2011年—2018年新课标全国卷1文科数学分类汇编—8.立体几何

合集下载

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—1.集合

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—1.集合

2011年—2018年新课标全国卷文科数学分类汇编1.集合一、选择题(2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,,(2018·新课标Ⅱ,文2) 已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7(2018·新课标Ⅲ,文1) 已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( )A .3{|}2A B x x =< B . A B =∅ C .3{|}2A B x x =< D . A B =R(2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B ( )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,(2017·新课标Ⅲ,文1) 已知集合{}1234A =,,,,{}2468B =,,,,则A B 中元素的个数为( )A .1B .2C .3D .4(2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{|25}B x x =≤≤,则A B =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7(2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则A B =( )A .{-2,-1,0,1,2,3}B .{-2,-1,0,1,2}C .{1,2,3}D .{1,2}(2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为()A .5B .4C .3D .2(2015·新课标Ⅱ,文1)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=( )A. )3,1(-B. )0,1(-C. )2,0(D. )3,2((2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-(2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( )A .ΦB .{2}C .{0}D . {-2}(2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1}(2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .A B φ=(2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =,则P 的子集共有(). A .2个 B .4个 C .6个 D .8个2011年—2018年新课标全国卷文科数学分类汇编1.集合(解析版)一、选择题(2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 【答案】A 解析:{}02A B =,,故选A .(2018·新课标Ⅱ,文2)已知集合{}1,3,5,7A =,{}2,3,4,5B =则AB =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 解析:{}{}{}1,3,5,7,2,3,4,53,5A B A B ==⇒= .(2018·新课标Ⅲ,文1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C 解析:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( ) A .3{|}2AB x x =< B . A B =∅C .3{|}2A B x x =<D . A B =R 【答案】A 解析:由320x ->得32x <,所以3{|}2A B x x =<,故选A . (2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B ( ) A. {}123,4,, B. {}123,,C. {}234,,D. {}134,, 【答案】A 解析:由题意{1,2,3,4}A B =,故选A .(2017·新课标Ⅲ,文1)已知集合{}1234A =,,,,{}2468B =,,,,则AB 中元素的个数为( ) A .1 B .2C .3D .4【答案】B 解析:A B ={}4,2,所以该集合的元素个数为2个.故选B .(2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{}25B x x =≤≤,则AB =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7 【答案】B 解析:把问题切换成离散集运算,{}1,3,5,7A =,{}2,3,4,5B ⊆,所以{}3,5AB =.选B . (2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则AB =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2}C .{1,2,3}D .{1,2}【答案】D 解析:由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =,故选D. (2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10【答案】C 解析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故{0,2,6,10}A C B =,故选C .(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2【答案】D 解析: A ∩B={8,14},故选D .(2015·新课标Ⅱ,文1)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=( )A. )3,1(-B. )0,1(-C. )2,0(D. )3,2((【答案】A 解析:因为A ={x |-1<x <2},B ={x |0<x <3},所以A ∪B ={x |-1<x <3},故选A.(2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-【答案】B 解析:取M , N 中共同的元素的集合是(-1,1),故选B(2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( )A .ΦB .{2}C .{0}D . {-2}【答案】B 解析:把M ={0, 1, 2}中的数,代入等式,经检验x = 2满足. 所以选B.(2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A 解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1}【答案】C 解析:因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C. (2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .A B φ=【答案】B 解析:因为{|12}A x x =-<<,{|11}B x x =-<<,所以B A ,故选择B .(2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =,则P 的子集共有 ( ).A .2个B .4个C .6个D .8个【答案】B 解析:因为{}0,1,2,3,4M =,{}1,3,5N =,所以{}1,3M N =.所以M N 的子集共有224=个. 故选B .。

2018年全国卷1文科数学高考卷版含答案

2018年全国卷1文科数学高考卷版含答案

2018年全国卷1文科数学高考卷(含答案)一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合A={x|0≤x≤2},集合B={x|x²3x+2=0},则A∩B=()A. {1, 2}B. {1}C. {2}D. 空集2. 已知复数z满足|z|=1,则|z1|的最小值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=1,a3=3,则数列的公差为()A. 1B. 2C. 3D. 44. 函数f(x)=x²2x+3在区间(0,+∞)上的单调性为()A. 单调递增B. 单调递减C. 先单调递增后单调递减D. 先单调递减后单调递增5. 已知函数f(x)=|x1|,则f(f(2))的值为()B. 1C. 2D. 36. 平面向量a和b满足|a|=3,|b|=4,a•b=6,则cos<a,b>的值为()A. 1/2B. 3/4C. 2/3D. 4/57. 若直线y=kx+b与圆x²+y²=1相切,则k的取值范围是()A. [1,1]B. (1,1)C. [√2,√2]D. (√2,√2)8. 在三角形ABC中,a=3,b=4,cosA=1/4,则三角形ABC的面积为()A. 3B. 4C. 6D. 89. 已知数列{an}满足an+1=2an+1,a1=1,则数列的前n项和为()A. 2n1C. 2n+1D. 2n+210. 若函数f(x)在区间(a,b)上可导,且f'(x)≠0,则函数f(x)在区间(a,b)上()A. 单调递增B. 单调递减C. 有极值D. 不单调11. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=2x+1上,若|AB|=√10,则点B的坐标为()A. (1,3)B. (2,5)C. (3,7)D. (4,9)12. 已知函数f(x)=x²2x+3,g(x)=2x1,则f[g(x)]的值域为()A. [2,+∞)B. [3,+∞)C. [4,+∞)D. [5,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知数列{an}是等比数列,a1=2,a3=8,则数列的公比为______。

2011—2018年新课标全国卷2文科数学试题分类汇编——10.立体几何

2011—2018年新课标全国卷2文科数学试题分类汇编——10.立体几何

2011—2018年新课标全国卷2文科数学试题分类汇编10.立体几何一、选择题 (2018·9)在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ( )A .22B .32C .52D .72(2017·6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90π B. 63π C. 42π D. 36π(2017·6) (2016·7) (2015·6)(2016·4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323π C .8πD .4π (2016·7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2015·6)一个正方体被一个平面截取一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.81 B.71 C.61 D.51 (2015·10)已知A 、B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点. 若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π (2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13(2014·7)正三棱柱ABC -A 1B 1C 1的底面边长为23D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )4423·A.3 B.32C.1 D.32(2013·9)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0),zOx平面为投影面,则得到正视图可以为()(2012·7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9 C.12 D.18(2012·8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π(2011·8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()A. B. C. D.二、填空题(2018·新课标Ⅱ,文16)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30︒,若SAB△的面积为8,则该圆锥的体积为__________.(2017·15)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2013·15)已知正四棱锥O-ABCD的体积为32,底面边长为3,则以O为球心,OA为半径的球的表面积为________.(2011·16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题(2018·19)如图,在三棱锥P ABC-中,22AB BC==,4PA PB PC AC====,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且2MC MB=,求点C到平面POM的距离.B. C. D.(2017·18)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB =BC =AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PAD 面积为27,求四棱锥P-ABCD 的体积.(2016·19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE =CF ,EF 交BD于点H ,将△DEF 沿EF 折到△D´EF 的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D´—ABCEF 体积.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.DPABCOBAFDHE D '(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P -ABD 的体积V =43,求A 点到平面PBD 的距离.(2013·18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1//BC 平面1ACD ; (Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.ED B 11A CB 1(2012·19)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,112AC BC AA ==,D 是棱AA 1的中点. (I) 证明:平面BDC 1⊥平面BDC ; (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.(2011·18)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD =1,求棱锥 D -PBC 的高.BA CDB 1C 1 A 12011—2018年新课标全国卷2文科数学试题分类汇编10.立体几何一、选择题 (2018·新课标Ⅱ,文9)在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ( )A .22B .32C .52D .72【答案】C 解析:解法一:平移法:在t R AEF ∆中,异面直线的夹角的正切值,tan AFEF θ=由几何关系可知:设EF a =,则52AF a =,5tan 2AF EF θ==.解法二:补型法:在t R MDC ∆中,异面直线的夹角的正切值,tan MDCDθ=,由几何关系可知:设CD a =,则52MD a =,5tan 2MD CD θ==. (2017·新课标Ⅱ,文6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90π B. 63π C. 42π D. 36π【答案】B 解析:由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.(2016·新课标Ⅱ,文4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323πC .8πD .4π 【答案】A 解析:因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A.(2016·新课标Ⅱ,文7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】C 解析:因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.(2015·新课标Ⅱ,文6)一个正方体被一个平面截取一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.81 B.71 C.61 D.51【答案】D 解析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15.(2015·新课标Ⅱ,文10)已知A 、B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点. 若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π 【答案】C 解析:设球的半径为R ,则△AOB 面积为212R ,三棱锥O-ABC 体积最大时,C 到平面AOB 距离最大且为R ,此时313666V R R ==⇒=,所以球O 的表面积24144S R ππ==. (2014·新课标Ⅱ,文6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13(2014·6)C 解析:原来毛坯体积为:π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ=,故选C.(2014·新课标Ⅱ,文7)正三棱柱ABC -A 1B 1C 1的底面边长为23D 为BC 中点,则三棱锥A -B 1DC 1的体积为( ) A .3 B .32C .1D 3【答案】C 解析:∵B 1C 1 // BD ,∴BD // 面AB 1C 1,点B 和D 到面AB 1C 1的距离相等,1111--D AB C B AB C V V ∴=11-11233132C ABB V ==⋅⋅=,故选C.(2013·新课标Ⅱ,文9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )【答案】A解析:在空间直角坐标系中,先画出四面体O-ABC的直观图,以zOx平面为投影面,则得到正视图如右图,故选A.(2012·新课标Ⅱ,文7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9 C.12 D.18【答案】B解析:由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为1163332⨯⨯⨯⨯=9,故选B.(2012·新课标Ⅱ,文8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π【答案】B解析:设求圆O的半径为R,则221(2)3R=+=,34433V Rππ∴==.(2011·新课标Ⅱ,文8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()A. B. C. D.【答案】D解析:由正视图和俯视图可以判断此几何体前部分是一个的三棱锥,后面是一个圆锥,选D.二、填空题(2018·新课标Ⅱ,文16)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30︒,若SAB△的面积为8,则该圆锥的体积为__________.【答案】8π解析:1842ABCS SA SB SA SB∆=⋅=⇒==由几何关系可知:2SO=、23AO=()2122383Vππ=⨯⨯=(2017·新课标Ⅱ,文15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π解析:球的直径是长方体的对角线,所以22222=3+2+1=14414,ππ==R S R . (2013·新课标Ⅱ,文15)已知正四棱锥O-ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.【答案】24π解析:设正四棱锥的高为h ,则2132(3)32V h =⨯=,解得高322h =. 则底面正方形的对角线长为236⨯=,所以22326()()622OA =+=,所以球的表面积为24(6)24ππ=. (2011·新课标Ⅱ,文16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .【答案】31解析:由圆锥底面面积是这个球面面积的163,得223416r R ππ= 所以23=R r ,则小圆锥的高为2R ,大圆锥的高为23R,所以比值为31.三、解答题(2018·新课标Ⅱ,文19) 如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.解:(1)连接OB ,由几何关系可知:23PO =,2OB =,因为 22216PO OB PB +==,所以 2POB π∠=,所以 PO OB ⊥,因为 =PB PA ,OA OC =,所以 PO AC ⊥,因为 ACOB O =,所以 PO ABC ⊥平面.解法2:(二线法,以AB 边中点为例,三垂线定理)在AB边去中点N,连接PN、ON因为PA PB=,所以PA AB⊥,在ABC∆中,由勾股定理可知:AB BC⊥,在ABC∆中,AO OC=,AN NB=,所以ON BC,所以AB ON⊥,因为ON PN N=,所以AB PNO⊥平面,所以AB PO⊥,由几何关系可知:PO AC⊥,因为AC ON O=,所以PO ABC⊥平面.(2)解法一:等体积法:由题意可知:1123222232P ABCV-=⨯⨯⨯⨯,833P ABCV-=,18=339P OMC P ABCV V--=,由几何关系可知:253OM=,12521523233POMS∆=⨯⨯=,P OMC C POMV V--=,8349525159d==.解法二:等面积法:由题意可知:118422ABCS AB BC∆=⋅⋅=⨯=,1433OMC ABCS S∆∆==,25OM=,1423OMCS OM FC∆=⋅⋅=,所以455FC=.(2017·新课标Ⅱ,文18)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,12AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PAD面积为7P-ABCD的体积.(2017·18)解析:(1)在平面ABCD内,因为∠BA D=∠ABC=90º,所以BC//AD. 又面⊄BC PAD,故BC//平面PAD .(2)取AD的中点M,连结PM,CM,由12AB=BC=AD及BC//AD,DPABC知四边形ABCM 为正方形,则CM ⊥AD . 因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,底面⊂CM ABCD ,所以CM ⊥面PAD ,因为面⊂PM PAD ,所以CM ⊥PM .设BC =x ,则CM =x ,23,==CD x PM x ,PC =PD =x 。

高考数学真题2011年—2018年新课标全国卷(1、2、3卷)文科数学试题分类汇编—11.解析几何

高考数学真题2011年—2018年新课标全国卷(1、2、3卷)文科数学试题分类汇编—11.解析几何

2011年—2018年新课标全国卷文科数学分类汇编11.解析几何一、选择题(2018·新课标Ⅰ,文4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为()A .13B .12C .22D .223(2018·新课标Ⅱ,文6)双曲线22221(0,0)x y a b a b-=>>的离心率为)A .y =B .y =C .y x =D .y =(2018·新课标Ⅱ,文11)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A .312-B .2C .312D 1-(2018·新课标Ⅲ,文8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是()A .[]26,B .[]48,C .D .⎡⎣(2018·新课标Ⅲ,文10)已知双曲线22221x y C a b-=:(00a b >>,,则点()40,到C 的渐近线的距离为()A B .2C .322D .(2017·新课标Ⅰ,文5)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为()A .13B .12C .23D .32(2017·新课标Ⅰ,文12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1][9,)+∞ B .[9,)+∞ C .(0,1][4,)+∞ D .[4,)+∞ (2017·新课标Ⅱ,文5)若a >1,则双曲线2221-=x y a的离心率的取值范围是()A.+∞)B.2)C. D.12(,)(2017·新课标Ⅱ,文12)过抛物线C :y 2=4x 的焦点F ,C 于点M (M 在x 轴上方),l 为N 在MN ⊥l,则M NF )A. B. C. D.(2017·新课标Ⅲ,文11)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .3B .3C .3D .13(2016·新课标Ⅰ,文5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()A .13B .12C .23D .34(2016·新课标Ⅱ,文5)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =A .12B .1C .32D .2(2016·新课标Ⅱ,文6)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =()A .43-B .34-C D .2(2016·新课标Ⅲ,文12)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为().A .13B .12C .23D .34(2015·新课标Ⅰ,文5)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=()A .3B .6C .9D .12(2015·新课标Ⅱ,文7)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.53B.C.D.43(2014·新课标Ⅰ,文10)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=054x ,则x 0=()A .1B .2C .4D .8(2014·新课标Ⅰ,文4)已知双曲线)0(13222>=-a y a x 的离心率为2,则a=()A .2B .26C .25D .1(2014·新课标Ⅱ,文10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A 、B 两点,则|AB |=()A B .6C .12D .(2014·新课标Ⅱ,文12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是()A .[1,1]-B .11[]22-,C .[D .[(2013·新课标Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为()A .y =14x ±B .y =13x ±C .y =12x ±D .y =±x(2013·新课标Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF 的面积为()A .2B .C .D .4(2013·新课标Ⅱ,文5)设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为()A .6B .13C .12D .3(2013·新课标Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为()A .1y x =-或1yx =-+B .(1)3y x =-或(1)3y x =--C .1)y x =-或1)y x =-D .(1)2y x =-或(1)2y x =--(2012·新课标Ⅰ,文4)设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为()A .12B .23C .34D .45(2012·新课标Ⅰ,文10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为()A B .C .4D .8(2011·新课标Ⅰ,文4)椭圆221168x y +=的离心率为()A .13B .12C .3D .2(2011·新课标Ⅰ,文9)已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为C 的准线上一点,则ABP △的面积为().A .18B .24C .36D .48二、填空题(2018·新课标Ⅰ,文15)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =.(2016·新课标Ⅰ,文15)设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若AB =,则圆C 的面积为.(2016·新课标Ⅲ,文15)已知直线:60l x -+=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l的垂线与x 轴交于C 、D 两点,则CD =_________.(2015·新课标Ⅰ,文16)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当ΔAPF 周长最小时,该三角形的面积为.(2015·新课标Ⅱ,文15)已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为.三、解答题(2018·新课标Ⅰ,文20)设抛物线2:2C y x =,点()2,0A ,()2,0B -,过点A 的直线l 与C 交于M ,N两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.(2018·新课标Ⅱ,文20)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.(2018·新课标Ⅲ,文20)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++= .证明:2FP FA FB =+ .(2017·新课标Ⅰ,文20)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程.(2017·新课标Ⅱ,文20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.(2017·新课标Ⅲ,文20)在直角坐标系xOy 中,曲线2–2y x mx =+与x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(2016·新课标Ⅰ,文20)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OHON;(2)除H 以外,直线MH 与C 是否有其他公共点?请说明理由.(2016·新课标Ⅱ,文21)已知A 是椭圆E :22143x y +=的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当|AM|=|AN|2k <<.(2016·新课标Ⅲ,文20)已知抛物线2:2C y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.(2015·新课标Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)OM ON ⋅=12,其中O 为坐标原点,求|MN |.(2015·新课标Ⅱ,文20)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2)在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A 、B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(2014·新课标Ⅰ,文20)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积.(2014·新课标Ⅱ,文20)设F 1,F 2分别是椭圆C :12222=+by a x (a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为43,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(2013·新课标Ⅰ,文21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.(2013·新课标Ⅱ,文20)在平面直角坐标系xoy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.(2012·新课标Ⅰ,文20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—11.解析几何

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—11.解析几何

2011年—2018年新课标全国卷文科数学分类汇编11.解析几何一、选择题(2018·新课标Ⅰ,文4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13B .12C D(2018·新课标Ⅱ,文6)双曲线22221(0,0)x y a b a b-=>> )A .y =B .y =C .y x =D .y = (2018·新课标Ⅱ,文11)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1-B .2CD 1(2018·新课标Ⅲ,文8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣(2018·新课标Ⅲ,文10)已知双曲线22221x y C a b-=:(00a b >>,()40,到C 的渐近线的距离为( )AB .2C D .(2017·新课标Ⅰ,文5)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为( )A .13 B .12 C .23 D .32(2017·新课标Ⅰ,文12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞(2017·新课标Ⅱ,文5)若a >1,则双曲线2221-=x y a的离心率的取值范围是( )A. ∞)B. )C. (1D. 12(,)(2017·新课标Ⅱ,文12)过抛物线C :y 2 = 4x 的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为( )A. B. C. D. (2017·新课标Ⅲ,文11)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .3B .3C .3D .13(2016·新课标Ⅰ,文5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12 C .23D .34(2016·新课标Ⅱ,文5)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = A .12B .1C .32D .2(2016·新课标Ⅱ,文6)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34- C D .2(2016·新课标Ⅲ,文12)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ).A .13B .12C .23D .34 (2015·新课标Ⅰ,文5)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C : y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12(2015·新课标Ⅱ,文7)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.53B.3C.D.43(2014·新课标Ⅰ,文10)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=054x ,则x 0=( ) A .1 B .2 C .4 D .8(2014·新课标Ⅰ,文4)已知双曲线)0(13222>=-a y a x 的离心率为2,则a=( )A .2B .26 C .25 D .1 (2014·新课标Ⅱ,文10)设F 为抛物线C :y 2 = 3x 的焦点,过F 且倾斜角为30°的直线交于C 于A 、B 两点,则|AB |=( )A B .6 C .12 D .(2014·新课标Ⅱ,文12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[1,1]-B .11[]22-,C .[D .[(2013·新课标Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( )A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013·新课标Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF 的面积为( )A .2B .C .D .4(2013·新课标Ⅱ,文5)设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )AB .13C .12D (2013·新课标Ⅱ,文10)设抛物线C : y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点. 若|AF |=3|BF |,则l 的方程为( )A .1y x =-或1y x =-+B .1)y x =-或1)y x =-C .1)y x =-或1)y x =-D .1)y x =-或1)y x =-(2012·新课标Ⅰ,文4)设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34D .45(2012·新课标Ⅰ,文10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =C 的实轴长为( )AB .C .4D .8(2011·新课标Ⅰ,文4)椭圆221168x y +=的离心率为( )A .13 B .12 C .3 D .2(2011·新课标Ⅰ,文9)已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为C 的准线上一点,则ABP △的面积为( ).A .18B .24C .36D .48二、填空题(2018·新课标Ⅰ,文15) 直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB = .(2016·新课标Ⅰ,文15)设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若AB =则圆C 的面积为 .(2016·新课标Ⅲ,文15)已知直线:60l x +=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l的垂线与x 轴交于C 、D 两点,则CD =_________.(2015·新课标Ⅰ,文16)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当ΔAPF 周长最小时,该三角形的面积为 .(2015·新课标Ⅱ,文15)已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为 . 三、解答题(2018·新课标Ⅰ,文20) 设抛物线2:2C y x =,点()2,0A ,()2,0B -,过点A 的直线l 与C 交于M ,N两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.(2018·新课标Ⅱ,文20) 设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程.(2018·新课标Ⅲ,文20)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+ .(2017·新课标Ⅰ,文20)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程.(2017·新课标Ⅱ,文20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM = (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F .(2017·新课标Ⅲ,文20)在直角坐标系xOy 中,曲线2–2y x mx =+与x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(2016·新课标Ⅰ,文20)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON;(2)除H 以外,直线MH 与C 是否有其他公共点?请说明理由.(2016·新课标Ⅱ,文21)已知A 是椭圆E :22143x y +=的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当|AM|=|AN|2k <<.(2016·新课标Ⅲ,文20)已知抛物线2:2C y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.(2015·新课标Ⅰ,文20)已知过点A (0, 1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(Ⅰ)求k 的取值范围; (Ⅱ)OM ON ⋅=12,其中O 为坐标原点,求|MN |.(2015·新课标Ⅱ,文20)已知椭圆C :22221x y a b +=(a >b >02C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A 、B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(2014·新课标Ⅰ,文20)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积.(2014·新课标Ⅱ,文20)设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为43,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(2013·新课标Ⅰ,文21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.(2013·新课标Ⅱ,文20)在平面直角坐标系xoy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y x =P 的方程.(2012·新课标Ⅰ,文20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点。

全国各地市历年高考立体几何题汇编(含参考答案)

全国各地市历年高考立体几何题汇编(含参考答案)

全国各地市历年高考立体几何题汇编(含参考答案)(一)2018年高考立体几何题1.(北京理16)如图,在三棱柱ABC -111A B C 中,1CC 平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角B-CD -C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.2.(浙江-19)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.3.(课标III 理-19)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面; (2)当三棱锥体积最大时, 求面与面所成二面角的正弦值.4.(课标II 理-20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.ABCD CD M CD C D AM D ⊥BMC M ABC -MABMCD5.(课标I理-18)如图,四边形ABCD为正方形,,E F分别为,AD BC的中点,以DF为折痕把DFC△折起,使点C到达点P的位置,且PF BF⊥.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(二)2017年高考立体几何题1.(课标III理-19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.2.(课标II 理-19)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.3.(课标I 理-18)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.(三)2016年高考立体几何题 1.(课标III 理-19)如图,四棱锥中,地面,,,,为线段上一点,,为的中点.(I )证明平面;(II )求直线与平面所成角的正弦值.2.(课标II 理-19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. P ABC -PA ⊥ABCD AD BC 3AB AD AC ===4PA BC ==M AD 2AM MD =N PC MN PAB ANPMN3.(课标I 理-19)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E -BC -A 的余弦值.(四)2015年高考立体几何题 1.(课标II 理-19)如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.DD 1 C 1A 1EF ABCB 1参考答案(一)2018年高考立体几何题1.(北京理16)如图,在三棱柱ABC -111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BCAC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角B-CD -C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交. 1.解析:(Ⅰ)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF . ∵AB =BC ,∴AC ⊥BE ,∴AC ⊥平面BEF . (Ⅱ)由(I )知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐称系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴=(201)=(120)CD CB u u u r u u r,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uur n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB u u r ,,,∴cos =||||EB EB EB ⋅<⋅>=uu ruu r uu r n n n . 由图可得二面角B -CD -C 为钝角,所以二面角B -CD -C的余弦值为.(Ⅲ)平面BCD 的法向量为(214)=--,,n ,∵G (0,2,1),F (0,0,2),∴=(021)GF -u u u r ,,,∴2GF ⋅=-uu u r n ,∴n 与GF uuu r不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.2.(浙江-19)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2. (Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值. 2.解析:方法一:(Ⅰ)由得,所以.故.由,得, 由得由,得,故. 因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面, 由得平面, 所以是与平面所成的角. 由, 所以,故. 因此,直线与平面. 方法二:(Ⅰ)如图,以AC的中点O 为原点,分别以射线OB ,11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥111AB AB ==2221111A B AB AA +=111AB A B ⊥2BC =112,1,BB CC ==11,BB BC CC BC ⊥⊥11B C =2,120AB BC ABC ==∠=︒AC =1CC AC ⊥1AC 2221111AB BC AC +=111ABB C ⊥1AB ⊥111A B C 1C 111C D A B ⊥11A B D AD 1AB ⊥111A B C 111A B C ⊥1ABB 111C D A B ⊥1C D ⊥1ABB 1C AD ∠1AC 1ABB 111111BC AB AC ==111111cos C A B C A B ∠=∠=1C D 111sin C D C AD AC ∠==1AC 1ABBOC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz . 由题意知各点坐标如下:因此 由得.由得. 所以平面. (Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知 设平面的法向量.由即可取.所以. 因此,直线与平面. 3.(课标III 理-19)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时, 求面与面所成二面角的正弦值.3.解析:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又 BC CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .111(0,(1,0,0),(0,(1,0,2),),A B A B C 111112),3),AB A B AC ==-=-uuu r uuu u r uuu u r 1110AB A B ⋅=uuu r uuu u r 111AB A B ⊥1110AB AC ⋅=uuu r uuu u r111AB AC ⊥1AB ⊥111A B C 1AC 1ABB θ11(0,0,2),AC AB BB ===uuu r uu u r uuu r1ABB (,,)x y z =n 10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n 0,20,x z ⎧=⎪⎨=⎪⎩(,0)=n 111|sin |cos ,||||AC AC AC θ⋅===⋅uuu r uuu r uuu r n |n n |1AC 1ABB ABCD CD M CD C D AM D ⊥BMC M ABC -MAB MCD ⊂CD ⊂DA当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,设是平面MAB 的法向量,则即可取.是平面MCD 的法向量,因此,,所以面MAB 与面MCD 所成二面角的正弦值是. 4.(课标II 理-20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.4.解:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥. 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),23),(0,2,O B A C P AP -=u u u r取平面PAC 的法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r. CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==(,,)x y z =n 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n nn 2sin ,DA =n5由0,0AP AM ⋅=⋅=u u u r u u u r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn由已知得|cos ,|OB =uu u r n .解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-u u u r,所以cos ,PC =uu u r n 所以PC 与平面PAM5.(课标I 理-18)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.5.解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz . 由(1)可得,DE ⊥PE .又DP =2,DE =1, 所以PE=.又PF =1,EF =2,故PE ⊥PF . 可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ,则34sin ||||||3HP DP HP DP θ⋅===⋅所以DP 与平面ABFD所成角的正弦值为(二)2017年高考立体几何题 1.(课标III 理-19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.1.【解析】(1)由题设可得,ABD CBD △≌△,从而AD DC =. 又ACD △是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC △是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB △中,222BO AO AB +=.又AB BD =,所以2222BO DO BO AO AB BD 22+=+==,故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O x y z -.则()()()()1,0,0,,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12, 从而E 到平面ABC 的距离为D 到平面ABC 的距离的12, 即E 为DB的中点,得12E ⎛⎫ ⎪ ⎪⎝⎭. 故()()11,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭.设()=x,y,z n 是平面DAE 的法向量,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩,,n n即0,10.2x z x y z -+=⎧⎪⎨-+=⎪⎩ 可取⎛⎫= ⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则00AC AE ⎧⋅=⎪⎨⋅=⎪⎩,,m m同理可取(0,=-m .则cos ,⋅==n m n m n m .所以二面角D -AE -C. 2.(课标II 理-19)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.2.解析:(1)取PA 中点F ,连结EF ,BF . 因为E 为PD 的中点,所以EF AD , 12EF AD =,由90BAD ABC ∠=∠=︒得//BC AD , 又12BC AD =所以//EF BC .四边形BCEF 为平行四边形, //CE BF . 又BF PAB ⊂平面, CE PAB ⊄平面,故//CE PAB 平面(2)由已知得BA AD ⊥,以A 为坐标原点, AB 的方向为x 轴正方向, AB 为单位长,建立如图所示的空间直角坐标系A-xyz ,则则()000A ,,, ()100B ,,, ()110C ,,,(01P ,(10PC =,,()100AB =,,,则 ()(1,1BM x y z PM x y z =-=-,,,,因为BM 与底面ABCD 所成的角为45°,而()001n =,,是底面ABCD 的法向量,所以0cos , sin45BM n =,=即(x-1)²+y ²-z ²=0又M 在棱PC 上,学|科网设,PM PC λ=则x ,1,y z λ==由①,②得()y=1 y=1 z z ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩舍去,所以M ⎛ ⎝⎭,从而AM ⎛= ⎝⎭设()000x ,y ,z m =是平面ABM的法向量,则(0000x 2y 0·AM 0 ·AB 0x 0m m ⎧+=⎧=⎪⎨⎨==⎩⎪⎩即所以可取m =(0,2).于是·10,5m n cosm n m n == 因此二面角M-AB-D的余弦值为3.(课标I 理-18)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.3.【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得(2A,(0,0,2P,(2B,(2C -.所以(PC =-,(2,0,0)CB =,2(PA =,(0,1,0)AB =.设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0,y z ⎧+=⎪⎨=可取(0,1,=-n . 设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0,220.x z y -=⎪⎨⎪=⎩可取(1,0,1)=m . 则cos ,||||⋅==<>n m n m n m ,所以二面角A PBC --的余弦值为(三)2016年高考立体几何题1.(课标III 理-19)如图,四棱锥中,地面,,,,为线段上一点,,为的中点.(I )证明//MN 平面;(II )求直线与平面所成角的正弦值. 1.解析:(Ⅰ)由已知得223AM AD ==. 取BP 的中点T ,连接,AT TN ,由N 为PC 中点知//TN BC ,122TN BC ==. 又//AD BC ,故,//TN AM TN AM =,四边形AMNT 为平行四边形,于是//MN AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面.(Ⅱ)取BC 的中点E ,连结AE .由AB BC =得AE BC ⊥,从而AE AD ⊥,且.以A 为坐标原点, AE 的方向为轴正方向,建立如图所示的空间直角坐标系A xyz -.由题意知,P ABC -PA ⊥ABCD AD BC 3AB AD AC ===4PA BC ==M AD 2AMMD =N PC PAB AN PMN PAB,,,5(,1,2)N,()0,2,4PM =-, 52PN ⎛⎫=- ⎪⎪⎝⎭, 52AN ⎛⎫= ⎪⎪⎝⎭.设(),,n x y z =为平面PMN 的一个法向量,则0, 0,n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩即240, 20,y z x y z -=⎧+-=可取()0,2,1n =. 于是85cos ,25n AN n AN n AN⋅〈〉==. 2.(课标II 理-19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF'的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. 2.【解析】⑴证明:∵54AE CF ==,∴A E C FA D C D=,∴E F A C ∥.∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF D H ⊥,∴EF DH'⊥. ∵6AC =,∴3AO =;又5AB =,AO OB ⊥, ∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD .⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r ,,,∴1212cos n n n n θ⋅=u r u u ru r u u r∴sin θ= 3.(课标I 理-19)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E -BC -A 的余弦值.3.【解析】试题分析:(Ⅰ)证明AF ⊥平面FDC E ,结合AF ⊂平面ABEF ,可得平面ABEF ⊥平面EFDC .(Ⅱ)建立空间坐标系,利用向量求解. 试题解析:(Ⅰ)由已知可得AF DF ⊥, AF FE ⊥,所以AF ⊥平面EFDC . 又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点, GF 的方向为x 轴正方向, GF 为单位长,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =, 3DG =,可得()1,4,0A , ()3,4,0B -, ()3,0,0E -,(D . 由已知, //AB EF ,所以//AB 平面EFDC .又平面ABCD ⋂平面EFDC DC =,故//AB CD , //CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,60CEF ∠=.从而可得(C -.所以(EC =, ()0,4,0EB =,(3,AC =--, ()4,0,0AB =-. 设(),,n x y z =是平面BCE 的法向量,则n EC n EB ⎧⋅=⎪⎨⋅=⎪⎩,即0 40x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =.设m 是平面ABCD 的法向量,则0m C m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅〈〉==-. 故二面角E BC A --的余弦值为. (四)2015年高考立体几何题1.(课标II 理-19)如图,长方体1111ABCD A BC D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值. 1.【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14A M A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH =,所以10AH =.以D 为坐标原点,DA 的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-.设(,,)n x y z =是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =.又(10,4,8)AF =-,故45cos ,15n AF n AF n AF⋅<>==⋅.所以直线AF 与平面α所成角的正弦值为15. 考点:1、直线和平面平行的性质;2、直线和平面所成的角.DD 1C 1A 1EFABCB 1。

2011—2018年新课标全国卷2文科数学试题分类汇编——10.立体几何

2011—2018年新课标全国卷2文科数学试题分类汇编10.立体几何一、选择题 (2018·9)在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ( )ABCD(2017·6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90π B. 63π C. 42π D. 36π(2017·6) (2016·7) (2015·6)(2016·4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323π C .8πD .4π (2016·7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2015·6)一个正方体被一个平面截取一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.81 B.71 C.61 D.51 (2015·10)已知A 、B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点. 若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π (2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13(2014·7)正三棱柱ABC -A 1B 1C 1的底面边长为2D 为BC 中点,则三棱锥A -B 1DC 1的体积为( ) A .3 B .32 C .1 D(2013·9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0),zOx 平面为投影面,则得到正视图可以为( )(2012·7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A .6 B .9 C .12 D .18(2012·8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A .6π B .43π C .46π D .63π (2011·8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.二、填空题(2018·新课标Ⅱ,文16)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SA B △的面积为8,则该圆锥的体积为__________.(2017·15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 (2013·15)已知正四棱锥O-ABCD 323O 为球心,OA 为半径的球的表面积为________. (2011·16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .三、解答题(2018·19)如图,在三棱锥P ABC -中,22AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.B. C. D.(2017·18)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB =BC =AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PAD面积为P-ABCD 的体积.(2016·19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE =CF ,EF 交BD于点H ,将△DEF 沿EF 折到△D´EF 的位置. (Ⅰ)证明:'AC HD ⊥;(Ⅱ)若55,6,,'4AB AC AE OD ====D´—ABCEF 体积.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.DPABCOBAFDHED '(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P -ABD 的体积V =43,求A 点到平面PBD 的距离.(2013·18)如图,直三棱柱111ABC A BC -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1//BC 平面1ACD ; (Ⅱ)设12AA AC CB ===,AB =1C A DE -的体积.1(2012·19)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,112AC BC AA ==,D 是棱AA 1的中点. (I) 证明:平面BDC 1⊥平面BDC ; (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.(2011·18)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD =1,求棱锥 D -PBC 的高.BA CDB 1C 1 A 12011—2018年新课标全国卷2文科数学试题分类汇编10.立体几何一、选择题 (2018·新课标Ⅱ,文9)在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ( )A B C D【答案】C 解析:解法一:平移法:在t R AEF ∆中,异面直线的夹角的正切值,tan AFEF θ=由几何关系可知:设EF a =,则AF =,tan AF EF θ==解法二:补型法:在t R MDC ∆中,异面直线的夹角的正切值,tan MDCDθ=,由几何关系可知:设CD a =,则MD =,tan MD CD θ==(2017·新课标Ⅱ,文6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90π B. 63π C. 42π D. 36π【答案】B 解析:由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B. (2016·新课标Ⅱ,文4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323πC .8πD .4π【答案】A 解析:因为正方体的体积为8,所以正方体的体对角线长为2412ππ⋅=,故选A.(2016·新课标Ⅱ,文7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】C 解析:因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.(2015·新课标Ⅱ,文6)一个正方体被一个平面截取一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.81 B.71 C.61 D.51【答案】D 解析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15.(2015·新课标Ⅱ,文10)已知A 、B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点. 若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π 【答案】C 解析:设球的半径为R ,则△AOB 面积为212R ,三棱锥O-ABC 体积最大时,C 到平面AOB 距离最大且为R ,此时313666V R R ==⇒=,所以球O 的表面积24144S R ππ==. (2014·新课标Ⅱ,文6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13(2014·6)C 解析:原来毛坯体积为:π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ=,故选C.(2014·新课标Ⅱ,文7)正三棱柱ABC -A 1B 1C 1的底面边长为2D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A .3B .32 C .1 D 【答案】C 解析:∵B 1C 1 // BD ,∴BD // 面AB 1C 1,点B 和D 到面AB 1C 1的距离相等,1111--D AB C B AB C V V ∴=11-112132C ABB V ==⋅⋅=,故选C.(2013·新课标Ⅱ,文9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )【答案】A 解析:在空间直角坐标系中,先画出四面体O-ABC 的直观图,以zOx 平面为投影面,则得到正视图如右图,故选A .(2012·新课标Ⅱ,文7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A .6 B .9 C .12 D .18【答案】B 解析:由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为1163332⨯⨯⨯⨯=9,故选B.(2012·新课标Ⅱ,文8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的则此球的体积为( ) A B .C .D .【答案】B 解析:设求圆O 的半径为R ,则R ==343V R π∴==. (2011·新课标Ⅱ,文8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.【答案】D 解析:由正视图和俯视图可以判断此几何体前部分是一个的三棱锥,后面是一个圆锥,选D.二、填空题 (2018·新课标Ⅱ,文16)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.【答案】8π 解析:1842ABC S SA SB SA SB ∆=⋅=⇒==由几何关系可知:2SO =、AO =(21283V ππ=⨯⨯=(2017·新课标Ⅱ,文15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π解析:球的直径是长方体的对角线,所以22414ππ==R S R .(2013·新课标Ⅱ,文15)已知正四棱锥O-ABCD O 为球心,OA 为半径的球的表面积为________.【答案】24π解析:设正四棱锥的高为h ,则212V h =⨯=,解得高h =则底面正方形的对OA ==,所以球的表面积为2424ππ=.(2011·新课标Ⅱ,文16)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .【答案】31 解析:由圆锥底面面积是这个球面面积的163,得223416r R ππ= 所以23=R r ,则小圆锥的高为2R ,大圆锥的高为23R,所以比值为31.三、解答题(2018·新课标Ⅱ,文19) 如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.解:(1)连接OB ,由几何关系可知:PO =,2OB =,因为 22216PO OB PB +==,所以 2POB π∠=,所以 PO OB ⊥,因为 =PB PA ,OA OC =,所以 PO AC ⊥,因为 ACOB O =,所以 P O A B C ⊥平面.解法2:(二线法,以AB 边中点为例,三垂线定理)在AB 边去中点N ,连接PN 、ON因为PA PB =,所以 PA AB ⊥,在ABC ∆中,由勾股定理可知:AB BC ⊥, 在ABC ∆中,AO OC =,AN NB =,所以 ON BC ,所以 AB ON ⊥, 因为 ON PN N =,所以 AB PNO ⊥平面,所以 AB PO ⊥, 由几何关系可知:PO AC ⊥,因为 AC ON O =,所以 PO ABC ⊥平面.(2)解法一:等体积法:由题意可知:112P ABC V -=⨯⨯P ABC V -1=3P OMC P ABC V V --OM=,12POM S ∆==P OMC C POM V V --=,9d ==解法二:等面积法:由题意可知:118422ABC S AB BC ∆=⋅⋅=⨯=,1433OMC ABC S S ∆∆==,OM =,1423OMC S OM FC ∆=⋅⋅=,所以FC =.(2017·新课标Ⅱ,文18)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB =BC =AD ,∠BAD =∠ABC =90°. (1)证明:直线BC ∥平面PAD ;(2)若△PAD 面积为P-ABCD 的体积.(2017·18)解析:(1)在平面ABCD 内,因为∠BA D=∠ABC =90º,所以BC //AD . 又面⊄BC PAD ,故BC //平面PAD .(2)取AD 的中点M ,连结PM ,CM ,由12A B =B C =A D及BC //AD , DPABC知四边形ABCM为正方形,则CM⊥AD. 因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD ∩平面ABCD=AD,底面⊂CM ABCD,所以CM⊥面PAD,因为面⊂PM PAD,所以CM⊥PM.设BC=x,则CM=x,,=CD PM,PC=PD=x。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—1.集合(1)

2011年—2018年新课标全国卷文科数学分类汇编1.集合一、选择题(2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,,(2018·新课标Ⅱ,文2) 已知集合{}1,3,5,7A =,{}2,3,4,5B =则AB =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7(2018·新课标Ⅲ,文1) 已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( )A .3{|}2AB x x =< B . A B =∅C .3{|}2A B x x =< D . A B =R(2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B U ( )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,(2017·新课标Ⅲ,文1) 已知集合{}1234A =,,,,{}2468B =,,,,则AB 中元素的个数为( )A .1B .2C .3D .4(2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{|25}B x x =≤≤,则AB =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7(2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则AB =( )A .{-2,-1,0,1,2,3}B .{-2,-1,0,1,2}C .{1,2,3}D .{1,2}(2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2 (2015·新课标Ⅱ,文1)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=( )A. )3,1(-B. )0,1(-C. )2,0(D. )3,2( (2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则MB =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-(2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( ) A .Φ B .{2} C .{0} D . {-2}(2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =I ( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1} (2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .A B φ=(2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P MN =,则P 的子集共有 ( ).A .2个B .4个C .6个D .8个。

2011年—2018年新课标全国卷1理科数学分类汇编——9.立体几何

( B)
2
3
(C)
3
1
( D)
3
【 2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂
直的半径.若该几何体的体积是 28 ,则它的表面积是(

3
( A) 17
( B) 18 ( C) 20
( D) 28
【 2015 ,6 】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问
A. 6
B.9
C. 12
D. 15
【 2012, 11】已知三棱锥 S-ABC的所有顶点都在球 O 的球面上,△ ABC是边长为 1 的正三角形, SC为球
O 的直径,且 SC=2,则此棱锥的体积为(

2
A.
6
3
B.
6
2
C.
3
2
D.
2
【 2011, 6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可
个是梯形,这些梯形的面积之和为(

截此正方体所得截
A.10
B.12
C. 14 D. 16
【 2016,11】平面 过正方体 ABCD A1 B1C1D1 的顶点 A , // 平面 CB1D1 , I 平
面 ABCD m , 平面 ABB1A1 n ,则 m, n 所成角的正弦值为(

3
( A)
2
2
(D) 28
【解析】:原立体图如图所示:是一个球被切掉左上角的
1 后的三视图 8
表面积是 7 的球面面积和三个扇形面积之和 8
S= 7 4 8
22 +3 1 4
22 =17 ,故选 A .

2011_2018高考全国卷Ⅰ文科数学三角函数、解三角形汇编

新课标全国卷Ⅰ文科数学汇编三角函数、解三角形一、选择题【2018,8】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4【2018,11】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=A .15B C D .1【2017,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a=2,,则C=( ) A .π12B .π6C .π4D .π3【2016,4】ABC △的内角A B C ,,的对边分别为a b c ,,.已知a =2c =,2cos 3A =,则b =( )A .B .2 D .3 【2016,6】若将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函数为( ). A .π2sin 24y x ⎛⎫=+⎪⎝⎭ B .π2sin 23y x ⎛⎫=+ ⎪⎝⎭ C .π2sin 24y x ⎛⎫=- ⎪⎝⎭D .π2sin 23y x ⎛⎫=- ⎪⎝⎭【2015,8】函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈【2014,7】在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【2014,2】若tan 0α>,则( )A . sin 0α>B . cos 0α>C . sin 20α>D . cos20α>【2013,10】已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5 【2012,9】9.已知0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .4πB .3π C .2πD .34π 【2011,7】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( ).A .45-B .35-C .35D .45【2011,11】设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则 ( ) A .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π4x =对称 B .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π2x =对称 C .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π4x =对称 D .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π2x =对称 二、填空题【2018,16】△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.【2017,15】已知0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,则cos 4πα⎛⎫-= ⎪⎝⎭________.【2016,】14.已知θ是第四象限角,且π3sin 45θ⎛⎫+= ⎪⎝⎭,则πtan 4θ⎛⎫-= ⎪⎝⎭. 【2013,16】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.【2014,16】如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角 45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒. 已知山高100BC m =,则山高MN = m . 【2011,15】ABC △中,120B =,7AC =,5AB =,则ABC △的面积为 . 三、解答题【2015,17】已知,,a b c 分别为ABC △内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos B ;(2)设90B ∠=,且a =ABC △的面积.【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin cos c C c A =-.(1)求A ;(2)若2a =,△ABC ,求b ,c .解 析一、选择题【2018,8】已知函数()222cos sin 2f x x x =-+,则BA .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4【2018,11】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=B A .15BCD .1【2017,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a=2,,则C=( ) A .π12B .π6C .π4D .π3【答案】B【解法】解法一:因为sin sin (sin cos )0B A C C +-=,sin sin()B A C =+,所以sin (sin cos )0C A A +=,又sin 0C >,所以sin cos A A =-,tan 1A =-,又0A π<<,所以34A π=,又a =2,c=即1sin 2C =.又02C π<<,所以6C π=,故选B .解法二:由解法一知sin cos 0A A +=)04A π+=,又0A π<<,所以34A π=.下同解法一.【2016,4】ABC △的内角A B C ,,的对边分别为a b c ,,.已知a =2c =,2cos 3A =,则b =( ) A .B.2 D .3解析:选D .由余弦定理得222cos 2b c a A bc +-=,即245243b b +-=, 整理得()28113033b b b b ⎛⎫--=-+= ⎪⎝⎭,解得3b =.故选D .【2016,6】若将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函数为( ). A .π2sin 24y x ⎛⎫=+⎪⎝⎭ B .π2sin 23y x ⎛⎫=+ ⎪⎝⎭ C .π2sin 24y x ⎛⎫=- ⎪⎝⎭ D .π2sin 23y x ⎛⎫=- ⎪⎝⎭解析:选D .将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期,即向右平移π4个单位, 故所得图像对应的函数为ππ2sin 246y x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦π2sin 23x ⎛⎫=- ⎪⎝⎭.故选D . 【2015,8】函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈ 解:选D .依图,153++4242ππωϕωϕ==且,解得ω=π,=4πϕ, ()cos()4f x x ππ∴=+, 224k x k πππππ<+<+由,,解得132244k x k -<<+,故选D . 【2014,7】在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解:选A .由cos y x =是偶函数可知①y=cos|2x|=cos2x ,最小正周期为π;②y=|cos x |的最小正周期也是π;③中函数最小正周期也是π;正确答案为①②③,故选A【2014,2】若tan 0α>,则( )A . sin 0α>B . cos 0α>C . sin 20α>D . cos20α>解:选C .tan α>0,α在一或三象限,所以sin α与cos α同号,故选C【2013,10】已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .5解析:选D .由23cos 2A +cos 2A =0,得cos 2A =125.∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15.∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).【2012,9】9.已知0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .4πB .3π C .2πD .34π【解析】选A .由直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,得()sin()f x x ωϕ=+的最小正周期52()244T πππ=-=,从而1ω=.由此()sin()f x x ϕ=+,由已知4x π=处()sin()f x x ϕ=+取得最值,所以sin()14πϕ+=±,结合选项,知ϕ=4π,故选择A . 【2011,7】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( ).A .45-B .35-C .35D .45【解析】设(,2)(0)P t t t ≠为角θ终边上任意一点,则cosθ=当0t >时,cos 5θ=;当0t <时,cos 5θ=-.因此223cos 22cos 1155θθ=-=-=-.故选B .【2011,11】设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则 ( ) A .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π4x =对称 B .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π2x =对称 C .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π4x =对称 D .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π2x =对称【解析】因为ππππ()sin 2cos 2224444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当π02x <<时,02πx <<,故()f x x =在π0,2⎛⎫⎪⎝⎭单调递减.又当π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =是()y f x =的一条对称轴.故选D .二、填空题【2018,16】△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________【2017,15】已知0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,则cos 4πα⎛⎫-= ⎪⎝⎭________..0,2πα⎛⎫∈ ⎪⎝⎭,sin tan 22sin 2cos cos ααααα=⇒=⇒=,又22sin cos1αα+=,解得sin 5α=,cos 5α=,cos sin )4210πααα⎛⎫∴-=+= ⎪⎝⎭. 【基本解法2】0,2πα⎛⎫∈ ⎪⎝⎭Q ,tan 2α=,∴角α的终边过(1,2)P ,故sin 5y r α==,cos x r α==,其中r==cos (cos sin )42πααα⎛⎫∴-=+= ⎪⎝⎭ 【2016,】14.已知θ是第四象限角,且π3sin 45θ⎛⎫+= ⎪⎝⎭,则πtan 4θ⎛⎫-= ⎪⎝⎭ . 解析:43-.由题意sin sin 442θθπππ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭.因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z , 从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 方法2:还可利用ππtan tan 144θθ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭来进行处理,或者直接进行推演,即由题意4cos 45θπ⎛⎫+= ⎪⎝⎭,故3tan 44θπ⎛⎫+= ⎪⎝⎭,所以tan 4θπ⎛⎫-= ⎪⎝⎭143tan 4θ-=-π⎛⎫+ ⎪⎝⎭. 【2013,16】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.答案:解析:. ∵f (x )=sin x -2cos x x-φ),其中sin φ,cos φ 当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=πcos 2ϕ⎛⎫+⎪⎝⎭=-sin φ=5-. 【2014,16】16.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及 75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN = m .解:在RtΔABC中,由条件可得AC =, 在ΔMAC 中,∠MAC=45°;由正弦定理可得sin60sin 45AM AC =︒︒,故332AM =RtΔMAN 中,MN=AM sin60°=150.【2011,15】ABC △中,120B =,7AC =,5AB =,则ABC △的面积为 . 【解析】由余弦定理知2222cos120AC AB BC AB BC =+-⋅, 即249255BC BC =++,解得3BC =.故11sin1205322ABC S AB BC =⋅=⨯⨯=△..三、解答题【2015,17】已知,,a b c 分别为ABC △内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos B ;(2)设90B ∠=,且a =ABC △的面积.解析:(1)由正弦定理得,22b ac =.又a b =,所以22a ac =,即2a c =.则22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅.(2)解法一:因为90B ∠=,所以()2sin 12sin sin 2sin sin 90B A C A A ===-, 即2sin cos 1A A =,亦即sin 21A =.又因为在ABC △中,90B ∠=,所以090A <∠<, 则290A ∠=,得45A ∠=.所以ABC △为等腰直角三角形,得a c ==112ABC S ==△.解法二:由(1)可知22b ac =,① 因为90B ∠=,所以222a c b +=,② 将②代入①得()20a c -=,则a c ==,所以112ABC S ==△. 解:(Ⅰ) 因为sin 2B =2sin A sinC . 由正弦定理可得b 2=2ac .又a =b ,可得a=2c , b=2c ,由余弦定理可得2221cos 24a cb B ac +-==. (Ⅱ)由(Ⅰ)知b 2=2ac . 因为B=90°,所以a 2+c 2=b 2=2ac . 解得a =. 所以ΔABC 的面积为1.【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C的对边,sin cos c C c A =-.(1)求A ;(2)若2a =,△ABC,求b ,c . 【解析】(1)根据正弦定理2sin sin a cR A C==,得A R a sin 2=, C R c sin 2=,因为sin cos c C c A =-,所以2sin sin )sin 2sin cos R C R A C R C A =-⋅, 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A . (2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标全国卷Ⅰ文科数学分类汇编 8.立体几何(含解析) 一、选择题 【2018,5】已知圆柱的上、下底面的中心分别为1O,2O,过直线12OO的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.122π B.12π C.82π D.10π 【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( ) A.217 B.25 C.3 D.2

【2018,10】在长方体1111ABCDABCD中,2ABBC,1AC与平面11BBCC所成的角为30,则该长方体的体积为( ) A.8 B.62 C.82 D.83 【2017,6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是( )

【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A.17π B. 18π C. 20π D. 28π 【2016,11】平面过正方体1111ABCDABCD的顶点A,∥平面11CBD,平面ABCDm,

平面11ABBAn,则,mn所成角的正弦值为( ) A.32 B.22 C.33 D.13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A.14斛 B.22斛 C.36斛 D.66斛 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=( ) B A.1 B.2 C.4 D.8

【2015,11】 【2014,8】 【2013,11】 【2012,7】 【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ). A.16+8π B.8+8π C.16+16π D.8+16π 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A.6 B.9 C.12 D.15

【2012,8】平面截球O的球面所得圆的半径为1,球心O到平面的距离为2,则此球的体积为( )

A.6 B.43 C.46 D.63 【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )

二、填空题 【2017,16】已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径.若平面

SCASCB平面,SAAC,SBBC,三棱锥SABC的体积为9,则球O的表面积为_______.

【2013,15】已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.

【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 三、解答题 【2018,18】如图,在平行四边形ABCM中,3ABAC,90ACM∠,以AC为折痕将△ACM折起,使点M到达点D的位置,且ABDA⊥. (1)证明:平面ACD⊥平面ABC; (2)Q为线段AD上一点,P为线段BC上一点,且23BPDQDA,求三棱锥QABP的体积.

【2017,18】如图,在四棱锥PABCD中,AB∥CD,且90BAPCDP. (1)证明:平面PAB平面PAD;(2)若PAPDABDC,90APD,且四棱锥PABCD的体积为83,求该四棱锥的侧面积. 【2016,18】如图所示,已知正三棱锥PABC的侧面是直角三角形,6PA,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E.连结PE并延长交AB于点G. (1)求证:G是AB的中点; (2)在题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

P

ABDCG

E

【2015,18】如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD, (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC, 三棱锥E- ACD

的体积为63,求该三棱锥的侧面积. 【2014,19】如图,三棱柱111CBAABC中,侧面CCBB11为菱形,CB1的中点为O,且AO平面CCBB11. (1)证明:;1ABCB (2)若1ABAC,,1,601BCCBB求三棱柱111CBAABC的高.

【2013,19】如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. (1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积. 【2012,19】如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,90ACB,AC=BC=21AA1,D是棱AA1

的中点. (1)证明:平面BDC1⊥平面BDC; (2)平面BDC1分此棱柱为两部分,求这两部分体积的比.

【2011,18】如图所示,四棱锥PABCD中,底面ABCD为平行四边形,60DAB,2ABAD, PD底面ABCD.

(1)证明:PABD; (2)若1PDAD,求棱锥DPBC的高.

DA1

B1

CAB

C1 新课标全国卷Ⅰ文科数学分类汇编 8.立体几何(解析版) 一、选择题 【2018,5】已知圆柱的上、下底面的中心分别为1O,2O,过直线12OO的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.122π B.12π C.82π D.10π

解:选B。依题意可得:设圆柱底面半径为r,则其母线长为rl2,82l,222rl 表面积)(2lrrS)222(2212。

【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( ) A.217 B.25 C.3 D.2

解:选B。52)416(222MN。 【2018,10】在长方体1111ABCDABCD中,2ABBC,1AC与平面11BBCC所成的角为30,则该长方体的体积为( ) A.8 B.62 C.82 D.83 解:选C。易知:BAC1为1AC与面CCBB11所成的角 依题意可得:421ABAC,222ABAC,221CC 2822221111DCBAABCDV 【2017,6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是( )

【解法】选A.由B,AB∥MQ,则直线AB∥平面MNQ;由C,AB∥MQ,则直线AB∥平面MNQ;由D,AB∥NQ,则直线AB∥平面MNQ.故A不满足,选A. 【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A.17π B. 18π C. 20π D. 28π

解析:选A. 由三视图可知,该几何体是一个球截去球的18,设球的半径为R,则37428ππ833R,解得2R.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S14π3π17π.故选A. 【2016,11】平面过正方体1111ABCDABCD的顶点A,∥平面11CBD,平面ABCDm,平面11ABBAn,则,mn所成角的正弦值为( )

A.32 B.22 C.33 D.13 解析:选A. 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面,即平面AEF,即研究AE与AF所成角的正弦值,易知3EAF,所以其正弦值为32.故选A.

ABCD

A1

B1

C

1

D1

EFD1

C1B

1

A1

DCB

A

解法二(原理同解法一):过平面外一点A作平面,并使∥平面11CBD,不妨将点A变换成B,作使之满足同等条件,在这样的情况下容易得到,即为平面1ABD,如图所示,即研究1AB与BD所成角

的正弦值,易知13ABD,所以其正弦值为32.故选A.

相关文档
最新文档