判定和性质、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.25.【答案】解:(1)依题意得:1000(1+10%)+100=1200(辆);答:第3周该区域内各类共享单车的数量是1200辆;(2)设第一周所有单车平均使用次数是a,由题意得:2.5a×(1+m)2×100=a×(1+m)×1200×14,解得m=0.2,即m的值为20%.【解析】(1)第2周共享单车的数量:1000(1+10%),第3周=第2周+100;(2)设第一周所有单车平均使用次数是a,根据“第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一”列出方程并解答.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】解:(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.又∵一次函数y=-2x与对称轴交于点C,∴y=2.∴C点的坐标为(-1,2).(2)①∵点C与点D关于x轴对称,∴点D的坐标为(-1,-2).∴CD=4,∵△ACD的面积等于2.∴点A到CD的距离为1,C点与原点重合,点A的坐标为(0,0).设二次函数为y=a(x+1)2-2过点A,则a=2,∴y=2x2+4x.②设P(-1,t).交点B的坐标为(-3,6),D(-1,-2),C(-1,2),A(0,0),则BC=2√5,PC=t-2,CD=4,AD=√5,①当△PBC∽△CAD时,BCAD =PCCD,即2√5√5=t−24,解得t=10,故点P的坐标为(-1,10),②当△PBC∽△ACD时,BCCD =PCAD,即2√54=t−2√5,解得t=92,故点P的坐标为(-1,92),综上所述,点P的坐标为(-1,10),(-1,92).【解析】(1)把抛物线对称轴方程x=-1代入直线方程,求得相应的纵坐标,易得点C的坐标;(2)①根据点的坐标的对称性易得抛物线顶点坐标D(-1,-2),故CD=4,结合三角形的面积公式可以求得点A的坐标,将点A的坐标分别代入抛物线解析式为y=a(x+1)2-2,利用待定系数法求得抛物线的解析式即可;②需要分类讨论:△PBD∽△CAD、△PBD∽△ACD.本题考查了二次函数综合题,涉及到的知识点有待定系数法求二次函数解析式,一次函数图象上点的坐标特征,相似三角形的性质,有关于动点问题,需要分类讨论,以防漏解.27.【答案】3π 2√3nπ【解析】解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴线段MN的长为=3π,故答案为:3π;(2)如图1,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D,∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴当它第1次回到起始位置时,点I所经过的路径相当于以A为圆心,AI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•=2nπ,故答案为2nπ.(1)先求出的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.此题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.28.【答案】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC =√AB 2−BC 2=4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4-5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴PC AC =A′PAB,即4−5x4=4x5,解得:x=2041,∴当点A′落在边BC上时,x=2041;(2)当A′B=BC时,(5-8x)2+(3x)2=32,解得:x=40±12√373.∵x≤45,∴x=40−12√373;当A′B=A′C时,x=58.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=514,∴A′B′=QE-PD=x=514;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5-7x,∴cos B=5x5−7x =35,∴x=1546,∴A′B′=B′D-A′D=2546;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=2041,∴A′B′=PA′sin A=1241;当A′B′⊥AB时,x=514,A′B′=514;当A′B′⊥BC时,x=1546,A′B′=2546;当A′B′⊥AC时,x=2053,A′B′=2553.【解析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.此题是几何变换综合题,主要考查了锐角三角函数的意义,分类讨论,解本题的关键是要分类要分准,难点是分类.。

2019年中考数学试题含答案 (12)

2019年中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是()A. −1B. −2C. −3D. 1【答案】A【解析】解:1−2=−1.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.下列运算正确的是()A. a3⋅a4=a12B. a6÷a3=a2C. 2a−3a=−aD. (a−2)2=a2−4【答案】C【解析】解:A、应为a3⋅a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a−3a=−a,正确;D、应为(a−2)2=a2−4a+4,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米=10−9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A. 25.1×10−6米B. 0.251×10−4米C. 2.51×105米D. 2.51×10−5米【答案】D【解析】解:2.51×104×10−9=2.51×10−5米.故选D.先将25100用科学记数法表示为2.51×104,再和10−9相乘.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A. 12B. 18C. 38D. 12+12+12【答案】B【解析】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,[(3−2)2+2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为153×(2−2)2+(1−2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.若ab<0,则正比例函数y=ax与反比例函数y=b在同一坐标系中的大致图象可x能是()A. B. C. D.【答案】B【解析】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A. AD=BC′B. ∠EBD=∠EDBC. △ABE∽△CBDD. sin∠ABE=AEED【答案】C【解析】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=AE,BE∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=AE.ED故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,⊙O是△ABC的外接圆,已知∠ABO=50∘,则∠ACB的大小为()A. 40∘B. 30∘C. 45∘D. 50∘【答案】A【解析】解:△AOB中,OA=OB,∠ABO=50∘,∴∠AOB=180∘−2∠ABO=80∘,∠AOB=40∘,∴∠ACB=12故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:9a−a3=______,2x2−12x+18=______.【答案】a(3+a)(3−a);2(x−3)2【解析】解:9a−a3=a(9−a2)=a(3+a)(3−a);2x2−12x+18=2(x2−6x+9)=2(x−3)2.观察原式9a−a3,找到公因式a后,发现9−a2符合平方差公式的形式,直接运用公式可得;观察原式2x2−12x+18,找到公因式2后,发现x2−6x+9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=______.【答案】1:√2【解析】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:√2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14. 已知一个正数的平方根是3x −2和5x +6,则这个数是______. 【答案】494【解析】解:根据题意可知:3x −2+5x +6=0,解得x =−12, 所以3x −2=−72,5x +6=72,∴(±72)2=494故答案为:494.由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15. 若不等式组{b −2x >0x−a>2的解集是−1<x <1,则(a +b)2009=______. 【答案】−1【解析】解:由不等式得x >a +2,x <12b , ∵−1<x <1, ∴a +2=−1,12b =1∴a =−3,b =2,∴(a +b)2009=(−1)2009=−1. 故答案为−1.解出不等式组的解集,与已知解集−1<x <1比较,可以求出a 、b 的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16. 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90∘,∠BAC =30∘,AB =4cm ,则图中阴影部分面积为______cm 2. 【答案】4π【解析】解:∵∠BCA =90∘,∠BAC =30∘,AB =4cm , ∴BC =2,AC =2√3,∠A′BA =120∘,∠CBC′=120∘, ∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)−S 扇形BCC′−S △ABC =120π360×(42−22)=4πcm 2.故答案为:4π.易得整理后阴影部分面积为圆心角为120∘,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+1x )÷x2−1x.【答案】解:(1+1x )÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=2时,原式=12−1=1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45∘方向上,从A向东走600米到达B处,测得C在点B的北偏西60∘方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=45∘,∠FBC=60∘,则∠CAH=45∘,∠CBA=30∘.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CHHB∴HB=CHtan30∘=x√33=√3x,∵AH+HB=AB,∴x+√3x=600,解得x=6001+√3≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y−5)天.根据题意得:1y−5=(1+25%)×1y解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【答案】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:|3.14−π|+3.14÷(√32+1)0−2cos45∘+(√2−1)−1+(−1)2009.【答案】解:原式=π−3.14+3.14−2×√22+1√2−1−1=π−√2+√2+1−1=π.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现、、之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c−b=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.22.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:即为所求;.【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000x−(5000+1000x)×0.5%≥5000+1000,(4分)解这个不等式得x≥1205199,即x≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,∴从中随机抽取出一个黑球的概率是:47;(2)∵往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,∴x+37+x+y =14,则y=3x+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;(2)直接利用从口袋中随机取出一个白球的概率是14,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点O1的坐标为(−4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C 点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.【答案】解:(1)由题意得OA =|−4|+|8|=12, ∴A 点坐标为(−12,0).∵在Rt △AOC 中,∠OAC =60∘,OC =OAtan∠OAC =12×tan60∘=12√3. ∴C 点的坐标为(0,−12√3).设直线l 的解析式为y =kx +b , 由l 过A 、C 两点,得{−12√3=b 0=−12k +b ,解得{b =−12√3k =−√3∴直线l 的解析式为:y =−√3x −12√3.(2)如图,设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.则O 1O 3=O 1P +PO 3=8+5=13. ∵O 3D 1⊥x 轴,∴O 3D 1=5,在Rt △O 1O 3D 1中,O 1D 1=√O 1O 32−O 3D 12=√132−52=12.∵O 1D =O 1O +OD =4+13=17,∴D 1D =O 1D −O 1D 1=17−12=5, ∴t =51=5(秒).∴⊙O 2平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26. 如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90∘后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.【答案】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴{2=0+0+c0=1+b+c,解得{c=2b=−3,∴所求抛物线的解析式为y=x2−3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)∵点N在y=x2−3x+1上,可设N点坐标为(x0,x02−3x0+1),将y=x2−3x+1配方得y=(x−32)2−54,∴其对称轴为直线x=32.①0≤x0≤32时,如图①,∵S△NBB1=2S△NDD1,∴12×1×x0=2×12×1×(32−x0)∵x0=1,此时x02−3x0+1=−1,∴N点的坐标为(1,−1).②当x0>32时,如图②,同理可得12×1×x0=2×12×(x0−32),∴x0=3,此时x02−3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y= x2−3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

2019江苏省各市中考数学试题汇总(附答案解析)

2019江苏省各市中考数学试题汇总(附答案解析)目录2019年江苏省盐城市中考数学试卷 (1)2019无锡市初中学业水平考试 (24)2019年江苏省无锡市中考数学试卷 (41)2019年江苏省泰州市中考数学试卷 (66)2019年江苏省宿迁市中考数学试卷 (86)2019年苏州市初中毕业暨升学考试试卷 (111)2019年苏州市初中毕业暨升学考试试卷 (119)2019年江苏省苏州市中考数学试卷 (126)南京市2019年初中学业水平考试 (150)2019年连云港市初中毕业升学考试 (161)2019年江苏省连云港市中考数学试卷 (174)2019年江苏省盐城市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置)1.(3分)如图,数轴上点A表示的数是()A .﹣1B .0C .1D .22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(3分)若√x −2有意义,则x 的取值范围是( ) A .x ≥2B .x ≥﹣2C .x >2D .x >﹣24.(3分)如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( )A .2B .43C .3D .325.(3分)如图是由6个小正方体搭成的物体,该所示物体的主视图是( )A .B .C .D .6.(3分)下列运算正确的是( ) A .a 5•a 2=a 10B .a 3÷a =a 2C .2a +a =2a 2D .(a 2)3=a 57.(3分)正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为( ) A .0.14×108B .1.4×107C .1.4×106D .14×1058.(3分)关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)如图,直线a∥b,∠1=50°,那么∠2=°.10.(3分)分解因式:x2﹣1=.11.(3分)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为.12.(3分)甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s2,乙的方差是0.06s2,这5次短跑训练成绩较稳定的是.(填“甲”或“乙”)13.(3分)设x1、x2是方程x2﹣3x+2=0的两个根,则x1+x2﹣x1•x2=.̂为50°,则∠E+∠C=°.14.(3分)如图,点A、B、C、D、E在⊙O上,且AB15.(3分)如图,在△ABC中,BC=√6+√2,∠C=45°,AB=√2AC,则AC的长为.16.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|+(sin36°−12)0−√4+tan45°.18.(6分)解不等式组:{x+1>2,2x+3≥12x.19.(8分)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y=kx(x>0)的图象交于点B(m,2).(1)求反比例函数的表达式;(2)求△AOB的面积.20.(8分)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是.(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)21.(8分)如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)22.(10分)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?23.(10分)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量(件)频数频率A20≤x<4030.06B40≤x<6070.14C60≤x<8013aD80≤x<100m0.46E100≤x<12040.08合计b1请根据以上信息,解决下列问题:(1)频数分布表中,a=、b=;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.24.(10分)如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的⊙O 分别交AC 、BC 于点M 、N ,过点N 作NE ⊥AB ,垂足为E . (1)若⊙O 的半径为52,AC =6,求BN 的长;(2)求证:NE 与⊙O 相切.25.(10分)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B ′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. 【探究】(1)证明:△OBC ≌△OED ;(2)若AB =8,设BC 为x ,OB 2为y ,求y 关于x 的关系式.26.(12分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:第一次菜价3元/千克质量金额甲1千克3元乙1千克3元第二次:菜价2元/千克质量金额甲1千克元乙千克3元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价x甲、x乙,比较x甲、x乙的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v﹣p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由.27.(14分)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.2019年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置)1.(3分)如图,数轴上点A表示的数是()A.﹣1B.0C.1D.2【解答】解:数轴上点A所表示的数是1.故选:C.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、既是中心对称图形也是轴对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:B.3.(3分)若√x−2有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【解答】解:依题意,得x﹣2≥0,解得,x≥2.故选:A.4.(3分)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A .2B .43C .3D .32【解答】解:∵点D 、E 分别是△ABC 的边BA 、BC 的中点, ∴DE 是△ABC 的中位线, ∴DE =12AC =1.5. 故选:D .5.(3分)如图是由6个小正方体搭成的物体,该所示物体的主视图是( )A .B .C .D .【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形,如图所示:故选:C .6.(3分)下列运算正确的是( ) A .a 5•a 2=a 10B .a 3÷a =a 2C .2a +a =2a 2D .(a 2)3=a 5【解答】解:A 、a 5•a 2=a 7,故选项A 不合题意; B 、a 3÷a =a 2,故选项B 符合题意; C 、2a +a =3a ,故选项C 不合题意; D 、(a 2)3=a 6,故选项D 不合题意. 故选:B .7.(3分)正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为( ) A .0.14×108B .1.4×107C .1.4×106D .14×105【解答】解:科学记数法表示:1400 000=1.4×106故选:C.8.(3分)关于x的一元二次方程x2+kx﹣2=0(k为实数)根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:由根的判别式得,△=b2﹣4ac=k2+8>0故有两个不相等的实数根故选:A.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)如图,直线a∥b,∠1=50°,那么∠2=50°.【解答】解:∵a∥b,∠1=50°,∴∠1=∠2=50°,故答案为:50.10.(3分)分解因式:x2﹣1=(x+1)(x﹣1).【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).11.(3分)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为12.【解答】解:∵圆被等分成6份,其中阴影部分占3份, ∴落在阴影区域的概率为12,故答案为:12.12.(3分)甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s 2,乙的方差是0.06s 2,这5次短跑训练成绩较稳定的是 乙 .(填“甲”或“乙”) 【解答】解:∵甲的方差为0.14s 2,乙的方差为0.06s 2, ∴S 甲2>S 乙2,∴成绩较为稳定的是乙; 故答案为:乙.13.(3分)设x 1、x 2是方程x 2﹣3x +2=0的两个根,则x 1+x 2﹣x 1•x 2= 1 . 【解答】解:x 1、x 2是方程x 2﹣3x +2=0的两个根, ∴x 1+x 2=3,x 1•x 2=2, ∴x 1+x 2﹣x 1•x 2=3﹣2=1; 故答案为1;14.(3分)如图,点A 、B 、C 、D 、E 在⊙O 上,且AB̂为50°,则∠E +∠C = 155 °.【解答】解:连接EA , ∵AB̂为50°, ∴∠BEA =25°,∵四边形DCAE 为⊙O 的内接四边形, ∴∠DEA +∠C =180°,∴∠DEB +∠C =180°﹣25°=155°, 故答案为:155.15.(3分)如图,在△ABC中,BC=√6+√2,∠C=45°,AB=√2AC,则AC的长为2.【解答】解:过点A作AD⊥BC,垂足为点D,如图所示.设AC=x,则AB=√2x.在Rt△ACD中,AD=AC•sin C=√22x,CD=AC•cos C=√22x;在Rt△ABD中,AB=√2x,AD=√22x,∴BD=√AB2−AD2=√62.∴BC=BD+CD=√62x+√22x=√6+√2,∴x=2.故答案为:2.16.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是y=13x﹣1.【解答】解:∵一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B , ∴令x =0,得y =﹣2,令y =0,则x =1, ∴A (12,0),B (0,﹣1),∴OA =12,OB =1,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E , ∵∠ABC =45°,∴△ABF 是等腰直角三角形, ∴AB =AF ,∵∠OAB +∠ABO +∠OAB +∠EAF =90°, ∴∠ABO =∠EAF , ∴△ABO ≌△AFE (AAS ), ∴AE =OB =1,EF =OA =12, ∴F (32,−12),设直线BC 的函数表达式为:y =kx +b ,∴{32k +b =−12b =−1,∴{k =13b =−1, ∴直线BC 的函数表达式为:y =13x ﹣1, 故答案为:y =13x ﹣1.三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|+(sin36°−12)0−√4+tan45°. 【解答】解:原式=2+1﹣2+1=2. 18.(6分)解不等式组:{x +1>2,2x +3≥12x.【解答】解:{x +1>2①2x +3≥12x②解不等式①,得x >1, 解不等式②,得x ≥﹣2, ∴不等式组的解集是x >1.19.(8分)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B (m ,2). (1)求反比例函数的表达式; (2)求△AOB 的面积.【解答】解:(1)∵点B (m ,2)在直线y =x +1上, ∴2=m +1,得m =1, ∴点B 的坐标为(1,2),∵点B (1,2)在反比例函数y =k x(x >0)的图象上, ∴2=k1,得k =2,即反比例函数的表达式是y =2x ; (2)将x =0代入y =x +1,得y =1, 则点A 的坐标为(0,1), ∵点B 的坐标为(1,2),∴△AOB 的面积是;1×12=12.20.(8分)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到红球的概率是23.(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果) 【解答】解:(1)搅匀后从中任意摸出1个球,摸到红球的概率=23;、 故答案为23;(2)画树状图为:共有6种等可能的结果数,其中两次都摸到红球的结果数为2, 所以两次都摸到红球的概率=26=13. 21.(8分)如图,AD 是△ABC 的角平分线.(1)作线段AD 的垂直平分线EF ,分别交AB 、AC 于点E 、F ;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE 、DF ,四边形AEDF 是 菱 形.(直接写出答案)【解答】解:(1)如图,直线EF 即为所求.(2)∵AD 平分∠ABC , ∴∠BAD =∠CAD ,∴∠BAD =∠CAD ,∵∠AOE =∠AOF =90°,AO =AO , ∴△AOE ≌△AOF (ASA ), ∴AE =AF ,∵EF 垂直平分线段AD , ∴EA =ED ,F A =FD , ∴EA =ED =DF =AF , ∴四边形AEDF 是菱形. 故答案为菱.22.(10分)体育器材室有A 、B 两种型号的实心球,1只A 型球与1只B 型球的质量共7千克,3只A 型球与1只B 型球的质量共13千克. (1)每只A 型球、B 型球的质量分别是多少千克?(2)现有A 型球、B 型球的质量共17千克,则A 型球、B 型球各有多少只?【解答】解:(1)设每只A 型球、B 型球的质量分别是x 千克、y 千克,根据题意可得: {x +y =73x +y =13, 解得:{x =3y =4,答:每只A 型球的质量是3千克、B 型球的质量是4千克;(2)∵现有A 型球、B 型球的质量共17千克, ∴设A 型球1个,设B 型球a 个,则3+4a =17, 解得:a =72(不合题意舍去),设A 型球2个,设B 型球b 个,则6+4b =17, 解得:b =114(不合题意舍去), 设A 型球3个,设B 型球c 个,则9+4c =17, 解得:c =2,设A 型球4个,设B 型球d 个,则12+4d =17, 解得:d =54(不合题意舍去),设A 型球5个,设B 型球e 个,则15+4e =17,解得:a=12(不合题意舍去),综上所述:A型球、B型球各有3只、2只.23.(10分)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量(件)频数频率A20≤x<4030.06B40≤x<6070.14C60≤x<8013aD80≤x<100m0.46E100≤x<12040.08合计b1请根据以上信息,解决下列问题:(1)频数分布表中,a=0.26、b=50;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.【解答】解:(1)根据题意得:b=3÷0.06=50,a=1350=0.26;故答案为:0.26;50;(2)根据题意得:m=50×0.46=23,补全频数分布图,如图所示:(3)根据题意得:400×(0.46+0.08)=216, 则该季度被评为“优秀员工”的人数为216人.24.(10分)如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的⊙O 分别交AC 、BC 于点M 、N ,过点N 作NE ⊥AB ,垂足为E . (1)若⊙O 的半径为52,AC =6,求BN 的长;(2)求证:NE 与⊙O 相切.【解答】解:(1)连接DN ,ON∵⊙O 的半径为52,∴CD =5∵∠ACB =90°,CD 是斜边AB 上的中线, ∴BD =CD =AD =5, ∴AB =10,∴BC=√AB2−AC2=8∵CD为直径∴∠CND=90°,且BD=CD∴BN=NC=4(2)∵∠ACB=90°,D为斜边的中点,∴CD=DA=DB=12AB,∴∠BCD=∠B,∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON∥AB,∵NE⊥AB,∴ON⊥NE,∴NE为⊙O的切线.25.(10分)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.【解答】解:(1)证明:由折叠可知,AD=ED,∠BCO=∠DCO=∠ADO=∠CDO=45°∴BC=DE,∠COD=90°,OC=OD,在△OBC ≌△OED 中, {OC =OD∠OCB =∠ODE BC =DE, ∴△OBC ≌△OED (SAS ); (2)过点O 作OH ⊥CD 于点H .由(1)△OBC ≌△OED , OE =OB ,∵BC =x ,则AD =DE =x , ∴CE =8﹣x ,∵OC =OD ,∠COD =90° ∴CH =12CD =12AB =12×8=4, OH =12CD =4,∴EH =CH ﹣CE =4﹣(8﹣x )=x ﹣4 在Rt △OHE 中,由勾股定理得 OE 2=OH 2+EH 2, 即OB 2=42+(x ﹣4)2,∴y 关于x 的关系式:y =x 2﹣8x +32.26.(12分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如: 第一次菜价3元/千克 质量金额甲1千克3元乙1千克3元第二次:菜价2元/千克质量金额甲1千克2元乙 1.5千克3元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价x甲、x乙,比较x甲、x乙的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v﹣p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由.【解答】解:(1)2×1=2(元),3÷2=1.5(元/千克)故答案为2;1.5.(2)甲两次买菜的均价为:(3+2)÷2=2.5(元/千克)乙两次买菜的均价为:(3+3)÷(1+1.5)=2.4(元/千克)∴甲两次买菜的均价为2.5(元/千克),乙两次买菜的均价为2.4(元/千克).【数学思考】x甲=ma+mb2m=a+b2,x乙=2nna+nb=2aba+b∴x甲−x乙═a+b2−2aba+b=(a−b)22(a+b)≥0∴x 甲≥x 乙 【知识迁移】t 1=2s v ,t 2=s v+p +s v−p =2sv v 2−p2 ∴t 1﹣t 2═2s v−2sv v 2−p 2=−2sp 2v(v 2−p 2)∵0<p <v ∴t 1﹣t 2<0 ∴t 1<t 2.27.(14分)如图所示,二次函数y =k (x ﹣1)2+2的图象与一次函数y =kx ﹣k +2的图象交于A 、B 两点,点B 在点A 的右侧,直线AB 分别与x 、y 轴交于C 、D 两点,其中k <0.(1)求A 、B 两点的横坐标;(2)若△OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图象的对称轴与x 轴交于点E ,是否存在实数k ,使得∠ODC =2∠BEC ,若存在,求出k 的值;若不存在,说明理由.【解答】解:(1)将二次函数与一次函数联立得:k (x ﹣1)2+2=kx ﹣k +2, 解得:x =1或2,故点A 、B 的坐标分别为(1,2)、(2,k +2); (2)OA =√22+1=√5, ①当OA =AB 时,即:1+k 2=5,解得:k =±2(舍去2); ②当OA =OB 时,4+(k +2)2=5,解得:k =﹣1或﹣3; 故k 的值为:﹣1或﹣2或﹣3; (3)存在,理由:①当点B在x轴上方时,过点B作BH⊥AE于点H,将△AHB的图形放大见右侧图形,过点A作∠HAB的角平分线交BH于点M,过点M作MN⊥AB于点N,过点B作BK⊥x轴于点K,图中:点A(1,2)、点B(2,k+2),则AH=﹣k,HB=1,设:HM=m=MN,则BM=1﹣m,则AN=AH=﹣k,AB=√k2+1,NB=AB﹣AN,由勾股定理得:MB2=NB2+MN2,即:(1﹣m)2=m2+(√k2+1+k)2,解得:m=﹣k2﹣k√k2+1,在△AHM中,tanα=HMAH=m−k=k+√k2+1=tan∠BEC=BKEK=k+2,解得:k=±√3(舍去正值),故k=−√3;②当点B在x轴下方时,同理可得:tanα=HMAH=m−k=k+√k2+1=tan∠BEC=BKEK=−(k+2),解得:k=−4−√73或−4+√73(舍去);故k的值为:−√3或−4−√73.2019无锡市初中学业水平考试一、选择题(本大题共10小题,每小题3分共计30分)1、5的相反数是()(1)-5 B. 5 C. 15 D.15【解答】A 1.函数21yx 中的自变量x 的取值范围是 ( )1. x ≠12 B.x ≥1 C.x >12 D.x ≥12【解答】D 3、分解因式224xy 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【解答】C4、已知一组数据:66,66,62,67,63 这组数据的众数和中位数分别是 ( ) A. 66,62 B.66,66 C.67,62 D.67,66 【解答】B5、一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 ( ) A.长方体 B.四棱锥 C.三棱锥 D.圆锥 【解答】A6、下列图案中,是中心对称图形但不是轴对称图形的是 ( )【解答】 C 1. 下列结论中,矩形具有而菱形不一定具有的性质是( )A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直 【解答】C 2. 如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B的度数为 ( )A.20°B.25°C.40°D.50° 【解答】B3.如图,已知A 为反比例函数kyx(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B.若△OAB 的面积为2,则k 的值为()A.2B. -2C. 4D.-4 【解答】Dx yO-6OO B C AABE F4. 某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )1. 10 B. 9 C. 8 D. 7 【解答】B设原计划m 天完成,开工n 天后有人外出 则15am=2160 , am=144 15an+12(a+2)(m-n)<2160化简可得:an+4am+8m-8n<720 将am=144代入得 an+8m-8n<144, an+8m-8n<am , a(n-m)<8(n-m),其中n-m<0 a>8, 至少为9 故选B二、填空题(本大题共8小题,每小题2分,共计16分)2. 49的平方根为 . 【解答】 233.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20 000 000 人次,这个年接待课量可以用科学记数法表示为 人次【解答】7210 4.计算:2(3)a .【解答】 269a a5.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可)【解答】 2y x6.已知圆锥的母线成为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为cm.【解答】 3x y-6O7.已知一次函数y kx b 的图像如图所示,则关于x 的不等式30kx b 的解集为 .【解答】 x <21. 如图,在△ABC 中,AC:BC:AB=5:12:13,O 在△ABC 内自由移动,若O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为__________【解答】法一:本题考查动态双相切思想如图2中小圆的运动情况,延长IO 交AC 于点M (如图三)∵HO=1,IO=1,∴OM=135 即IM=185 那么AI=23125518=⨯ 又∵中间三角形的面积是103,所以能易得HG=53所以能够得到AC=AH+HG+CG=35251236∴△ABC 的周长为 25A BBO COO I HFGEDBB方法二 :构造倍半角延长CA 至M ,使AM=AB 易证△MCB ∽△1AHO ∴231==HO AH CB CM ∴AH=23 又圆心O 在△ABC 内所能到达的区域的面积为103∴310212132=⋅O O O O 易得3521==HG O O ∴625=++=GC HG AH AC ∴256==∆AC C ACBBBGBB18、如图,在ABC ∆中,54,5,===∆BC AC AB ABC ,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为【解答】法一,设,2,x BG x HE DG ===x HD CG 254-==;由GMD HED ∆∆∽,xxHE MG 254-=xx MG 2542-=,延长ED 交BC 于M , 所以=⨯=∆HD BM S BDE21()x x x x x x 542525425422122+-=-⨯⎪⎪⎭⎫ ⎝⎛--⨯8≤ by 徐校法二:如图,过点E 作BD EN ⊥ ,过点C 作BD CN ⊥ ,DCN EDN ∆≅∆,设x AD =,x BD -=5,()()85321≤-+=∆x x S BDEBB1. 解答题 1. 计算1.01)2009()21(3-+-- (2)3233)(2a a a -⋅(1)【解答】解:原式=4 (2)【解答】解:原式=6a 2. 解方程1.0522=--x x (2)1421+=-x x (1)【解答】解:61,6121-=+=x x (2)【解答】解:3=x ,经检验3=x 是方程的解 2. 如图,在△ABC 中,AB=AC,点D 、E 分别在AB 、AC 上,BD=CE ,BE 、CD 相交于点0; 求证:(1)ECB DBC ∆≅∆(2)OC OB =【解答】解: 1. 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆BBECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆2. 证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC3.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。

2019年江苏省中考数学真题分类汇编 专题15 图形的变化之解答题(解析版)

专题15 图形的变化之解答题参考答案与试题解析一.解答题(共13小题)1.(2019•徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【答案】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点睛】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.2.(2019•常州)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是AC′∥BD;(2)EB与ED相等吗?证明你的结论.【答案】解:(1)连接AC′,则AC′与BD的位置关系是AC′∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C'BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.【点睛】本题主要考查了折叠问题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.(2019•淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;(3)连接AB2、BB2,求△ABB2的面积.【答案】解:(1)线段A1B1如图所示;(2)线段A1B2如图所示;(3)S4×42×22×42×4=6.【点睛】本题考查了平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.4.(2019•常州)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)【答案】解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为.【点睛】本题主要考查了概率公式,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.5.(2019•淮安)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=50°;②连接CE,直线CE与直线AB的位置关系是EC∥AB.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【答案】解:(1)①如图②中,∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,②结论:AB∥EC.理由:∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分线段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案为50,AB∥EC.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴PB=PC,∴∠BCE∠BPE=40°,∵∠ABC=40°,∴AB∥EC.(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.6.(2019•苏州)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【答案】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠F AG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠F AG+∠F=50°+28°=78°.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC≌△AEF是解题的关键.7.(2019•扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为4;(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为5;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求△ACB′面积的最大值.【答案】解:(1)如图1中,∵△ABC是等边三角形,∴∠A=60°,AB=BC=AC=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,∴∵B,B′关于PE对称,∴BB′⊥PE,BB′=2OB∴OB=PB•sin60°,∴BB′=5.故答案为5.(3)如图3中,结论:面积不变.∵B,B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC∥BB′,∴S△ACB′=S△ACB•82=16.(4)如图4中,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,∵P A=2,∠P AE=60°,∴PE=P A•sin60°,∴B′E=6,∴S△ACB′的最大值8×(6)=424.【点睛】本题属于几何变换综合题,考查了等边三角形的性质和判定,轴对称变换,解直角三角形,平行线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.8.(2019•宿迁)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.【答案】解:(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴,∴,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的大小不发生变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边△ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC∠AOC,∴点G在⊙O上运动,以B为圆心,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三角形,∴∠DBK=60°,∴∠DAB=30°,∴∠DOG=2∠DAB=60°,∴的长,观察图象可知,点G的运动路程是的长的两倍.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,弧长公式,等边三角形的判定和性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.9.(2019•南京)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC 上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【答案】(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB5,则CD x,AD x,∵AD+CD=AC,∴x=3,∴x,∴CD x,观察图象可知:0≤CD时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴,∴,解得m,∴CD=3,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴,∴,∴n,∴CG=4,∴CD,观察图象可知:当0≤CD或CD≤3时,菱形的个数为0,当CD或CD时,菱形的个数为1,当CD时,菱形的个数为2.【点睛】本题考查相似三角形的判定和性质,菱形的判定和性质,作图﹣复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.10.(2019•宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【答案】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=EC sin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.11.(2019•泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB 的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E 处到观众区底端A处的水平距离AF为3m.求:(1)观众区的水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)【答案】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,∴AB=2BC=20(m),答:观众区的水平宽度AB为20m;(2)作CM⊥EF于M,DN⊥EF于N,则四边形MFBC、MCDN为矩形,∴MF=BC=10,MN=CD=4,DN=MC=BF=23,在Rt△END中,tan∠EDN,则EN=DN•tan∠EDN≈7.59,∴EF=EN+MN+MF=7.59+4+10≈21.6(m),答:顶棚的E处离地面的高度EF约为21.6m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.12.(2019•连云港)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A 与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°,cos37°=sin53°,tan37°,tan76°≈4)【答案】解:(1)在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sin B,∴AC=AB•sin37°=2515(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,由题意易知,D、C、M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=1512,AM=AC•cos∠CAM=159.在Rt△AMD中,tan∠DAM,∴DM=AM•tan76°=9×4=36,∴AD9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.13.(2019•南京)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【答案】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。

2019年江苏省南京市中考数学试卷及答案(解析版)

江苏省南京市2019年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元.用科学记数法表示13 000是( ) A .50.1310⨯B .41.310⨯C .31310⨯D .213010⨯ 2.计算()32a b 的结果是( )A .23a bB .53a bC .6a bD .63a b 3.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( )ABC D5.下列整数中,与10( )A .4B .5C .6D .76.如图,'''A B C △是由ABC △经过平移得到的,'''A B C △还可以看作是ABC △经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④第Ⅱ卷(非选择题共108分)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填在题中的横线上)7.2-的相反数是;1的倒数是.28.的结果是.9.分解因式()24-+的结果是.a b ab10.已知2是关于x的方程240+﹣=的一个根,则m=.x x m11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a b∥.12.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是.14.如图,P A、PB是Oe上.若102e的切线,A、B为切点,点C、D在O=,则∠︒P ∠+∠=.A C15.如图,在ABC△中,BC的垂直平分线MN交AB于点D,CD平分ACB∠.若BD=,则AC的长.=2AD,316.在ABC △中,4AB =,60C ∠=,A B ∠>∠,则BC 的长的取值范围是 . 三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分) 计算()22()x y x xy y +-+18.(本小题满分7分) 解方程:23111x x x -=--.19.(本小题满分7分)如图,D 是ABC △的边AB 的中点,DE BC ∥,CE AB ∥,AC 与DE 相交于点F .求证:ADF CEF V V ≌.20.(本小题满分8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(本小题满分8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(本小题满分8分)如图,O e 的弦AB 、CD 的延长线相交于点P ,且AB CD =.求证:PA PC =.23.(本小题满分8分)已知一次函数12y kx =+(k 为常数,0k ≠)和23y x =-. (1)当2k =-时,若12y y >,求x 的取值范围.(2)当1x <时,12y y >.结合图象,直接写出k 的取值范围.24.(本小题满分8分)如图,山顶有一塔AB ,塔高33 m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度. (参考数据:tan220.40︒≈,tan270.51︒≈.)25.(本小题满分8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为32:.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?26.(本小题满分9分)如图①,在Rt ABC △中,90C ∠=︒,3AC =,4BC =.求作菱形DEFG ,使点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上.图1(1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.小明的作法1.如②,在边AC 上取一点D ,过点D 作DG AB ∥交BC 于点G .图22.以点D 为圆心,DG 长为半径画弧,交AB 于点E . 3.在EB 上截取EF ED =,连接FG ,则四边形DEFG 为所求作的菱形.27.(本小题满分11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间距离:()1212,d A B x x y y +--=.【数学理解】(1)①已知点()2,1A -,则(),d O A = .②函数()2402y x x =-+≤≤的图象如图①所示,B 是图象上一点,(),3d O B =,则点B 的坐标是 .图1图2图3(2)函数4(0)y x x=>的图象如图②所示.求证:该函数的图象上不存在点C ,使(),3d O C =.(3)函数()2570y x x x +-=≥的图象如图③所示,D 是图象上一点,求(),d O D 的最小值及对应的点D 的坐标. 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)图2江苏省南京市2019年初中学业水平考试数学答案解析第Ⅰ卷(选择题)一、选择题1.【答案】B【解析】4=⨯,故选B.13000 1.310【考点】用科学记数法表示较大的数2.【答案】D【解析】原式()32363⋅=,故选D.=a b a b【考点】积的乘方,幂的乘方3.【答案】B【解析】面积为4,2是4的算术平方根,故选B.【考点】算术平方根的意义4.【答案】A【解析】由a bc<,根据此条件可以判断A图正确,故选A.<知0>,ac bc【考点】由数的大小及符号确定点在数轴上的位置5.【答案】C【解析】因为,所以3.54,所以 3.54-->,所以>,即6.5106>,所以最接近6,故选C.--10 3.510104用有理数估计无理数的大小,要借助完全平方数实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省无锡市初中毕业升学考试 数 学 试 题 本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项: 1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合. 2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效. 3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚. 4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.

一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是

A.﹣5 B.5 C.15- D.15

2.函数21yx=-中的自变量x的取值范围是 A.x≠12 B.x≥1 C.x>12 D.x≥12 3.分解因式224xy-的结果是 A.(4)(4)xyxy B.4()()xyxy C.(2)(2)xyxy D.2()()xyxy 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A.66,62 B.66,66 C.67,62 D.67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A.长方体 B.四棱锥 C.三棱锥 D.圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是

7.下列结论中,矩形具有而菱形不一定具有的性质是 A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直 8.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为 A.20° B.25° C.40° D.50°

9.如图,已知A为反比例函数kyx=(x<0)的图像上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为 A.2 B.﹣2 C.4 D.﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为 A.10 B.9 C.8 D.7

第8题 第9题 第16题 二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)

11.49的平方根为 . 12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次.

13.计算:2(3)a+= . 14.某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可). 15.已知圆锥的母线成为5cm,侧面积为15πcm2,则这个圆锥的底面圆半径为 cm.

16.已知一次函数ykxb=+的图像如图所示,则关于x的不等式30kxb->的解集为 .

xyO-6OOOBCAABBAPEFxyxy-6

O

O

AB

x

y-6O 第17题 第18题 17.如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O

的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为 . 18.如图,在△ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为 . 三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分) 计算:

(1)1013()(2019)2; (2)3233)(2aaa.

20.(本题满分8分) 解方程:

(1)0522xx; (2)1421xx.

21.(本题满分8分) 如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O. (1)求证:△DBC≌△ECB; (2)求证:OB=OC.

ABA

BC

OOC

OO

IH

FGEDBC

AD

EF 22.(本题满分6分) 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品. (1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)

23.(本题满分6分) 《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示. 各等级学生人数分布扇形统计图 各等级学生平均分统计表

(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分; (3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.

24.(本题满分8分)

OACBED

等级 优秀 良好 及格 不及格 平均分 92.1 85.0 69.2 41.3

优秀52%

良好26%及格

18%

不及格一次函数bkxy的图像与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=32.△OAB的外接圆的圆心M的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.

25.(本题满分8分) “低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD—DE—EF所示. (1)小丽和小明骑车的速度各是多少? (2)求E点坐标,并解释点的实际意义.

26.(本题满分10分) 按要求作图,不要求写作法,但要保留作图痕迹. (1)如图1,A为圆O上一点,请用直尺(不带刻度)和圆规作出得内接正方形;

xyMBAO

xy36

2.2536

12.25AOO

E

AD

ABA

BF

D (2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD中,E为CD的中点,作BC的中点F;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH.

27.(本题满分10分) 已知二次函数42bxaxy(a>0)的图像与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.D为顶点,直线AC交对称轴于点E,直线BE交y轴于点F,AC:CE=2:1. (1)求C点坐标,并判断b的正负性; (2)设这个二次函数的图像的对称轴与直线AC交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.

AEEC

A

BDA

CB

xyOxyO 28.(本题满分10分) 如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′,设点P的运动时间为t(s).

(1)若AB=23.①如图2,当点B′落在AC上时,显然△PAB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由. (2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.

参考答案 1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B

11.23± 12.7210´ 13.269aa++ 14.2yx=(答案不唯一) 15.3 16.x<2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a

20.(1)【解答】解:61,6121xx; (2)【解答】解:3x,经检验3x是方程的解 21. (1) 证明:∵AB=AC, ∴∠ECB=∠DBC

在中与ECBDBC

CB'CB'C

ABBAAB

DPDPD

相关文档
最新文档