数学文
学习“数学文化”的心得体会范文(三篇)

学习“数学文化”的心得体会范文数学文化是指数学思维、数学知识与人类社会、人类文化之间的相互关系。
数学作为一门学科在世界上的发展历史长久,在不同的国家和地区产生了不同的数学文化。
通过学习数学文化,我深刻体会到数学的普适性和世界性,同时也对不同数学文化的独特魅力有了更深的认识。
首先,学习数学文化让我感受到数学的普适性和世界性。
数学作为一门普遍存在于世界各地的学科,可以说是一种全人类共同的语言。
无论是在中国还是在西方,无论是在古代还是在现代,数学都扮演着相似的角色,提供了统一的思维工具和解决问题的方法。
通过学习数学文化,我了解到了不同国家的数学发展历程和数学家的贡献。
例如,古希腊人在几何学方面的研究成果为后来的数学发展奠定了基础,而中国古代数学家在代数和算术方面的成就也为后世的数学发展提供了宝贵的经验。
这些都说明了数学作为一门全球性的学科在不同文化背景下的普遍适用性。
其次,学习数学文化让我感受到不同数学文化的独特魅力。
不同国家和地区的数学文化在数学思维方式、研究领域和方法上都有着自己的独特特点。
比如,中国古代数学注重实用性和问题求解,强调观察和归纳的方法,而西方数学注重逻辑推理和严密性,重视公理化和证明。
这种差异不仅体现在数学内容上,也体现在数学教育和数学应用上。
通过学习不同数学文化,我了解到了不同数学文化对数学教育的重视程度和方法论的不同。
例如,芬兰在数学教育中注重培养学生的实际应用能力和创新能力,而中国数学教育则更加注重学生的计算能力和基础知识的掌握。
这些不同的教育方法和目标都能够在一定程度上反映不同数学文化的特点和侧重点。
在学习数学文化的过程中,我也深刻理解到数学是一门具有审美价值的学科。
尽管数学与艺术看似毫无关系,但实际上它们有着内在的联系。
数学中的公式、定理和证明都可以通过优美的形式语言来表达,同时也具有一定的美感。
通过数学,我们可以发现和欣赏一些美妙的规律和关系,例如黄金分割、费马大定理等。
数学文化介绍

数学文化介绍嘿,朋友们,今儿咱们来聊聊一个既神奇又接地气的话题——数学文化。
别看数学平时一副高冷范儿,其实它背后的故事和魅力,可比你想的要温暖、有趣得多!想象一下,你手里攥着一张皱巴巴的纸币,准备去买根冰棍解暑。
这时候,你心里默默盘算着,五块钱能买两根,要是找回来三块,那就是赚到了!嘿,这简单的一加一减,就是数学文化在咱们日常生活中的缩影。
它不只是课本上的公式和题目,更是一种生活的智慧,一种看待世界的独特方式。
咱们古人那会儿,可没现在这么多高科技,但他们照样把数学玩得风生水起。
比如说那个“九章算术”,里面记载了好多实用的数学问题,比如怎么分田地、怎么计算利息,简直就是古代的“数学宝典”。
那时候的数学,不仅仅是为了考试,更是为了解决生活中的实际问题,你说牛不牛?再聊聊数学里的那些“奇葩”故事。
比如说那个著名的费马大定理,据说费马在看书的时候,突然心血来潮,在书页边缘写了一句话:“我发现了一个美妙的证明,但这里的空白太小,写不下。
”这话一传开,可把全世界的数学家都馋坏了,大家纷纷开始琢磨这个证明。
结果呢?愣是过了几百年,才被英国数学家安德鲁·怀尔斯给搞定。
你说这数学,是不是比悬疑小说还要扣人心弦?说到数学,不得不提的就是那些让人眼前一亮的图形和公式。
比如那个黄金分割,简直就是自然界的“颜值担当”。
无论是古埃及的金字塔,还是咱们人体的比例,都能找到黄金分割的影子。
它就像是隐藏在万物之中的密码,等着我们去发现和解读。
还有啊,数学可不是男生的专利,女生学数学也能厉害得不得了。
像那个著名的华裔数学家张益唐,他的研究成果可是震惊了整个数学界。
他的故事告诉我们,数学面前,人人平等,只要你有兴趣,肯努力,就能在数学的世界里找到属于自己的天地。
数学文化,就像是一座宝藏,等待着我们去挖掘、去欣赏。
它不仅仅是数字和公式的堆砌,更是一种思维的锻炼,一种创造力的激发。
在这个充满挑战和机遇的时代,咱们不妨多学学数学,用数学的眼光去看世界,说不定你会发现,原来生活里处处都是数学的影子,处处都充满了惊喜和乐趣!所以啊,下次当你再看到那些复杂的数学题时,别急着皱眉头。
数学文化知识的内容有哪些

数学文化知识的内容有哪些
1. 数学发展史:古希腊数学家发现计算的方法,庞加莱的代数学框架;中国古代的“算经”和相类似的经典,印度算术传统;新纪元的数学主义,贝尔的不可分割性质和地里分析;20世纪的数学前沿的发展,比如微积分的发展、抽象代数学的发展。
2. 数学科学的应用:数学在哲学、天文学、科学和社会科学等领域的重要作用;电脑科学、建筑学、商业和经济学等领域与数学紧密联系的历史及其重要性;图论、组合数学等在可视化工具、计算机科学等领域中的应用;投资和风险管理等应用数学方法。
3. 数学文化:数学与文学艺术、哲学、宗教之间的联系,数学在历史时期的不同艺术样式;数学的符号与运算的联系;抽象艺术中数学主题的使用;运用趣味化的数学知识,激发兴趣传播数学文化。
数学文化对数学教育的作用的例子

数学文化对数学教育的作用的例子一、概述数学文化是指以数学为主要内容的学术、思想、艺术、习俗等的总和,它在社会文明的发展过程中扮演着重要的角色。
数学文化对数学教育有深远的影响,本文将通过一些具体的例子来说明数学文化对数学教育的作用。
二、数学文化激发学生学习兴趣1. 著名数学家的故事数学文化中蕴含着无数著名数学家的故事,如阿基米德在浴缸中发现浮力原理,牛顿在苹果树下想到万有引力,高斯童年时期就发现了数学规律等等,这些故事激发了学生对数学的浓厚兴趣,使他们更加愿意投入到数学学习中。
2. 数学文化中的美学数学文化不仅包含着严谨的逻辑和推理,还蕴含着美学的内涵。
黄金分割、菱形定理、费马大定理等都展现了数学的美感,这些美学元素可以激起学生对数学的审美情感,使他们更加喜爱数学学科。
三、数学文化促进数学教育方法的创新1. 传统与现代的交融数学文化中传统的数学内容与现代的数学知识相结合,可以促进数学教育方法的创新。
以我国古代的算盘为例,它在数学文化中扮演了重要角色,而今天的电子计算机则代表了现代科技的发展。
将传统与现代相结合的教学方法可以提高学生学习数学的兴趣和效果。
2. 国际化的视野数学文化包括了世界各个国家和地区的数学发展历程和成就,这种国际化的视野可以促进数学教育方法的创新。
通过比较不同国家和地区的数学教育方法和成就,可以为我们提供更多的启示和借鉴,使数学教育在不断创新中不断进步。
四、数学文化促进数学教育的实践活动1. 数学文化节在许多国家和地区都定期举办数学文化节,通过展示数学的魅力和神秘,吸引了大量学生和家长的参与。
这些数学文化节不仅能够增加学生对数学的兴趣,而且还能够促进学生进行数学实践活动,培养他们的数学思维和创造力。
2. 数学文化课程在一些学校中,已经将数学文化纳入课程中,通过讲解数学史、数学发展过程、数学成就等内容,使学生更加深入地了解数学的内涵和意义,从而提高了他们对数学学科的热爱和兴趣。
五、结语数学文化对数学教育的作用是多方面的,它不仅激发了学生的学习兴趣,促进了数学教育方法的创新,而且还促进了数学教育的实践活动。
数学文化、定义、价值、文化内涵

数学文化数学作为一种文化现象,早已是人们的常识。
从历史上看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。
著名的代表人物如柏拉图、泰勒斯和达·芬奇。
晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。
数学文化定义狭义:数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
广义:除上述内涵以外,还包含数学家,数学史,数学美,数学教育。
数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。
数学文化价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。
许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。
数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。
于是,西方的数学界有“经验主义的复兴”。
怀特(White)的数学文化论力图把数学回归到文化层面。
克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。
稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。
郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
进入21世纪之后,数学文化的研究更加深入。
数学文化的内涵、特点及其价值

数学文化的内涵、特点及其价值【关键词】数学文化;数学文化特点;数学文化价值一、数学文化的内涵数学文化作为一门文理交叉的综合学科,除了固有的文化特征外还具有数学特性。
即数学文化应该以数学学科体系为核心,在核心体系下主要包罗了数学历史、数学思想方法、数学精神观点、数学思维品格、数学结论及应用等形成与发展的整个过程。
因此数学文化是一门底蕴丰富,内涵富饶,价值深远的学科。
二、数学文化的特点(一)开放性与整合性并存开放性是所有文化得以存在和发展的前提。
数学文化的开放性就是数学文化的包容性。
因此教师在教学过程中,不仅要体现出数学知识的核心概念,还要把这些核心概念背后蕴藏的数学文化知识渗透其中,让学生体会和感悟到数学文化“有容乃大”的一面。
数学文化的整合性是指数学文化在形成和积淀的过程中与其他学科之间不断进行交汇和融合,进而产生了数学与其他学科有机整合的一面。
比如,数学与历史、数学与科学、数学与经济等。
这些数学与其他学科整合形成的交叉学科也是数学文化的重要组成部分,它们的整合凸显出数学学科强大的生命力。
(二)延续性和继承性共存数学文化是经过漫长积淀形成的一门学科文化。
学生数学文化素养的形成同样也需要经历一个漫长积淀的过程。
也正因为如此,数学文化的渗透需要教师、学校、家长、社会形成一定的氛围,在这样氛围的熏陶和感染下,数学文化才得以在学生心中得以延续并最终开花结果。
反之,学生对数学文化的学习也是一种有意义的建构,这种建构依托于学生已有的数学文化基础水平,依托于数学文化持续地“注入”。
这种“注入”是建立在已有知识水平上,是对自身已有数学文化的一种继承和更新。
三、数学文化的价值数学文化被视为一种特殊的文化形态,不仅是数学知识的“代言人”,还拥有超越数学知识以外的深厚内涵。
数学文化的意义主要有以下几点:(一)丰富教学理念、提升教学效率数学文化作为数学学科独有的一个体系,有助于教学改革的推进,同时也有助于教师从根本上改变和丰富教学理念。
数学文化的内容
数学文化的内容
数学文化是指将数学与文化相结合,将数学的概念、方法和技巧运用于文化领域中,从而增强人们的文化素质和审美能力。
数学文化的内容十分丰富,包括以下几个方面:
1. 数学美学:数学是一门美学科学,其中蕴含着许多美妙的数学定理、公式和图形。
数学美学的研究可以帮助人们更好地欣赏数学之美,也可以激发人们的创造力和想象力。
2. 数学思维:数学思维是一种抽象思维,是一种理性思考的方式。
通过学习数学,人们可以培养出较强的逻辑思维能力、分析问题能力和解决问题能力,这对于人们的生活和工作都非常有益。
3. 数学史:数学史是研究数学的历史发展过程和著名数学家的生平事迹的学科。
通过了解数学史,人们可以更好地了解数学的发展历程,也可以从历史中获得启示和灵感。
4. 数学教育:数学教育是培养人们数学素质和数学能力的过程。
数学教育不仅仅是传授数学知识,更是培养人们的数学思维和数学兴趣,使其成为数学能手和数学爱好者。
总之,数学文化不仅仅是一种知识和技能,更是一种精神和文化。
它可以帮助人们更好地认识世界,提高自身素质,也可以丰富人们的生活,让人们感受到数学之美。
- 1 -。
数学文化手抄报内容3篇
数学文化手抄报内容第一篇:数学文化的意义数学是一门与日常生活息息相关的学科,它的应用广泛,可以帮助我们解决各种问题。
但数学不仅仅是一种工具,它还具有独特的文化意义。
首先,数学是一门理性的学科。
它可以让我们进行逻辑思维和推理,帮助我们拥有更为精确的思考方式。
这种理性思考方式不仅在数学领域中有用,而且在其他领域中同样重要。
例如,在政治、经济等领域,理性思考能够帮助我们更好地分析问题并作出正确的决策。
其次,数学是一种美学。
数学中的公式、定理和证明等等,都是纯粹的美。
这种美并不仅仅取决于其形式,更取决于其内涵。
例如,欧拉公式在数学上是一条简单的公式,但它包含的数学思想和定理却极其深刻。
正是由于这种美学,数学才成为了一个受人尊敬的学科。
另外,数学是一种社交和交流工具。
无论是学术界还是商业领域,在数学上相互交流和合作都是非常必要的。
同时,数学也是一种全球通用的语言,在不同国家和地区之间的交流中起着非常重要的作用。
正是由于这种社交和交流工具的特性,才让数学成为了一个越来越重要的学科。
最后,数学还是一种文化传承。
从古至今,数学一直伴随着人类文明的发展。
众多的数学家们为人类留下了许多宝贵的数学遗产,这些遗产至今仍在不断地作为人类知识的宝库。
因此,学习数学可以培养我们的文化素养,让我们更好地理解人类文明的发展历程。
总之,数学文化是一种极为重要的文化形式,它不仅在数学领域有用,还具有广泛的应用和深刻的意义。
因此,我们应该更加重视数学文化的传承和发展,让更多的人能够欣赏数学的美,并从中受益。
第二篇:数学与生活数学在生活中无处不在,从简单的数学运算到高深的数学理论,都贯穿着我们的日常生活。
下面我们就来看看,数学是如何与生活结合的。
首先,数学是日常生活中的常用工具。
在购物、理财、测量、计算等方面,我们都需要使用各种数学知识来解决问题。
例如在购物时,我们需要计算价格、折扣等,以便做出正确的购物决策。
而在理财中,我们需要了解各种复利的计算公式,以便找到最优的理财方式。
关于数学文化的知识
施帆
17级法学三班 201712212ห้องสมุดไป่ตู้073
一、数学文化
数学:是文化。‘人’化离不开‘数‘,源于实践,生于大脑,产于两者结 合。 功能:不是自然科学,无确定的客观世界对象。
不是人文科学,非因精神世界而产生。
它是科学,高度抽象,高度定量。 研究数、形、逻辑关系及有关世界。
极其执着的追求 完美:魅力 诱人的猜想,神奇的预言 美妙的和谐,惊人的简洁 创新:不断的自我超越 不断的开拓新域
三、数学应用
1、哈雷彗星的发现
2、电磁波的应用
四、九章算术
内容:第一章、方田 第二章、粟米 第三章、衰分 第四章、少广 第五章、商工 第六章、均输 第七章、盈不足 第八章、方程 第九章、勾股
它是一种哲学,哲理思维科学。
特点:实践
二、数学文化教育
概念:即通过数学知识,启迪科学与人文思维,展示科学方法与人文方法,明确科 学原则与人文原则,升华科学与人文精神。 数学知识:数学发展史、数学家成长史、典型数学问题、我国古代数学成就。 数学精神:
求真:极其严格的逻辑
五、数学与生活
1、轴对称图形:许多的建筑、蝴蝶 2、三角形的稳定性:金字塔,球门 等 3、正六边形的应用可节省材料:铺 的六边形地砖
六、趣味问答
问题:为什么猫冬天睡觉会把自己团成一个球?
答案:球形使身体表面积最小,从而散发热量 最少。
谢谢观赏
数学文化心得体会(通用9篇)
数学文化心得体会(通用9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结计划、党团报告、合同协议、策划方案、演讲致辞、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary plans, party and youth league reports, contract agreements, planning plans, speeches, rules and regulations, doctrinal documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!数学文化心得体会(通用9篇)数学文化心得体会(通用9篇)在我们深受启发时,就十分有一定要写一篇心得体会,这可以不断创新自己的观点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试 文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B= A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅2.设z=i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a=(2,3),b=(3,2),则|a –b|= A .2 B .2 C .52D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f(x)为奇函数,且当x≥0时,f(x)=e 1x-,则当x<0时,f(x)= A .e 1x -- B .e 1x -+ C .e 1x---D .e 1x--+ 7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若x1=4π,x2=43π是函数f(x)=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .12 9.若抛物线y2=2px (p>0)的焦点是椭圆2213x y p p +=的一个焦点,则p=A .2B .3C .4D .810.曲线y=2sinx+cosx 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15 B .55 C .33 D .25512.设F 为双曲线C :22221x y a b -=(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为A .2B .3C .2D .5二、填空题:本题共4小题,每小题5分,共20分. 13.若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z=3x –y 的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c.已知bsinA+acosB=0,则B=___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
17.(12分)如图,长方体ABCD –A1B1C1D1的底面ABCD 是正方形,点E 在棱AA1上,BE ⊥EC1. (1)证明:BE ⊥平面EB1C1;(2)若AE=A1E ,AB=3,求四棱锥11E BB C C-的体积.18.(12分)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式; (2)设2log n nb a =,求数列{}n b 的前n 项和.19.(12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:748.602≈.20.(12分)已知12,F F 是椭圆2222:1(0)x yC a b a b +=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.21.(12分)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点; (2)()=0f x 有且仅有两个实根,且两个实根互为倒数.(二)选考题:共10分.请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P.(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.23.[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 1.C2.D3.A4.B5.A6.D7.B8.A9.D10.C11.B12.A13.9 14.0.9815.3π416.21-17.解:(1)由已知得B1C1⊥平面ABB1A1,BE ⊂平面ABB1A1,故11B C BE⊥. 又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB1=90°.由题设知Rt △ABE ≌Rt △A1B1E ,所以1145AEB A EB ︒∠=∠=,故AE=AB=3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.18.解:(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=. 解得2q =-(舍去)或q=4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为1321n n +++-=.19.解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i ii s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦=0.0296,0.02960.02740.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.20.解:(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c=,13PF c=,于是122(31)a PF PF c=+=+,故C 的离心率是31ce a ==-.(2)由题意可知,满足条件的点(,)P x y 存在当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b +=,即||16c y =,①222x y c +=,②22221x y a b +=,③由②③及222a b c =+得422b y c =,又由①知22216y c =,故4b =. 由②③得()22222a x c b c =-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P. 所以4b =,a 的取值范围为[42,)+∞.21.解:(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x -'=+-=-.因为ln y x =单调递增,1y x =单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增.因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---== ⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.22.解:(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 233ρπ==.由已知得||||cos 23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π .23.解:(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥. 当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.2019年普通高等学校招生全国统一考试(全国卷II)英语第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。